图像增强

合集下载

图像增强的方法有哪些

图像增强的方法有哪些

图像增强的方法有哪些图像增强是数字图像处理中的一个重要环节,它通过对图像进行处理,改善图像的质量和视觉效果,使图像更加清晰、鲜艳、易于观察和分析。

图像增强的方法有很多种,下面将介绍几种常见的图像增强方法。

首先,直方图均衡是一种常见的图像增强方法。

直方图是描述图像像素分布的统计图,直方图均衡就是通过重新分配图像像素的灰度级,使得图像的直方图均匀分布,从而增强图像的对比度。

直方图均衡的优点是简单易行,但是对于某些图像来说,可能会造成图像的过增强和噪声放大。

其次,滤波是图像增强的另一种常见方法。

滤波操作可以通过对图像进行平滑或锐化处理,来增强图像的细节和对比度。

常见的滤波方法包括均值滤波、中值滤波、高斯滤波等,它们可以有效地去除图像中的噪声,并增强图像的质量。

但是滤波方法也存在着一定的局限性,比如在平滑图像的同时可能会导致图像细节的丢失。

另外,小波变换也是一种常用的图像增强方法。

小波变换是一种多尺度分析方法,它可以将图像分解成不同尺度的频域信息,从而实现对图像的局部增强。

小波变换可以有效地增强图像的边缘和纹理特征,同时减少图像的噪声。

但是小波变换对参数的选择和计算量要求较高,需要根据具体的图像特点进行调整。

此外,增强型对比度拉伸也是一种常见的图像增强方法。

对比度拉伸通过线性或非线性的变换函数,将图像的灰度级进行重新映射,从而增强图像的对比度。

增强型对比度拉伸可以有效地增强图像的细节和纹理,使图像更加清晰。

但是对比度拉伸也存在着过增强的问题,需要根据具体的图像特点进行调整。

综上所述,图像增强的方法有很多种,每种方法都有其适用的场景和局限性。

在实际应用中,我们可以根据图像的特点和需求,选择合适的图像增强方法,从而达到最佳的增强效果。

希望本文对图像增强方法有所帮助。

图像增强的基本原理

图像增强的基本原理

图像增强的基本原理图像增强是一种用于改善图像视觉质量或提取目标特征的技术。

它通过改变图像的亮度、对比度、颜色、清晰度等属性来增强图像的可视性和可识别性。

图像增强的基本原理可以归纳为以下几点:1. 空域增强:采用空域操作,即对图像的每个像素进行操作。

常见的空域增强方法有直方图均衡化、灰度拉伸、滤波等。

直方图均衡化通过重新分布图像中像素的亮度来增加图像的对比度,灰度拉伸则通过线性转换将图像的亮度范围拉伸到整个灰度级范围内。

滤波则通过应用低通、高通、中通等滤波器来增强图像的细节和轮廓。

2. 频域增强:采用频域操作,即将图像转换到频域进行处理。

常见的频域增强方法有傅里叶变换、小波变换等。

傅里叶变换可以将图像从空域转换到频域,通过对频谱进行滤波操作来增强图像的细节和边缘。

小波变换则可以将图像分解为不同频率的子带,可以更加灵活地选择性地增强特定频率的信息。

3. 增强算法:通过应用特定的增强算法来增强图像的视觉效果。

常用的增强算法有Retinex算法、CLAHE算法等。

Retinex算法通过模拟人眼对光源的自适应调整能力来增强图像的亮度和对比度,CLAHE算法则通过分块对比度受限的直方图均衡化来增强图像的细节和纹理。

4. 机器学习方法:利用机器学习算法对图像进行增强。

通过训练模型,学习图像的特征和上下文信息,然后根据学习到的模型对图像进行增强处理。

常见的机器学习方法包括卷积神经网络、支持向量机等。

综上所述,图像增强的基本原理包括空域增强、频域增强、增强算法和机器学习方法等。

这些原理可以单独或结合使用,根据图像的特点和需求,选择合适的方法来对图像进行增强处理,以获得更好的图像视觉质量和目标特征提取效果。

第四章 图像增强

第四章 图像增强
中南大学信息物理工程学院测绘所 梅小明
数字图像处理
例如,某像素5×5邻域的灰度分布如图,经 计算9个掩模区的均值和方差为:
3 6 7 4 2 3 4 3 1ͣ 1 2 2 2 4 5 1 1 4 3 3 6
均值 对应的 方差
4
4
3
2
3
4
2
3
3
4 8 4 4
54 7 17 17 28 31 23 26 0
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
4.1 图像的对比度增强
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
图像的直方图修正

定义:数字图像中各灰度级与其出现的频数间的 统计关系,可表示为:
直方图反映了图像的清晰程度,当直方图均匀分布 时,图像最清晰。由此,我们可以利用直方图来达 到使图像清晰的目的。 直方图均衡化:通过原始图像的灰度非线性变换, 使其直方图变成均匀分布,以增加图像灰度值的动 态范围,从而达到增强图像整体对比度,使图像变 清晰的效果。
梅小明
图像平滑
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法的举例及与平均滤波法 的对比
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
梅小明
中值滤波法
数字图像处理
中南大学信息物理工程学院测绘所
第四章 图像增强



概述 图像的对比度增强 图像的直方图修正 图像平滑 图形锐化 图像的同态滤波 图像的彩色增强

第8章_图像增强

第8章_图像增强
[ f x 1, y f x, y 1]
32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G

y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率

图像增强的方法有哪些

图像增强的方法有哪些

图像增强的方法有哪些
图像增强的方法包括以下几种:
1. 直方图均衡化(Histogram equalization):通过调整图像的像素分布,增强图像的对比度。

2. 自适应直方图均衡化(Adaptive histogram equalization):与直方图均衡化类似,但是对图像的小区域进行局部均衡化,可以更好地保留细节信息。

3. 均值滤波(Mean filter):用图像中像素的平均值替代该像素的值,平滑图像的同时增强细节。

4. 中值滤波(Median filter):用图像中像素的中值替代该像素的值,能够有效去除椒盐噪声,保留图像边缘。

5. 高斯滤波(Gaussian filter):使用高斯函数对图像进行平滑,可以模糊图像的同时去除噪声。

6. 锐化增强(Sharpening):利用锐化算子对图像进行卷积,突出图像的边缘和细节。

7. 退化与恢复(Degradation and restoration):通过建立图像模糊模型和噪
声模型,对退化图像进行恢复。

8. 增强滤波(Enhancement filter):通过设计特定的增强滤波器,对图像进行增强,如Sobel滤波器、Prewitt滤波器等。

9. 超分辨率(Super-resolution):通过使用多帧图像或者其他方法,提高低分辨率图像的细节和清晰度。

以上仅是图像增强的一些常见方法,随着图像处理技术的不断发展,还有很多其他方法可以用于图像增强。

图像处理中的图像去噪与图像增强技术

图像处理中的图像去噪与图像增强技术

图像处理中的图像去噪与图像增强技术图像处理是一门研究如何对图像进行分析、处理和改善的学科。

图像去噪和图像增强是图像处理领域中两个重要的技术,可以提高图像的质量和清晰度。

图像去噪是指在图像中去除噪声(如椒盐噪声、高斯噪声等)的过程。

图像噪声是由于图像采集设备、传输过程中的干扰或存储介质导致的,会降低图像的质量和细节。

图像去噪的目的是提高图像的可视化效果和减少噪声对后续处理的影响。

图像去噪的方法可以分为两类,一类是基于空间域的图像去噪方法,另一类是基于频域的图像去噪方法。

基于空间域的方法是直接在像素空间对图像进行处理,如中值滤波、均值滤波等。

这些方法可以通过对像素进行局部平均操作来减少噪声的影响,但会导致图像边缘和细节的模糊。

基于频域的方法是将图像转换到频域进行处理,然后再转换回空间域。

这些方法利用图像在频域中的特性对噪声进行处理,如傅里叶变换、小波变换等。

图像增强是指通过一些技术手段提高图像的质量和视觉效果。

图像增强可以增强图像的对比度、细节、清晰度和亮度等方面。

图像增强的目的是使图像更加逼真、清晰,并更好地适应人眼的观察习惯。

图像增强的方法有很多种,常见的包括直方图均衡化、直方图规定化、图像锐化等。

直方图均衡化是通过重新分布图像的像素灰度值来增强对比度,使整个灰度级的范围得到充分利用,提高图像的可辨识度。

直方图规定化是通过将图像的灰度值映射到特定的灰度级,使图像的像素灰度值分布符合预期的规律,达到增强的效果。

图像锐化是通过增强图像边缘和细节来提高图像的清晰度,常用的方法有拉普拉斯算子、Sobel算子等。

图像增强的效果通常与图像的内容和特性有关,不同的增强方法适用于不同类型的图像。

例如,直方图均衡化适用于整体对比度较低的图像,而直方图规定化适用于需要满足特定灰度级分布的图像。

总而言之,图像去噪和图像增强是图像处理中两项重要的技术。

通过去除图像中的噪声和增强图像的质量和可视化效果,可以提高图像的清晰度和细节,使图像更加逼真和清晰。

图像增强的方法有哪些

图像增强的方法有哪些图像增强是指通过各种手段和技术,改善图像的质量和视觉效果,使图像更清晰、更鲜艳、更易于分析和理解。

图像增强方法是数字图像处理领域的重要内容,其应用涵盖了医学影像、遥感图像、安防监控、图像识别等诸多领域。

本文将就图像增强的方法进行介绍,希望能够为相关领域的从业者提供一些参考和帮助。

首先,常见的图像增强方法包括灰度拉伸、直方图均衡化、滤波和锐化等。

灰度拉伸是通过拉伸图像的灰度范围,使得图像的对比度增强,细节更加清晰。

直方图均衡化则是通过重新分布图像的灰度级,使得图像的对比度更加均匀,细节更加突出。

而滤波和锐化则是通过对图像进行平滑或者增强边缘的处理,使得图像更加清晰和锐利。

其次,除了传统的图像增强方法外,近年来深度学习技术的发展也为图像增强提供了新的思路和方法。

深度学习技术可以通过大量的数据和复杂的神经网络模型,学习图像的特征和规律,从而实现图像的增强和优化。

例如,基于深度学习的超分辨率重建技术可以通过学习图像的高频信息,将低分辨率的图像重建成高分辨率的图像,从而实现图像的增强和提升。

此外,除了上述方法外,还有一些其他的图像增强方法,如图像融合、多尺度分解、小波变换等。

图像融合是指将多幅图像融合成一幅图像,以获取更多的信息和细节。

多尺度分解是指将图像分解成不同尺度的子图像,从而更好地分析和处理图像。

小波变换则是一种多尺度分析方法,可以将图像分解成不同尺度和频率的小波系数,从而实现图像的增强和优化。

综上所述,图像增强的方法有很多种,包括传统的灰度拉伸、直方图均衡化、滤波和锐化,以及基于深度学习的图像增强方法,以及其他一些图像增强技术。

不同的方法适用于不同的场景和需求,需要根据具体的应用来选择合适的图像增强方法。

希望本文所介绍的内容能够帮助读者更好地理解图像增强的方法,为相关领域的研究和实践提供一些参考和启发。

简述图像增强的应用原理

简述图像增强的应用原理什么是图像增强图像增强是指通过一系列的处理方法,对原始图像进行修复、增强或改善,以获得更好的视觉效果或更好的图像质量。

图像增强技术是计算机视觉领域中的重要技术之一,被广泛应用于图像处理、计算机视觉、机器学习等领域。

图像增强的应用原理图像增强的应用原理基于对图像的像素值进行调整或处理,以改善图像的对比度、亮度、清晰度等视觉效果。

以下是常见的图像增强应用原理的介绍:1.直方图均衡化直方图均衡化是一种常用的图像增强方法,通过重新分配图像的灰度级,使得图像的直方图均匀分布在整个灰度级范围内。

这样可以增加图像的对比度,使得图像细节更加突出。

2.对比度增强对比度增强是通过调整图像中像素值的动态范围来增加图像的对比度。

常见的对比度增强方法包括拉伸对比度、直方图均衡化、灰度拉伸等。

3.锐化增强锐化增强是通过增强图像的边缘和细节来提高图像的清晰度。

常见的锐化增强方法包括拉普拉斯算子、边缘增强滤波器等。

4.噪声消除图像中的噪声会影响图像的质量和清晰度,通过噪声消除技术可以减少或去除图像中的噪声。

常见的噪声消除方法包括均值滤波、中值滤波、高斯滤波等。

5.色彩增强色彩增强是调整图像中的色彩分量,以改善图像的颜色饱和度和色彩平衡。

常见的色彩增强方法包括颜色平衡、色彩曲线调整、HSV调整等。

图像增强的应用场景图像增强的应用广泛,以下列举几个常见的应用场景:•医学图像处理:对医学图像进行增强处理,提升图像的细节和对比度,以便医生更准确的诊断和分析。

•智能监控:对监控摄像头捕捉到的图像进行增强,提高图像质量和识别能力,提高监控的效果。

•无人驾驶:对车载摄像头捕捉到的图像进行增强处理,提高图像的清晰度和对比度,以提高无人驾驶系统的感知能力和安全性。

•图像检索:对图像进行增强处理,以提高图像检索的准确性和召回率。

以上只是部分图像增强的应用场景,图像增强技术的应用还在不断拓展和发展中。

随着计算机视觉和人工智能的不断进步,图像增强技术将会在更多的领域得到应用和发展。

《图像的增强》课件


无人驾驶
图像增强可以提高无人驾驶汽车的感知能力, 增强道路和障碍物的识别。
艺术和娱乐
图像增强可以改善艺术作品和娱乐内容的视 觉效果,提供更好的观赏体验。
未来发展趋势1来自深度学习利用深度神经网络和人工智能技术,实现更准确、自动化的图像增强。
2
实时增强
通过优化算法和硬件性能,实现实时图像增强,满足实时应用的需求。
滤波器和增强方法的比较
滤波器
滤波器通过在空域或频域中对图像进行操作来 改变图像的特性。
增强方法
增强方法通过调整图像的亮度、对比度和细节 来改善图像质量和视觉效果。
图像增强的应用领域
医学图像
通过增强医学图像,可以更清晰地显示病变 和器官结构。
安防监控
通过增强监控图像,可以更容易识别和监视 潜在的安全威胁。
《图像的增强》PPT课件
通过图像增强,我们可以改善图像的质量和视觉效果,使其更加鲜明和引人 注目。
图像增强的定义
图像增强是一种技术,通过对图像的处理和改进,提高其质量、增强细节、改变光照和色彩等特性,使 图像更易于理解和分析。
常见的图像增强方法
1 灰度变换
2 直方图均衡化
通过调整图像的亮度和对比度来改变图像 的整体感观。
通过重新分布图像的像素强度,使整个亮 度范围更均衡,增强对比度和细节。
3 空域滤波
4 频域滤波
通过对图像进行平滑或增强,改变图像的 细节和纹理。
通过对图像进行傅里叶变换和反变换,改 变图像的频率特性和细节。
基于直方图的增强方法
直方图是显示图像像素强度分布的统计图。基于直方图的增强方法使用直方 图信息来调整图像的对比度和亮度。
3
自适应增强
根据不同图像的特点和应用需求,自动调整增强方法和参数,实现个性化的图像 增强。

第四章 图像增强

第四章 图像增强1. 图像增强的目的是什么?它包含哪些内容?图像增强的目的在于:1.采用一系列技术改善图像的视觉效果,提高图像的清晰度;2.将图像转换成一种更适合于人或机器进行分析处理的形式。

2. 直方图修正有哪两种方法?二者有何主要区别与联系?直方图修正方法通常有直方图均衡化及直方图规定化两类。

区别与联系:直方图均衡化是通过对原图像进行某种变换使原图像的灰度直方图修正为均匀的直方图的。

直方图规定化是使原图像灰度直方图变成规定形状的直方图而对直方图做出修正的增强方法。

在做直方图规定化时首先要将原始图像作均衡化处理。

直方图均衡化是直方图规定化的一个特例,而规定化是对均衡化的一种有效拓展。

3.在直方图修改技术中对变换函数的基本要求是什么?直方图均衡化处理采用何种变换空间域点运算 局部运算灰度变换直方图修正法局部统计法均衡化规定化图像平滑图像锐化频率域高通滤波低通滤波同态滤波增强彩色增强伪彩色增强彩色图像增强常规处理假彩色增强彩色平衡彩色变换增强代数运算图像增强函数?什么情况下采用直方图均衡法增强图像?T(r)为变换函数,应满足下列条件:(1)在0 ≤r ≤1内为单调递增函数;(2)在0≤r ≤1内,有0≤T(r)≤1。

s=T(r)=∫ p r (r)dr 原始图像灰度分布在较窄区间,引起图像细节不够清晰。

直方图均衡化减少图像灰度级,对比度扩大。

4. 何谓图像平滑?试述均值滤波的基本原理。

为抑制噪声、改善图像质量所进行的处理称为图像平滑或去噪。

均值滤波的基本原理:用均值代替原图像中的各个像素值,即对待处理的当前像素点(x ,y ),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x ,y ),作为处理后图像在该点上的灰度个g (x ,y ),即个g (x ,y )=1/m ∑f (x ,y ) m 为该模板中包含当前像素在内的像素总个数。

5. 何谓中值滤波?有何特点?中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心像素的灰度值的滤波方法,是一种非线性的平滑法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

数字图像处理技术已经在各个领域上都有了比较广泛的应用。

图像处理的信息量很大,对处理速度的要求也比较高。

MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。

本文主要论述了利用MATLAB实现图像增强处理。

关键词:数字图像处理,图像增强目录:一.图像增强简介图像增强是一类基本的图像处理技术,其目的是对图像进行加工,以得到对具体应用来说视觉效果更好、更有用的图像。

这里的好和有用要因具体的应用目的和要求而异,并且所需的具体增强技术也可不同。

目前常用的增强技术根据其处理所进行的空间不同,可分为基于图像域的方法和基于变化域的方法。

第一类,直接在图像所在的空间进行处理,也就是在像素组成的空间里直接对像素进行操作;第二类,在图像的变化域对图像进行间接处理。

空域增强方法可表示为:g(x,y)=EH[f(x,y)]其中f(x,y)和g(x,y)分别为增强前后的图像,EH代表增强操作。

二.图像增强方法1.空域变换增强1.1增强对比度增强对比度实际是增强原图像的各部分的反差。

实际中往往是通过原图中某两个灰度值之间的动态范围来实现的(如图1-1)。

图1-1增强对比度在图1-1中可以看出,通过变换可以使原图的较高的和较低的灰度值的动态范围减小了,而原图在二者之间的动态范围增加了,从而其范围的对比度增加了。

MATLAB代码所示:X1=imread('saturn.png');figure,imshow(X1)f0=0;g0=0;f1=70;g1=30;f2=180;g2=230;f3=255;g3=255;r1=(g1-g0)/(f1-f0);b1=g0-r1*f0;r2=(g2-g1)/(f2-f1);b2=g1-r2*f1;r3=(g3-g2)/(f3-f2);b3=g2-r3*f2;[m,n]=size(X1);X2=double(X1);for i=1:mfor j=1:nf=X2(i,j);g(i,j)=0;if(f>=0)&(f<=f1)g(i,j)=r1*f+b1;elseif (f>=f1)&(f<=f2)g(i,j)=r2*f+b2;elseif (f>=f2)&(f<=f3)g(i,j)=r3*f+b3;endendendfigure,imshow(mat2gray(g))图像处理图示(如图1-2和图1-3)图1-2 原图图1-3增强对比度所得图像1.2 图像求反对图像求反是将原来的灰度值翻转,简单的说就是使黑变白,使白变黑。

普通的黑白底片和照片就是这样的关系。

具体的变换就是将图像中每个像素的灰度值根据变换曲线进行映射。

MATLAB代码所示:I=imread('saturn.png');J=double(I);J=-J+(256-1);H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H);图像处理图如图1-4所示:图1-4 图像求反前后2.空域滤波增强一般情况下,像素的邻域比该像素要大,也就是说这个像素的邻域中除了本身以外还包括其他像素。

在这种情况下,g(x,y)在(x,y)位置处的值不仅取决于f(x,y)在以(x,y)为中心的邻域内所有的像素的值。

如仍以s和t分别表示f(x,y)在(x,y)位置处的灰度值,并以n(s)代表f(x,y)在(x,y)邻域内像素的灰度值,则 t=EA[s,n(s)]为在邻域内实现增强操作,常可利用模板与图像进行卷积。

每个模板实际上是一个二维数组,其中各个元素的取值定了模板的功能,这种模板操作也称为空域滤波。

2.1 基本原理空域滤波可分为线形滤波和非线形滤波两类。

线形滤波器的设计常基于对傅立叶变换的分析。

非线形空域滤波器则一般直接对邻域进行操作。

另外各种滤波器根据功能又主要分成平滑滤波和锐化滤波。

平滑可用低通来实现,锐化可用高通来实现平滑滤波器:它能减弱或消除傅立叶空间的高频分量,但不影响在低频分量。

因为高频分量对应图像中的区域边缘等灰度值具有较大较快变化的部分,滤波器将这些分量滤去可使图像平滑。

锐化滤波器:它能减弱或消除傅立叶空间的高频分量空域滤波器都是利用模板卷积,主要步骤如下:(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)将模板上的系数与模板下对应的像素相乘;(3)将所有的乘积相加;(4)将和(模板的输出响应)赋给图中对应的模板中心位置像素。

下面分别介绍在MATLAB中如何应用平滑和锐化滤波器。

2.2 线性平滑滤波器线性低通滤波器是最常用的线性平滑滤波器。

这种滤波器的所有系数都是正的。

对3*3的模板来说,最简单的操作是取所有系数都为1。

为保证输出图像仍在原来的灰度范围内,在计算R后要将其除以9再进行赋值。

这种方法称为邻域平均法。

MATLAB实现均值过滤器的代码所示:I=imread('peppers.png');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title(' 添加椒盐噪声的图像')k1=filter2(fspecial('average',3),I1)/255; %进行3*3模板平滑滤波k2=filter2(fspecial('average',5),I1)/255; %进行5*5模板平滑滤波k3=filter2(fspecial('average',7),I1)/255; %进行7*7模板平滑滤波k4=filter2(fspecial('average',9),I1)/255;%进行9*9模板平滑滤波subplot(233),imshow(k1);title('3*3 模板平滑滤波');subplot(234),imshow(k2);title('5*5 模板平滑滤波');subplot(235),imshow(k3);title('7*7 模板平滑滤波');subplot(236),imshow(k4);title('9*9 模板平滑滤波');2.3 非线性平滑滤波器中值滤波器是最常用的非线性平滑滤波器。

它是一种临域运算,类似于卷积,但计算的不是加权求和,而是把邻域中的像素按灰度级进行排序,然后选择改组的中间值作为输出的像素值。

具体步骤:(1)将模板在图像中漫游,并将模板中心和图像某个像素的位置重合;(2)读取模板下对应像素的灰度值;(3)将这些灰度值从小到大排成一列;(4)找出这些值排在中间的一个;(5)将这个中间值赋给对应模板中心位置的像素。

MATLAB实现中值滤波器代码所示:I=imread('peppers.png');subplot(231)imshow(I)title('原始图像')I=rgb2gray(I);I1=imnoise(I,'salt & pepper',0.02);subplot(232)imshow(I1)title(' 添加椒盐噪声的图像')k1=medfilt2(J,[3,3]);%进行3*3模板中值滤波k2=medfilt2(J,[5,5]); %进行5*5模板中值滤波k3=medfilt2(J,[7,7]);%进行7*7模板中值滤波k4=medfilt2(J,[9,9]);%进行9*9模板中值滤波subplot(233),imshow(k1);title('3*3模板中值滤波'); subplot(234),imshow(k2);title('5*5模板中值滤波'); subplot(235),imshow(k3);title('7*7模板中值滤波'); subplot(236),imshow(k4);title('9*9 模板中值滤波');中值滤波的结果如图2-4所示。

2.4 线性锐化滤波器线性高通滤波器是最常用的线性锐化滤波器。

这种滤波器的中心系数都是正的,而周围的系数都是负的。

对3*3的模板来说,典型的系数取值是:[-1 –1 –1;-1 8 –1;-1 –1 -1]事实上这是拉普拉斯算子,所有的系数之和为0。

当这样的模板放在图像中灰度值是常数或变化很小的区域时,其输出为0或很小。

这个滤波器将原来的图像中的零频域分量去除了,也就是将输出的图像的平均值变为0,这样就会有一部分像素的灰度值小于0。

在图像处理中我们一般只考虑正的灰度值,所以还有将输出图像的灰度值范围通过尺度变回到所要求的范围。

MATLAB代码所示:I=imread('rice.png');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系I1=im2bw(I);subplot(2,2,2),imshow(I1);title('二值图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系H=fspecial('sobel'); %选择sobel算子J=filter2(H,I1); %卷积运算subplot(2,2,3),imshow(J);title('sobel算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系h=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子J1= filter2 (I1,h,'same'); %卷积运算subplot(2,2,4),imshow(J1);title('拉普拉斯算子锐化图像');axis([50,250,50,200]);grid on; %显示网格线axis on; %显示坐标系处理结果如图2-5所示:3.频域增强3.1 基本原理卷积理论是频域技术的基础。

相关文档
最新文档