智能寻迹小车设计报告
智能循迹小车___设计报告

智能循迹小车___设计报告设计报告:智能循迹小车一、设计背景智能循迹小车是一种能够通过感知地面上的线条进行导航的小型机器人。
循迹小车可以应用于许多领域,如仓库管理、物流配送、家庭服务等。
本设计旨在开发一款功能强大、性能稳定的智能循迹小车,以满足不同领域的需求。
二、设计目标1.实现循迹功能:小车能够准确地识别地面上的线条,并按照线条进行导航。
2.提供远程控制功能:用户可以通过无线遥控器对小车进行控制,包括前进、后退、转向等操作。
3.具备避障功能:小车能够识别和避开遇到的障碍物,确保行驶安全。
4.具备环境感知功能:小车能够感知周围环境,包括温度、湿度、光照等参数,并将数据传输给用户端。
5.高稳定性和可靠性:设计小车的硬件和软件应具备较高的稳定性和可靠性,以保证长时间的工作和使用。
三、设计方案1.硬件设计:(1) 采用Arduino控制器作为主控制单元,与传感器、驱动器等硬件模块进行连接和交互。
(2)使用红外传感器作为循迹传感器,通过检测地面上的线条来实现循迹功能。
(3)使用超声波传感器来检测小车前方的障碍物,以实现避障功能。
(4)添加温湿度传感器和光照传感器,以提供环境感知功能。
(5)将无线模块与控制器连接,以实现远程控制功能。
2.软件设计:(1) 使用Arduino编程语言进行程序设计,编写循迹、避障和远程控制的算法。
(2)设计用户界面,通过无线模块将控制信号发送给小车,实现远程控制。
(3)编写数据传输和处理的程序,将环境感知数据发送到用户端进行显示和分析。
四、实施计划1.硬件搭建:按照设计方案中的硬件模块需求,选购所需元件并进行搭建。
2.软件开发:根据设计方案中的软件设计需求,编写相应的程序并进行测试。
3.功能调试:对小车的循迹、避障、远程控制和环境感知功能进行调试和优化。
4.性能测试:使用不同场景和材料的线条进行测试,验证小车的循迹性能。
5.用户界面开发:设计用户端的界面,并完成与小车的远程控制功能的对接。
智能寻迹小车设计报告

目录1.项目设计目的 (1)2.项目设计正文 (3)2。
1.项目分析及方案制定 (3)2。
2.设计步骤及流程图 (4)2。
2.1.寻迹设计步骤 (4)2。
2。
2.流程图 (4)2.3.主要模块介绍 (4)2。
3。
1.LM393 (4)2。
3.1.1 LM393的主要特点 (4)2.3。
1。
2 LM393引脚图及内部框图 (5)2。
3。
1.3 LM393 功能简介 (5)2。
3。
2.89C2051 (5)2.3.2。
1 89C2051简介 (5)2.3.2.2 89C2051 主要性能参数 (5)2.3。
2.3 89C2051 功能特性概述 (6)2.4.电路设计及PCB绘制 (6)2。
4。
1.电源电路 (6)2.4。
2.红外收发电路 (6)2。
4.3.电机驱动电路 (7)2。
4。
4.单片机最小系统 (7)2。
4。
5. 整体电路 (8)2。
4.6。
PCB板的绘制 (8)2.5. 成品展示 (9)3.项目设计总结 (9)4.参考文献 (10)智能寻迹小车——CDIO三级项目王君杰(电子信息工程1501 150070116)一、项目设计目的在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶.越来越多的领域涉及到电控制技术。
特别是使用单片机一类的MCU的控制,在生活中越来越常见。
因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。
同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。
掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。
二、项目设计正文2.1、项目分析及方案制定首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。
“小车"决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED.而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。
智能循迹小车课程设计报告

智能循迹小车课程设计报告一、课程设计目标:本次智能循迹小车课程设计的目标是让学生了解智能硬件的基础知识,掌握基本电子元器件的原理及使用方法,学习控制系统的组成和运行原理,并通过实践操作设计出一款功能齐全的智能循迹小车。
二、课程设计内容及步骤:1. 调研与分析——首先要对市面上现有的智能循迹小车进行调研与分析,了解各种类型的循迹小车的特点和优缺点,为后续的设计提供参考。
2. 硬件选型——根据课程设计目标和实际需要,选择合适的主控芯片、电子元器件和传感器等硬件。
3. 原理图设计——根据硬件选型,设计出对应的原理图,并在硬件上进行布局与焊接。
4. 程序设计——先在电路板上测试硬件是否正常,随后进行程序设计,根据传感器的反馈控制小车的运动,让小车能够沿着黑线自动循迹行驶,同时加入避障功能和自动寻迹功能。
5. 调试与优化——完成程序设计后,要对小车进行全面验收测试,发现问题及时解决并优化相关程序。
三、设计思路:本次课程设计基于树莓派电路板,利用循迹模块实现小车的自动循迹和自动寻迹。
同时将超声波模块结合避障算法实现小车的自动避障。
小车的外壳采用3D打印技术制作,操作简单实用。
四、课程设计效果:通过本课程设计,学生们从理论到实践,了解了智能硬件的基础知识,掌握了基本电子元器件的原理及使用方法,学习了控制系统的组成和运行原理。
同时,实践操作过程中,学生们培养了动手能力和实际操作的技能。
通过制作一台智能循迹小车,学生们对智能硬件的认识更加深入,并获得了较高的设计满足感。
五、课程设计展望:智能循迹小车是智能硬件应用领域的一项重要发明,具有广泛的应用前景。
未来,可以将循迹小车应用于快递、物流等行业,实现自动化送货、配送。
同时可以将遥控技术与循迹技术相结合,设计出更加高效、实用的智能循迹小车,推动智能化生产和工作环境。
2024年度-智能循迹小车设计

智能循迹小车设计目录•项目背景与意义•系统总体设计•循迹算法研究•控制系统设计•调试与测试•项目成果展示•总结与展望01项目背景与意义智能循迹小车概述定义智能循迹小车是一种基于微控制器、传感器和执行器等技术的自主导航小车,能够按照预定路径进行自动循迹。
工作原理通过红外、超声波等传感器感知周围环境信息,将感知数据传输给微控制器进行处理,微控制器根据预设算法控制执行器调整小车行驶状态,实现循迹功能。
随着工业自动化的发展,智能循迹小车在生产线、仓库等场景中的应用需求不断增加。
自动化需求教育领域需求娱乐领域需求智能循迹小车作为教学实验平台,在高等教育、职业教育等领域具有广泛应用前景。
智能循迹小车可以作为玩具或模型车进行娱乐竞技活动,满足消费者休闲娱乐需求。
030201市场需求分析通过本项目的研究与实践,掌握智能循迹小车的核心技术,包括传感器技术、微控制器技术、控制算法等。
技术目标将智能循迹小车应用于实际场景中,提高生产效率、降低成本、提升产品品质等方面的效益。
应用目标通过智能循迹小车的研发与教学应用,培养学生动手实践能力、创新精神和团队协作能力。
教育意义推动智能循迹小车相关产业的发展,促进就业和经济增长,提升国家科技竞争力。
社会意义项目目标与意义02系统总体设计主控制器传感器模块电机驱动模块电源管理模块总体架构设计01020304负责接收和处理传感器数据,控制小车运动。
包括红外传感器、超声波传感器等,用于感知环境和障碍物。
驱动小车前进、后退、转弯等动作。
为整个系统提供稳定可靠的电源。
硬件选型及配置选用高性能、低功耗的微控制器,如STM32系列。
选用高灵敏度、低误差的传感器,如红外反射式传感器、超声波测距传感器等。
选用高效、稳定的电机驱动器,如L298N电机驱动板。
选用合适的电池和电源管理芯片,确保系统长时间稳定运行。
主控制器传感器模块电机驱动模块电源管理模块初始化模块传感器数据处理模块运动控制模块调试与测试模块软件功能划分负责系统启动时的初始化工作,包括硬件初始化、参数设置等。
智能寻迹小车实验报告

智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能循迹小车实验报告

智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
自动循迹智能小车设计报告

一、设计目标通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。
进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。
二、总体方案设计该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。
三、软硬件设计硬件电路的设计1、最小系统:小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。
主要包括:时钟电路、电源电路、复位电路。
其中各个部分的功能如下:(1)、电源电路:给单片机提供5V电源。
(2)、复位电路:在电压达到正常值时给单片机一个复位信号。
图1 单片机最小系统原理图2、电源电路设计:模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。
在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。
考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。
3、传感器电路:光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。
原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比较器转换成数字电平输出到单片机。
图2 赛道检测原理图:4、电机驱动电路:电机驱动芯片L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
其引脚排列如图1中U4所示,1脚和15脚可单独引出连接电流采样电阻器,形成电流传感信号。
L298可驱动2个电机,OUT1、OUT2和OUT3、OUT4之间分别接2个电动机。
智能循迹小车实验报告

智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。
通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。
二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。
红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。
通过比较接收管的信号强度,即可判断小车是否偏离轨迹。
2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。
PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。
3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。
根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。
三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。
将直流电机与驱动模块连接,并安装在小车底盘上。
将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。
2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。
通过串口调试助手,将编写好的程序下载到单片机开发板中。
3、调试与优化启动小车,观察其在轨迹上的行驶情况。
根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。
不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~目录1.项目设计目的 (1)2.项目设计正文 (3).项目分析及方案制定 (3).设计步骤及流程图 (4)寻迹设计步骤 (4)流程图 (4)(.主要模块介绍 (4)LM393的主要特点 (4)LM393引脚图及内部框图 (5)LM393 功能简介 (5)89C2051 (5)89C2051简介 (5)89C2051 主要性能参数 (5)89C2051 功能特性概述 (6)。
.电路设计及PCB绘制 (6)电源电路 (6)红外收发电路 (6)电机驱动电路 (7)单片机最小系统 (7)整体电路 (8)PCB板的绘制 (8). 成品展示 (9)\3.项目设计总结 (9)4.参考文献 (10)智能寻迹小车——CDIO三级项目王君杰(电子信息工程 1501 6)一、项目设计目的在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。
越来越多的领域涉及到电控制技术。
特别是使用单片机一类的MCU的控制,在生活中越来越常见。
因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。
同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。
掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。
二、?三、项目设计正文、项目分析及方案制定首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。
“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。
而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。
其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。
假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机(3V/100mA)和两个限流电阻按图一方式连接即可。
当然,这样的小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。
不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是在这个电路的基础上按照想要实现的功能进行拓展开发。
接着让我们来到“智能”的环节。
所谓智能,也就是需要小车有人的思想,正如同课题所述——寻迹。
智能的小车需要具备自动识别跑道的能力。
同时,在采集到跑道信息后要做出相应的处理。
在我们这个课题中,也就是需要及时并准确转弯。
要实现这些功能,就需要更多的电子器件的支持。
通过表1我们可以看到不同功能所需要的不同元件。
实现功能所需器件类型器件选型传感器红外收发对管^跑道信息采集采集信息预处理电压比较器LM393信息处理单元MCU、89C2051表1 跑道信息处理电路器件列表通过表1我们可以发现我们本次的课题用到的器件还不是很多,电路也是比较简单,但是要把这些器件整合起来得到预期实现的功能也不是一件很容易的事情,特别需要我们的全局观和布局能力。
、设计步骤及流程图、寻迹设计步骤寻迹可以说是智能寻迹小车的核心,车做的好不好关键在于能不能按指定的路程行驶。
在我们本次的题目中使用的传感器是红外对管。
仅车的单侧来说,利用红外发射管发射红外线,当小车行驶在黑线上时由于红外管安装的位置处于白色跑道位置,因此红外接收管接收到红外信号,电压比较器获得红外对管的电信号后输出一个电平,再经过单片机进行处理输出到电使其转动。
反之,当小车偏移黑线,由红外对管检测到的信号通过电压比较器输出相反电平,再经过单片机的处理使电机停止转动。
拓展到两侧,车位于正中间,两边的红外对管没有检测到黑线,两轮都前进。
假如车向左偏,右侧的红外管检测到黑线,右轮停止转动,左轮依旧转动,于是车身回正,另一侧原理相同。
通过这样的控制系统,即可实现车的寻迹功能。
、流程图通过对小车整个系统的分析,我们可以得到图2的流程图。
在我们后期的制作中,这个流程图可以为我们提供很大的参考价值。
】可以看到,我们的小车是一个简易的闭环控制系统,通过传感器采集回的信息来对我们车的姿态进行调整,再通过控制小车两轮的差速来进行方向的控制,最终就能够实现小车沿着黑线行驶而不会一直向前。
、主要模块介绍在本次的课题中,我们主要使用到的两个重要的器件是电压比较器LM393和单片机89C2051。
其中电压比较器作为信号处理的第一级电路,有着不可忽视的作用,而单片机则是整个系统的大脑,由它来决定小车什么时候前进,什么时候拐弯。
下面我们来了解一下这两个器件的具体信息。
、LM393、LM393主要特点:·工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;·消耗电流小,Icc=;·输入失调电压小,V IO=±2mV;·共模输入电压范围宽,Vic=0~;·输出与TTL,DTL,MOS,CMOS 等兼容;·输出可以用开路集电极连接“或”门;、LM393引脚图及内部框图、LM393 功能简介《比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):当“+”输入端电压高于“-”输入端时,电压比较器输出为高电平;当“+”输入端电压低于“-”输入端时,电压比较器输出为低电平;电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。
利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
、89C2051、89C2051简介、89C2051主要性能参数·与MCS-51产品指令系统完全兼容·2k字节可重擦写闪速储存器·1000次擦写周期·的工作电压范围·全静态操作0Hz-24Mhz ·两级加密程序储存器·128X8字节内部RAM ·15个可编程I/O口线·2个16位定时/计数器·6个中断源·可编程串行UART通道·可直接驱动LED的输出端口·内置一个模拟比较器·低功耗空闲和掉电模式、89C2051功能特性概述AT89C2051 提供以下标准功能:2k字节 Flash 闪速存储器,128 字节内部 RAM,15 个 I/O口线,两个 16位定时/计数器,—个5向量两级中断结构,一个全双工串行通信口,内置—个精密比较器,片内振荡器及时钟电路。
同时,AT89C2051 可降至 0HZ 的静态逻辑操作,并支持两种软件可选的节电工作模式。
空闲方式停止 CPU 的工作,但允许 RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM 中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。
、电路设计及PCB绘制在分析完电路需要实现的功能和所需要的器件选型以后,我们要做的也就是最重要的一步:电路的设计。
一个电路方案最终能不能有效运行很大程度上取决于电路设计的质量。
当然我们首先是进行单个模块的电路设计,最后才将其进行整合。
整合的过程也是最不容出错的过程,可能一个很小的错误如电容反接就将导致整个电路的烧毁和瘫痪,更加严重的可能会对人身造成一定的威胁。
、电源电路一个完整的电路要想工作,首先就要具备一个动力的源头——电源。
电源的设计方案多种多样,由简单要复杂。
一个复杂的电源电路需要整流、滤波、限幅等多种模块配合工作,从而实现高精度、高稳定的系统的运作,而对于我们的小车来说,不需要用到这么复杂的电路,我们选用的电源为的干电池,属于低压直流电源。
而因为需要给我们的单片机供电,因此直接与电路相连的方法是不可取的,查阅手册可以得知,我们选用的单片机工作电压为,于是我们使用2节干电池提供3V电压,为了使电源供电稳定,将为电源进行滤波从而得到更好的输入电压波形。
如图4所示,电容C5为100uf的低通滤波电容,用于滤除低频噪声;C1位高通滤波电容,用于滤出高频噪声。
、红外收发电路红外收发电路相当于智能寻迹小车的“眼睛”。
自然,在本小车上,我们选用了两对红外收发管,各安装在车身中轴的两侧,用来检测车身的行驶位置。
图5为单独一对红外收发管的电路连接情况,另一对与其相同。
D3和D5分别为红外发射管和红外接收管,两个限流电阻R2和R8将通过红外管的电流限制在其工作范围内,防止电流过大而烧毁器件。
R6为可调电阻,调整其阻值来控制LM393的基准电压值,改变此值能够改变小车对黑线感应的灵敏度。
同是,在不同的光照环境和不同的黑线材料下,红外反射情况也有所区别,用可调电阻能做到应对环境变化的及时修正,使小车的适应性更加强大。
、电机驱动电路电机驱动电路可以说是小车的动力所在。
一些高端智能车采用的电机驱动电路往往十分复杂。
不仅要考虑到驱动板的安装结构,对于其性能的要求也十分高,而一些竞速类的车更是需要最优的器件布局,稳定的电流输出,良好的散热系统,合适的板子结构等等元素相配合。
就我们这一个小车而言,要不了如此高的标准,因此电路的设计也就更加简单明了。
当然也不像图1所示的那样简单。
考虑到我们是用单片机控制,而单片机普通I/O口的电流达不到我们电机所需要的工作电流,所以我们就需要特殊处理。
电路图如图6所示。
图中我们用三极管进行电流放大再接入电机,就可以有效地控制电机运转。
通过单片机I/O口输出高电平,三极管导通,电机转;I/O口输出低电平,三极管截止,电机停转。
C2和C3均为滤波电容,对电机两端的电压进行滤波,滤除高频噪声,使电机的输出更加稳定。
同时为了美观和调试的方便,我们在驱动电路中再接上两个发光二极管,利用单片机控制其亮灭。
左轮转,D1亮,反之灭;右轮转,D2亮,反之灭。
再车行驶的过程中我们能更清晰地观察到跑道的识别情况。
、单片机最小系统最后一个模块也同样是最重要的模块——单片机最小系统。
接入了最小系统的单片机才具备正常工作的能力。
打个比方,单片机是人的心脏,那么最小系统就是血液。
有了最小系统,单片机就能根据我们编写的程序工作。
其中Y1为6M的晶体振荡器,其作用是为单片机提供工作的时序脉冲。
P1、P2、P3分别是引出的排针,方便以后的功能拓展。
、整体电路设计完各个模块的电路之后,我们需要将所有的模块整合起来,以达到我们所需要的效果。
如图8是我们整合好后的电路。
、PCB板的绘制电路设计的最后一步即PCB板的绘制。
如何将所画的原理图变成我们手里的电路板,这就是必不可少的一步。
在绘制过程中,如何布局、如何布线,如何确定板的大小也是十分重要的考虑因素。
由于我们的课题是智能循迹小车,因此PCB板的形状最好和小车车身匹配。
又因为我们的板是低频板,电源电压也是小电压,输入的电流也仅为毫安级别,因此在布线方面没有必要进行过于复杂的处理。