FD-WTC-D温度传感器特性综合实验仪说明书
实验十二 集成电路温度传感器特性测量

实验十二集成电路温度传感器特性测量一.概述温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。
为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。
新仪器与同类其它仪器相比,有以下四个优点:1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。
本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。
二.用途1.电流型集成温度传感器AD590的特性测量和应用:(1)测量AD590输出电流和温度的关系,计算传感器灵敏度及0?C 时传感器输出电流值。
(2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。
(3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性使用范围的最小电压Ur。
三.仪器组成与技术指标1.仪器组成如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V四位半数字电压表、直流1.5V-12V稳压输出电源、可调式磁性搅拌器以及2000ml烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。
图12.技术指标:A.温控仪(1)温度计显示工作温度:0℃-100℃(2)恒温控制温度:室温-80oC(3)控制恒温显示分辨精度:≤±0.1℃B.直流数字电压表(1)量程:0-19.999V(2)读数准确度:量程0.03%±5个字(3)输出电阻:20Ω(为了防止长时间短路内接电阻)C.温度传感器DS18B20的结构与技术特性(控温及测温用):(1)温度测量范围:-55℃-125℃(2)测温分辨率:0.0625℃(3)引脚排列(如图2所示):1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚图2- 2 -(4)封装形式:TO-92详细应用请参阅相关资料D.待测温度传感器AD590技术特性:(1)工作温度:—55℃—150℃(2)工作电压:4.5V—24V(3)灵敏度:1μA/℃,线性元件(4)0℃时输出电流约273μAE.加热器:(1)工作电压:交流10V—150V(2)工作电流:交流最大1.5A四.仪器使用方法1.使用前将电位器调节旋钮逆时针方向旋到底,把接有DS18B20传感器接线端插头插在后面的插座上,DS18B20测温端放入注有少量油的玻璃管内(直径16mm);在2000ml大烧杯内注入1600ml的净水,放入搅拌器和加热器后盖上铝盖并固定。
FD-NCD空气比热容比测定仪说明书

FD-NCD空气比热容比测定仪说明书上海复旦天欣科教仪器有限公司中国上海一、概述本仪器用绝热膨胀法测量空气的比热容比,主要供大专院校普通物理热学与热力学实验教学用。
由于本仪器采用扩散硅压力传感器测量空气压强,用电流集成温度传感器测空气温度,设计先进,结构安全可靠,实验结果精确。
二、用途1、测量空气的定压比热容与定容比热容之比。
2、观测热力学过程中空气状态变化及基本规律。
3、学习用传感器精确测量气体压强和温度的原理与方法。
三、结构特性本仪器主要由三部分组成:(1)贮气瓶:它包括玻璃瓶、进气活塞、橡皮塞组成;(2)传感器:扩散硅压力传感器和电流型集成温度传感器AD590各一只;(3)数字电压表二只:三位半数字电压表作硅压力传感器的二次仪表(测空气压强)、四位半数字电压表作集成温度传感器二次仪表(测空气温度)。
扩散硅压力传感器配三位半数字电压表,它的测量范围大于环境气压0--10KPa,灵敏度为20mV/KPa。
实验时,贮气瓶内空气压强变化范围约6KPa。
空气温度测量采用电流型集成温度传感器AD590,该半导体温度传感器灵敏度高、线性好,它的灵敏度为1uA/C0。
四、保养和维护1、实验时硅压力传感器请勿用手压,以免影响测量准确性。
2、玻璃活塞如有漏气,可用乙醚将油脂擦干净,重新涂真空油脂。
3、橡皮塞与玻璃瓶或玻璃管接触部位等处有漏气只需涂704硅化橡胶,即可防止漏气(硅化橡胶由江苏锡山市后宅前进化工厂生产)。
4、由于硅压力传感器各只灵敏度不完全相同,一台仪器配一只专用传感器,请勿将显示器与压力传感器互换。
五、仪器及附件1、贮气瓶一只(包括瓶、活塞二只、橡皮塞、打气球)。
2、硅压力传感器及同轴电缆。
3、电流型集成温度传感器及电缆。
4、三位半数字电压表;四位半数字电压表各一只。
用户自备:钾电池四节、5KΩ电阻(或电阻箱代)一只。
空气比热容比测定实验介绍目的:1、用绝热膨胀法测定空气的比热容比。
2、观测热力学过程中状态变化及基本物理规律。
温度传感器测试及半导体致冷控温实验仪说明书

温度传感器测试及半导体致冷控温实验对温度传感器性能的了解及测试是大学物理实验的一项必备内容,但大多数实验仪器只具备做环境温度以上的实验,FD-TM温度传感器测试及半导体致冷控温实验仪具备了半导体致冷功能使之能做环境温度以下的实验。
本仪器主要测试温度传感器AD590的性能(可根据要求增加多种温度传感器的测试)及了解半导体致冷堆的性能。
一仪器性能1 加热: 环境温度---120℃2 致冷: 环境温度---- 环境温度-45℃(-10℃--15℃)3控温精度:0.1℃4 测温精度: ±3%AD590电流型集成电路温度传感器是将PN结(温度传感器)与处理电路利用集成化工艺制作在同一芯片上的具有测温功能的器件。
它具有精度高、动态电阻大、响应速度快、线性好、使用方便等特点。
芯片中R1,R2是采用激光校正的电阻,在298.15K(+25℃)下,输出电流为298.15uA。
V T8和V T11产生与热力学温度(K)成正比的电压信号,再通过R5,R6把电压信号转换成电流信号,为了保证良好的温度特性,R5,R6采用激光校准的SiCr薄膜电路,其温度系数低至(-30——-50)*10-6/℃。
V T10的C极电流跟随V T9和V T11的C极电流的变化,使总电流达到额定值。
R5,R6同样在298.15K(+25℃)的温度标准下校正。
AD590等效于一个高阻抗的恒流源,其输出阻抗>10MΩ,能大大减小因电源电压变动而产生的测温误差(如下图)。
1AD590的工作电压为+4——+30V ,测温范围是-55——150℃。
对应于热力学温度T ,每变化1K ,输出电流变化1uA 。
其输出电流I 0(uA)与热力学温度T (K )严格成正比。
电流温度系数K I 的表达式为: 8ln 30qRk T I K I == 式中k,q 分别为玻尔兹曼常数和电子电量,R 是内部集成的电阻。
Ln8表示内部V T9与V T11的发射极面积之比R=S 9/S 11=8倍。
温度传感器的说明书

温度传感器的说明书尊敬的用户:感谢您购买我们的温度传感器产品。
为了确保您正确、安全地使用此产品,我们特别提供如下说明书,请仔细阅读并按照要求进行操作。
1. 产品概述温度传感器是一种用于测量温度的设备,可以将温度转化为电信号输出。
本产品采用高精度的数字温度传感器,并具备以下特点:- 超高精度:测量温度范围为-40℃至+125℃,精度可达±0.1℃。
- 快速响应:传感器具备快速响应时间,能够准确捕捉温度变化。
- 稳定可靠:采用优质材料和先进工艺制造,确保产品稳定可靠,长时间使用不易出现故障。
2. 使用方法本温度传感器为数字输出型产品,可通过以下步骤进行使用:步骤一:将传感器连接到计量仪器或控制系统的温度接口,确保接触良好。
步骤二:开启计量仪器或控制系统,并按照相关说明进行设置。
步骤三:进行温度测量,待测量结果稳定后,记录或进行进一步处理。
3. 注意事项为了保障您的安全和正常使用,请注意以下事项:- 请按照产品规定的工作温度范围使用,不要超出额定范围,以免影响测量准确性和传感器寿命。
- 请避免与水、油等液体直接接触,以免影响传感器性能和使用寿命。
- 请勿在高温、高湿度、强酸碱等恶劣环境中使用,以免损坏传感器。
- 避免传感器受到强磁场或电磁辐射的干扰,可能会导致测量偏差。
4. 维护保养- 定期清洁传感器外壳,可使用干净的软布轻擦,不要使用有机溶剂或大量水直接清洗。
- 如发现传感器接触异常或测量不准确,请及时联系售后服务,不要私自拆卸或修理。
5. 售后服务如有任何关于产品的使用问题或售后需求,请随时联系我们的客户服务团队,我们将竭诚为您提供技术支持和解决方案。
感谢您对我们产品的信任和支持,我们将一如既往地致力于为您提供高品质的产品和专业的服务。
祝您使用愉快!此致,敬礼。
厂商名称日期。
温度传感器说明书

DimensionalDrawings 4
Electricalconnection|HeadBig
Headunitwith1transmitter n( odisplay)andM12plug
Headunitwith1transmitter n( odisplay)andcablegland
V01
B
52.7 / 2.09
V52
F
66.0 / 2.60
V04
N
84.0 / 3.31
D2 [mm/inch] 31.0 / 1.22 50.0 / 1.97 68.0 / 2.68
FOOD
Processconnectionswithextendedtemperaturerange
CH|1 CLEANadaptM21
6mm
t50¡1.8s t90¡5.2s D: 8, 10, 12 mm
D
4mm
t50¡1.2s t90¡3.5s D: 6, 8, 10 mm
D
3mm
t50¡0.8s t90¡s2. D: 6 mm
D
4
3
d
Front“- ush t50¡2.5s t90¡15s
14 [0.55]
7 Installation|Warnings
Disposal
· Electrical devices should not be disposed of with household trash. They must be recycled in accordance with national laws and regulations.
· Take the device directly to a specialized recycling company and do not use municipal collection points.
PN结的物理特性—实验报告

半导体PN 结的物理特性实验报告姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。
本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。
本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。
二、实验原理 1、 PN 结的物理特性(1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。
(2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。
在常温(T=300K )下和实验所取电压U的范围内, 故①可化为 ②,两边取对数可得 。
(3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。
2、反向饱和电流I s(1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。
对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。
(2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K时材料的禁带宽度。
数字式温度计的设计和制作

► 对 NTC 热敏电阻数字体温计进行检验 通过升温,记录不同温度下电压表的示数和温度传感器的示数,对二者进行比较。
θ(℃) U(mV)
34.1
34.12
U-θ 0.02
- 11 -
数字式温度计的设计和制作 何安珣(09300190088)
五、实验数据和现象记录
1.测量 AD590 集成温度传感器的温度特性
► 确定 AD590 工作电压的范围 按照图 3 连接电路,电阻箱取 5,000Ω。改变电源电压值,记录数据如下:
U0(V) 1.53 3.02 3.51 4.00 4.51 6.00 7.51 9.08 10.52 12.05 13.51 15.00 16.50 18.00 19.52
2.NTC 热敏电阻
► 在恒定电流的情况下,研究 NTC 热敏电阻的零功率阻值与温度的关系。
图4 NTC 温度特性测量电路
按图4连接电路,ε取定值,R1和 R2取值相等。通过调节 R3是电压表示数为0,此时 R3
-5-
数字式温度计的设计和制作 何安珣(09300190088) 的值即为 NTC 的电阻值。记录下温度 T 和 R3的值,绘制 Rx-1/T 曲线。 ► 用 NTC 热敏电阻制作量程为35℃~42℃范围的数字体温计。
U-θ -0.12 -0.06 -0.17 -0.16 -0.06 0.05 -0.13 0.05 0.04 0.03 0.05 -0.10
表3
绘制 U-θ曲线:
80
70
60
U/mV
50
40
30
20
20
30
FD-TTT-A型温度传感器温度特性实验仪

温度传感器温度特性实验仪FD-TTT-A型温度传感器温度特性实验仪一、概述“温度”是一种重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要。
所以温度传感器应用广泛。
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。
一般把金属热电阻称为热电阻,把半导体热电阻称为热敏电阻。
二、仪器简介FD-TTT-A温度传感器温度特性实验仪由精密智能控温加热系统、恒流源、直流电桥、直流稳压电源、Pt100温度传感器、NTC1K热敏电阻温度传感器、PN结温度传感器、电流型集成温度传感器AD590、电压型集成温度传感器LM35、数字电压表、实验插接线等组成。
常用的温度传感器的类型和作用见表1。
仪器面板见图1图1三、技术指标1. 电源电压 220V±10%;50Hz±5%;功耗<100W2. 实验电源电桥电源+2V±0.5%、0.3A;恒流源1mA±0.5%;+5V、0.5A3. 数字电压表 0-2V±0.2%;0-20V±0.2%;分辨率0.0001V(2V);0.001V(20V)4. TCF708智能控温仪分辨率0.1℃;控温准确度±0.1℃;测温范围0--100℃;测温准确度±3%(用标准水银温度计校准后可达±0.5%)。
5.加热井环境温度~100℃。
四、仪器应用本仪器通电后除了测量仪表及实验电源外,实验电路要插上实验电源后才能工作。
加热前先调好控温仪(设好预定温度,首次应用在60℃进行PID自适应整定)。
如何用好控温仪请参考控温仪说明书。
按面板电路图指示插好实验电路,将控温传感器(Pt100)插入加热井一孔,待测传感器插入另一孔就能进行实验了(为节省时间可同时进行多种传感器的实验,只要把数字电压表分别测量待测传感器输出即可)。
*为保证实验的安全,加热井已加装超温保护开关(105℃-110℃)*实验请参考实验讲义温度传感器的温度特性测量实验【实验目的】1. 学习用恒电流法测量热电阻;2. 学习用直流电桥法测量热电阻;3. 测量铂电阻温度传感器(Pt100)的温度特性;4. 测量热敏电阻(负温度系数)温度传感器NTC1K的温度特性;5. 测量PN结温度传感器的温度特性;6. 测量电流型集成温度传感器(AD590)的温度特性;7. 测量电压型集成温度传感器(LM35)的温度特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FD-WTC-D型恒温控制温度传感器实验仪说明书上海复旦天欣科教仪器有限公司中国上海FD-WTC-D 型恒温控制温度传感器实验仪一.概述温度传感器的特性测量和定标是大学普通物理热学实验和电磁学实验中的一个基本内容,是新的全国理工科物理实验教学大纲中一个重要实验。
为开设好此实验,由复旦大学物理实验教学中心和上海复旦天欣科教仪器有限公司协作,联合研制了采用DS18B20单线数字温度传感器为测量元件的新一代恒温控制仪。
新仪器与同类其它仪器相比,有以下四个优点: 1)传感器体积小;2)控温精度高;3)无污染及噪声(无水银污染且不用继电器);4)设定温度和测量温度均用数字显示。
本实验仪器可用于各种温度传感器的特性测量和各种材料的电阻与温度关系特性测量实验,本仪器也可用于物理化学实验做恒温仪用,它是理工科大学普通物理实验必备重要实验装置之一。
二.用途1.电流型集成温度传感器AD590的特性测量和应用:(1)测量AD590输出电流和温度的关系,计算传感器灵敏度及C 0时传感器输出电流值。
(2)用AD590传感器,电阻箱,数字电压表和直流电源等设计并安装数字式摄氏温度计。
(3)测量集成温度传感器AD590在某恒定温度时的伏安特性曲线,求出AD590线性使用范围的最小电压r U 。
2.测量半导体热敏电阻阻值与温度的关系,求该半导体热敏电阻的经验公式。
3.热电阻等温度传感器的特性测量。
(PN 结或热电阻用户自备)三.仪器组成与技术指标1.仪器组成如图1所示,本机为有单片控制的智能式数字恒温控制仪、量程为0-19.999V 四位半数字电压表、直流1.5V-12V 稳压输出电源、可调式磁性搅拌器以及2000ml 烧杯、加热器、玻璃管(内放变压器油和被测集成温度传感器)等组成。
图12.技术指标:A.温控仪(1)温度计显示工作温度:0℃-100℃(2)恒温控制温度:室温-80o C(3)控制恒温显示分辨精度:≤±0.1℃B.直流数字电压表(1)量程:0-19.999V(2)读数准确度:量程0.03%±5个字(3)输出电阻:20Ω(为了防止长时间短路内接电阻)C.温度传感器DS18B20的结构与技术特性(控温及测温用):(1)温度测量范围:-55℃-125℃(2)测温分辨率:0.0625℃(3)引脚排列(如图2所示):1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚图2(4)封装形式:TO-92详细应用请参阅相关资料D.待测温度传感器AD590技术特性:(1)工作温度:—55℃—150℃(2)工作电压:4.5V—24V(3)灵敏度:1μA/℃,线性元件(4)0℃时输出电流约273μAE.加热器:(1)工作电压:交流10V—150V(2)工作电流:交流最大1.5A四.仪器使用方法1.使用前将电位器调节旋钮逆时针方向旋到底,把接有DS18B20传感器接线端插头插在后面的插座上,DS18B20测温端放入注有少量油的玻璃管内(直径16mm);在2000ml大烧杯内注入1600ml的净水,放入搅拌器和加热器后盖上铝盖并固定。
2.接通电源后待温度显示值出现“B= = . = ”时可按“升温”键,设定用户所需的温度,再按“确定”键,加热指示灯发光,表示加热开始工作,同时显示“A = = . = ”为当时水槽的初始温度,再按“确定”键显示“B = = . =”表示原设定值,重复确定键可轮换显示A、B值;A为水温值,B设定值,另有“恢复”键可以重新开始。
五.注意事项1.AD590集成温度传感器的正负极性不能接错,红线表示接线电源正极。
2.AD590集成温度传感器不能直接放入水中或冰水混合物中测量温度,若测量水温或冰水混合物温度,须插入到加有少量油的玻璃的玻璃细管内,再插入待测温物测温。
3.搅拌器转速不宜太快,若转速太快或磁性转子不在中心,有可能转子离开旋转磁场位置而停止工作,这时须将调节马达转速电位器逆时针调至最小,让磁性转子回到磁场中,再旋转。
4.热敏电阻的工作电流应小于300μA,防止自热引入误差,实验时,直流电源调节旋钮可反时针调到底。
用数字电压表测得电源为1.5V方可使用。
5.2000ml烧杯的底部必须平整,更换大烧杯时请注意。
5.倒去烧杯中水时,注意应先取出磁性浮子保管好,以避免遗失。
集成电路温度传感器的特性测量及应用(复旦大学物理教学实验中心提供)随着科技的发展,各种新型的集成电路温度传感器器件不断涌现,并大批量生产和扩大应用。
这类集成电路测温器件有以下几个优点:(1)温度变化引起输出量的变化呈现良好的线性关系;(2)不像热电偶那样需要参考点;(3)抗干扰能力强;(4)互换性好,使用简单方便。
因此,这类传感器已在科学研究、工业和家用电器温度传感器等方面被广泛使用于温度的精确测量和控制。
本实验要求测量电流型集成电路温度传感器的输出电流与温度的关系,熟悉该传感器的基本特性,并采用非平衡电桥法,组装成为一台0-50o C 数字式温度计。
A.实验原理AD590集成电路温度传感器是由多个参数相同的三极管和电阻组成。
该器件的两端当加有某一定直流工作电压时(一般工作电压可在4.5V -20V 范围内),它的输出电流与温度满足如下关系:I=B θ+A式中,I 为其输出电流,单位μA ,θ为摄氏温度,B 为斜率(一般AD590的B=1μA/o C,即如果该温度传感器的温度升高或降低1o C ,那传感器的输出电流增加或减少1μA ),A 为摄氏零度时的电流值,其值恰好与冰点的热力学温度273K 相对应。
(对市售一般AD590,其A 值从273-278μA 略有差异。
)利用AD590集成电路温度传感器的上述特性,可以制成各种用途的温度计。
采用非平衡电桥线路,可以制作一台数字式摄氏温度计,即AD590器件在0o C 时,数字电压显示值为“0”,而当AD590器件处于θo C 时,数字电压表显示值为“θ”。
B.实验仪器1.AD590电流型集成温度传感器AD590为两端式集成电路温度传感器,它的管脚引出端有两个,如图4所示:序号1接电源正端U +(红色引线)。
序号2接电源负端U -(黑色引线)。
至于序号3连接外壳,它可以接地,有时也可以不用。
AD590工作电压4-30V ,通常工作电压6-15V ,但不能小于4V ,小于4V 出现非线性。
2.FD-WTC-D 型恒温控制温度传感器实验仪,0-50o C 水银温度计等。
C.实验内容必做内容:AD590传感器温度特性测量及数字式温度计的设计。
1. 按图5接线(AD590的正负极不能接错)。
测量AD590集成电路温度传感器的电流I 与温度θ的关系,取样电阻R的阻值为1000Ω。
把实验数据用最小二乘法进行拟合,求斜率B截距A和相关系数г。
实验时应注意AD590温度传感器为二端铜线引出,为防止极间短路,两铜线不可直接放在水中,应用一端封闭的薄玻璃管套保护,其中注入少量变压油,使之有良好热传递。
(实验中如何保证AD590集成温度传感器与水银温度计处在同一温度位置)2.制作量程为0-50o C范围的数字温度计。
把AD590、三只电阻箱、直流稳压电源及数字电压表按图6接好。
将AD590放入冰点槽中,R2和R3各取1000Ω,调节R4使数字电压表示值为零。
然后把AD590放入其他温度如室温的水中,用标准水银温度计进行读数对比,求出百分差。
(冰点槽中冰水混合物为湿冰霜状态才能真正达到0o C温度)3.令图6中电源电压发生变化,如从8V变为10V,观测一下,AD590传感器输出电流有无变化?分析其原因。
选做内容:AD590传感器的输出电流和工作电压关系测量。
将AD590传感器处于恒定温度,将直流电源、AD590传感器、电阻箱、直流电压表等按图7接电路线。
调节电源输出电压从1.5V-10V,测量加在AD590传感器上的电压U 与输出电流I(I=UR/R)的对应值,要求实验数据10点以上。
用坐标纸做AD590传感器输出电流I与工作电压U的关系图,求出该温度传感器输出电流与温度呈线性关系的最小工作电压Ur。
D.实验数据例1.测量AD590传感器输出电流I和温度θ之间的关系。
求I-θ关系的经验公式。
表1 AD590传感器温度特性测量表1 数据用Casio-3600计算器最小二乘法拟合得:斜率B=0.987μA/o C;截距A=274.8μA;相关系数г=0.999所以,I-θ关系为:I=0.987θ+275与灵敏度标准值B=1.000μA/o C相比百分误差为1.3%.由于采用量程0-100 o C(分度值1 o C)普通水银温度计测量,所以测量值B的相对误差大些。
2.制作滠氏温度计由于灵敏度小于1.000μA/o C,所以R2值取略大于1000Ω,本实验取R2=R3=1.000mV/B=1.000/0.987=1012.9Ω.将冰用刨冰机制成冰霜放入保温杯中压紧,并用玻璃管压1小洞。
将带玻璃管传感器浸入冰霜中,把仪器接成图6电桥电路。
调节R4,使θ=0o C时,数字电压表输出U=0mV。
用自制摄氏温度计测室温水温为28.7o C,而水银温度计读数为28.7o C.3.测量AD590传感器的伏安特性表2 AD590传感器伏安特性测量θ=3.0o C,R=10000Ω图8 温度为θ=3.0o C时,AD590传感器伏安特性曲线E.思考题1.电流型集成电路温度传感器有哪些特性?它比半导体热敏电阻、热电偶有哪些优点?2.如何用AD590集成电路温度传感器制作一个热力学温度计,请画出电路图,说明调节方法。
3.如果AD590集成电路温度传感器的灵敏度不是严格的1.000μA/o C,而是略有异差,请考虑如何利用改变R的值,使数字式温度计测量误差减少。
2热敏电阻器的电阻温度特性测量(复旦大学物理教学实验中心提供)热敏电阻通常是用半导体材料制成的,他的电阻随温度变化而急剧变化。
热敏电阻分为负温度系数(NTC )热敏电阻和正温度系数(PTC )热敏电阻两种。
NTC 热敏电阻的体积很小,其阻值随温度变化比金属电阻要灵敏得多,因此,它被广泛用于温度测量、温度控制以及电路中的温度补偿、时间延迟等。
PTC 热敏电阻分为陶瓷PTC 热敏电阻及有机材料PTC 热敏电阻两类。
PTC 热敏电阻是20世纪80年代初发展起来的一种新型材料电阻器,它的特点是存在一个“突变点温度”,当这种材料的温度超过突变点温度时,其阻值可急剧增加5-6个数量级,(例如由101Ω急增到107Ω以上),因而具有极其广泛的应用价值。
近年来,我国在PTC 热敏电阻器件开发与应用方面有了很大发展,陶瓷PTC 热敏电阻由于其工作功率较大及耐高温性好,已被应用于工业机械、冰箱等作电流过载保护,并可替代镍铬电热丝作恒温加热器和控温电路,用于自热式电蚊香加热器、新型自动控温烘干机、各种电加热器等一系列安全可靠的家用电器;而有机材料PTC 的热敏电阻具有动作时间短、体积小、阻值低等特点,现已被用于国内电话程控交换机、便携式电脑、手提式无绳电话等高科技领域作过载保护,应用范围很广。