串行异步通信程序设计
07实验七 Linux环境下的串行通信实验

连接驱动器的使能端,使得当RTS设置成高(逻辑1)时,有效RS485驱动器;设置RTS为低 时,使驱动器处于三态,这时候实际上从总线上断开了驱动器,从而允许其他节点可以使 用同一传输线。当使用RTS时,必须确保发送数据前将RTS设置成高,在发送完数据的最 后一位后,将RTS线设成低。。另一种可选方法是自动发送数据控制。这种方法要求特殊 的电路,当数据传输时自动使能或无效驱动器。它减少了软件开销和程序员的潜在错误。
五、基础知识
串行通信 1、基本原理 串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行 端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。 串口是系统资源的一部分,应用程序要使用串口进行通信,必须在使用之前向操作系统提 出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。 2、串口通信的基本任务 (1) 实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实 现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的 帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2) 进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是 并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送 入计算机处理。因此串并转换是串行接口电路的重要任务。 (3) 控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选 择和控制的能力。 (4) 进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他 校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5) 进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用
串行通讯实验报告

一、实验目的1. 理解串行通讯的基本原理及通信方式。
2. 掌握串行通讯的硬件设备和软件实现方法。
3. 学会使用串行通讯进行数据传输。
4. 通过实验,加深对单片机串行口工作原理和程序设计的理解。
二、实验原理串行通讯是指将数据一位一位地按顺序传送的通信方式。
与并行通讯相比,串行通讯的通信线路简单,成本低,适用于远距离通信。
串行通讯主要有两种通信方式:异步通信和同步通信。
1. 异步通信异步通信中,每个字符之间没有固定的时钟同步,而是通过起始位和停止位来标识字符的开始和结束。
每个字符由起始位、数据位、奇偶校验位和停止位组成。
2. 同步通信同步通信中,数据传输过程中有固定的时钟同步信号,发送方和接收方通过同步时钟来保证数据传输的准确性。
三、实验设备1. 单片机最小系统教学实验模块2. 数码管显示模块3. 串行数据线4. 电脑四、实验内容1. 单片机串行口初始化首先,我们需要对单片机串行口进行初始化,包括设置波特率、通信方式、数据位、停止位等。
2. 数据发送在单片机程序中,编写数据发送函数,将数据通过串行口发送出去。
3. 数据接收编写数据接收函数,从串行口接收数据。
4. 数据显示将接收到的数据通过数码管显示出来。
5. 双机通信通过两套单片机实验模块,实现双机通信。
一台单片机作为发送方,另一台单片机作为接收方。
五、实验步骤1. 将单片机最小系统教学实验模块和数码管显示模块连接到电脑上。
2. 编写单片机程序,初始化串行口,并设置波特率、通信方式、数据位、停止位等。
3. 编写数据发送函数,将数据通过串行口发送出去。
4. 编写数据接收函数,从串行口接收数据。
5. 编写数据显示函数,将接收到的数据通过数码管显示出来。
6. 编写双机通信程序,实现两台单片机之间的通信。
7. 将程序下载到单片机中,进行实验。
六、实验结果与分析1. 通过实验,成功实现了单片机串行口的初始化、数据发送、数据接收和数据显示。
2. 成功实现了双机通信,两台单片机之间可以相互发送和接收数据。
单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。
而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。
一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。
串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。
在串行通信中,数据是一位一位地按顺序传输的。
常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。
在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。
UART 协议包括起始位、数据位、奇偶校验位和停止位。
起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。
二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。
首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。
在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。
即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。
同时,还需要共地以保证信号的参考电平一致。
此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。
三、软件设计软件设计是实现双机串行通信的核心部分。
在本次课程设计中,我们使用 C 语言来编写单片机的程序。
对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。
然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。
对于接收方单片机,同样需要对 UART 模块进行初始化。
单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导实验三调度器设计基础一、实验目的和要求1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。
2.掌握Keil与Proteus的联调技巧。
3.掌握串行通信在单片机系统中的使用。
4.掌握调度器设计的基础知识:函数指针。
二、实验设备1.PC机一套2.Keil C51开发系统一套3.Proteus 仿真系统一套三、实验容1.甲机通过串口控制乙机LED闪烁(1)要求a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时闪烁,关闭所有的LED。
b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。
i.甲机发送“A”,控制乙机LED1闪烁。
ii.甲机发送“B”,控制乙机LED2闪烁。
iii.甲机发送“C”,控制乙机LED1,LED2闪烁。
iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。
c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。
两机的程序要分别编写。
d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下:i.设置串口模式(SCON)ii.设置定时器1的工作模式(TMOD)iii.计算定时器1的初值iv.启动定时器v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。
(2)电路原理图Figure 1 甲机通过串口控制乙机LED闪烁的原理图(3)程序设计提示a.模式1下波特率由定时器控制,波特率计算公式参考:b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。
2.单片机与PC串口通讯及函数指针的使用(1)要求:a.编写用单片机求取整数平方的函数。
b.单片机把计算结果向PC机发送字符串。
c.PC机接收计算结果并显示出来。
d.可以调用Keil C51 stdio.h 中的printf来实现字符串的发送。
单片机串行通信

单片机串行通信在现代电子技术的领域中,单片机串行通信扮演着至关重要的角色。
它就像是信息传递的“高速公路”,让单片机能够与外部设备或其他单片机进行高效、准确的数据交流。
串行通信,简单来说,就是数据一位一位地按顺序传输。
相较于并行通信,它所需的数据线更少,这在硬件设计上带来了极大的便利,降低了成本,也减少了布线的复杂性。
想象一下,如果每次传输数据都需要同时通过很多根线,那得是多么繁琐和容易出错!而串行通信则巧妙地解决了这个问题。
单片机串行通信有两种常见的方式:同步串行通信和异步串行通信。
异步串行通信就像是两个不太合拍的朋友在交流。
发送方和接收方各自按照自己的节奏工作,但他们通过事先约定好的一些规则来确保信息能被正确理解。
比如,规定好每个数据的位数(通常是 5 到 8 位)、起始位和停止位的形式。
起始位就像是一个打招呼的信号,告诉接收方“我要开始发数据啦”;而停止位则表示这一轮数据传输结束。
在异步通信中,双方不需要严格同步时钟,这使得它在很多应用场景中都非常灵活。
同步串行通信则更像是两个默契十足的伙伴。
发送方和接收方共用一个时钟信号,数据的传输在这个时钟的控制下有序进行。
这样可以保证数据传输的准确性和稳定性,但也对时钟的同步要求较高。
在实际应用中,单片机串行通信常用于与各种外部设备进行通信,比如传感器、显示屏、计算机等。
以传感器为例,单片机通过串行通信获取传感器采集到的温度、湿度、压力等数据,然后进行处理和控制。
为了实现串行通信,单片机通常会配备专门的串行通信接口。
比如常见的 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(集成电路总线)等。
UART 是一种应用广泛的异步串行通信接口。
它的硬件实现相对简单,只需要两根数据线:发送线(TXD)和接收线(RXD)。
通过设置合适的波特率(即数据传输的速率),就可以实现单片机与其他设备之间的异步通信。
SPI 则是一种同步串行通信接口,它通常需要四根线:时钟线(SCK)、主机输出从机输入线(MOSI)、主机输入从机输出线(MISO)和片选线(CS)。
USART通信接口设计实验

UART_Data = 0; } } }
四、实验现象和结果
1、把串口线和 PC 机连接起来,运行程序后,通过串口调试软件发送 ASCII 码字符(需 要以回车键结尾)到单片机实验板,单片机实验板接收到从串口调试软件发送过来的 ASCII
实验四 UART 通信接口设计实验
一、实验目的
1、理解用异步串行通信进行 RS232 通信的原理并能掌握其方法及编程;
2、学习使用定时器 T1 做波特率发生器,掌握计算波特率的方法。
二、实验仪器
1、自制的 C8051f410 实验开发板 1 块
2、直流稳压电源、示波器
各1台
3、仿真器(U-EC6)
1只
码字符后,又将同样的字符回送给串口调试软件,这样串口调试软件可以看到返回同样的字
符,如果收发的字符相同,则说明 PC 机与单片机实验板之间的通信成功,如下图所示。
注: 串口通信波特率、位数据位、停止位、校验等参数设置值参考上图。
五、预习要求
1、读懂程序; 2、预先给出修改代码,以便更快更好的得出实验结果;
4、PC 机
1台
三、实验内容
实验任务:编写程序将单片机的 P0.4、P0.5 口配置为串口 0 通信口,将 PC 机发送给
c8051f410 的数据原样发回 PC 机,程序中用“0x0d”作为帧尾标志。
PC 端发送、接收可采用串口接收软件“串口调试助手 V2.1”。
在程序中通过交叉开关配置 TX0,RX0 分别到 P0.4、P0.5 引脚,由于 I/O 口是 TTL 电 平信号,需要通过 MAX232 转换为 RS-232 电平后才能与 PC 机连接,连接电路如上图所示。
基于stm32的串口通信设计报告

基于stm32的串口通信设计报告基于STM32的串口通信设计报告一、引言STM32微控制器因其高性能、低功耗和丰富的外设接口而广泛应用于各种嵌入式系统。
其中,串口通信(UART)是STM32中非常常用的一种通信方式,它允许微控制器与其他设备或计算机进行数据交换。
本报告将详细介绍基于STM32的串口通信设计。
二、STM32串口通信概述STM32的UART通信主要通过其通用同步/异步接收器发送器(USART)实现。
USART是一个全双工的串行通信接口,支持同步和异步两种模式。
它提供了一种可靠的通信方式,适用于低速和高速数据传输。
三、串口通信硬件设计1. 引脚配置:根据具体的STM32型号,选择适当的TXD(发送数据)、RXD(接收数据)、RTS(请求发送)和CTS(清除发送)等引脚。
2. 电源与地:为UART模块提供稳定的电源和地线。
3. 电平转换:如果微控制器与外部设备之间的电平不匹配,需要进行电平转换。
四、串口通信软件设计1. 初始化UART:在开始通信之前,需要配置UART的各种参数,如波特率、数据位、停止位和奇偶校验等。
这通常在STM32的初始化代码中完成。
2. 数据发送:通过使用HAL库或标准外设库函数,可以方便地发送数据。
一般来说,发送函数会将数据放入一个缓冲区,然后启动发送过程。
3. 数据接收:与发送类似,接收数据时,数据首先被读取到一个缓冲区中,然后可以通过中断或轮询方式进行处理。
4. 中断处理:为了提高效率,可以启用UART的中断功能。
当中断被触发时,相应的中断处理程序会被执行,用于处理接收或发送的数据。
五、示例代码与测试以下是一个简单的示例代码,展示了如何在STM32上使用HAL库进行UART通信:include "stm32f4xx_"UART_HandleTypeDef huart1;void SystemClock_Config(void);static void MX_GPIO_Init(void);static void MX_USART1_UART_Init(void);int main(void){HAL_Init();SystemClock_Config();MX_GPIO_Init();MX_USART1_UART_Init();uint8_t txBuffer[] = "Hello, UART!";HAL_UART_Transmit(&huart1, txBuffer, sizeof(txBuffer), HAL_MAX_DELAY);while (1)// 循环等待,直到收到中断或手动终止程序}}```六、结论通过本报告,我们详细介绍了基于STM32的串口通信设计。
双机通信实验报告.doc

双机通信实验报告。
单片机实验报告(自动化15级)实验名称:串行通信实验1.实验1的目的。
掌握单片机串口的工作模式;2.掌握双机通信的接口电路设计和程序设计。
2.实验设备1。
个人电脑;2.单片机最小系统教学实验模块:3.数码管显示模块三、实验内容1。
两套单片机测试装置(两个实验组)共同完成了实验。
我们U1是机器A,U2是机器B。
机器A将学生的学号后的8位数字发送到机器B。
机器B接收到这8位数字,并将其显示在8位数字的电子管上。
该电路如图1所示。
串行通信模式要求为模式1,波特率为2400位/秒,不是双倍,单片机外部晶振频率为11.0592米。
图1双机通信原理附加要求示意图:机器b收到后,该机器(机器b)的学生编号的最后8位数字被送回机器a,并显示在数码管上。
2.单片机与PC机之间的通信单片机向PC机发送数据。
单片机将本机的学生号(学生本人)反复发送到PC机,发送波特率为1200,采用模式1,单片机外部晶振频率为11.0592米四、实验原理4.1串行通信模式在串行通信中,有两种基本通信模式:异步通信。
异步串行通信规定了字符数据的传输格式,即每个数据以相同的帧格式传输。
每个帧信息由起始位、数据位、奇偶校验位和停止位组成。
本实验主要研究异步通信的实现方法。
在异步通信中,每个字符使用一个起始位和一个停止位作为字符开始和结束的符号,因此占用时间。
因此,为了提高传输数据块时的通信速度,这些标记通常被去除,并采用同步通信。
同步通信不像异步通信那样依赖起始位在每个字符数据的开头发送和接收同步。
相反,同步字符用于在每个数据块传输开始时同步发送方和接收方。
根据通信方式,数据传输线可分为三种类型:单工模式、半双工模式、全双工模式。
(1)单工模式在单工模式中,通信线路的一端连接到发射机,另一端连接到接收机,这形成单向连接,并且仅允许数据在固定方向上传输。
(2)半双工模式在半双工模式下,系统中的每个通信设备由一个发射机和一个接收机组成,它们通过收发器开关连接到通信线路,如图33所示-1.实验1的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*******************实践教学*******************兰州理工大学计算机与通信学院2014年秋季学期《通信系统综合训练》课程设计题目:串行异步通信程序设计专业班级:通信工程(1)班姓名:李银环学号:11250134指导教师:王惠琴成绩:摘要在Windows环境下实现通信的方法主要有利用MSComm控件和直接用Windows API编程,软件采用Microsoft Visual C++ 6.0,利用MSComm控件编程相对来说更简单一些,而直接使用Windows API编程更灵活一些。
本次课程设计分析了串行异步通信的基本原理,在VC++6.0的环境下利用MSComm控件实现了两个PC机的COM口间的数据发送和接收。
本文通过对COM1口进行初始化编程,以及对建立的工程中的每个对话框和按钮分别进行编程和设置,成功的实现了利用PC机的两个COM口进行异步通信,并能根据设置调整异步传行通信参数。
关键词:VC++6.0;MSComm控件;串行异步通信目录前言 (1)第1章串行异步通信基本原理 (2)1.1 串行通信协议 (2)1.2 串口通信的基本概念 (3)1.3 RS-232简介 (4)第2章 VC++软件简介 (5)2.1 VC++6.0简介 (5)2.2 Microsoft Communications Control 控件 (6)第3章串行异步通信系统分析 (7)第4章串行异步通信系统设计 (8)4.1建立工程 (8)4.2 在程序中添加MSComm控件 (9)4.3 初始化串口:设置MSComm控件的属性 (11)4.4 发送数据 (12)第5章串行异步通信程序调试 (18)5.1 计算机串口设置 (18)5.2 程序运行结果 (18)参考文献 (20)附录 (21)致谢 (29)前言随着现代信息技术的发展以及计算机网络的广泛应用,计算机通信技术已经日趋成熟,串口通信作为一种灵活、方便、可靠的通信方式,被广泛应用于工业控制中。
同时串行通信还应用于交通控制、分布数据采集系统、通信距离扩展、电力系统数据采集与控制系统、高速公路收费系统、远程控制、保密通信系统和教学实验等等。
在数据通信、计算机网络以及工业上的分布式控制系统中,经常需要采用串行通信来达到远程信息交换的目的。
当控制计算机与各数控机床相距较远时,一般采用串行通信方式而不采用并行通信方式。
这是因为并行通信系统的造价较高、众多的连线不仅容易引入干扰,也容易发生线路故障。
串行通信由于接线少、成本低,在数据采集和控制系统中得到了广泛的应用,控制系统中常用的串行通信一般采用RS-232串行总线标准,RS-232是PC机与通信工业中应用最广泛的一种串行接口。
WINDOWS下双机点到点的串行通信系统是一个典型的通信系统,它是我们为了实现计算机底层的工作,以及为了用户更好地和系统能够直接相连而提出来的。
经过分析我使用了RS-232C为接口线路以及Microsoft公司的Visual C++ 6.0作为开发工具,利用其提供的各种面向对象的开发工具来开发的系统。
论述了采用自顶向下的设计方法,模块化设计思路,以及总体设计编码和调试,其开发主要包括数据的发送与接收等方面。
在本次课程设计中,讨论了使用VC++的开发环境实现两台PC机间的串口通信。
就是通过一个MSComm控件,用一个RS-232串口线将两台机子间的串口连接起来,从而进行数据收发。
而使用WinAPI进行串口通信不像使用MSComm控件那么容易,需要设置多个参数。
第1章串行异步通信基本原理1.1 串行通信协议串行传输可采用以下两种方法:异步传输和同步传输。
1.1.1 异步传输协议在异步传输方式中,数据传输单位是字符。
在通信的数据流中,字符间异步,字符内部各位间同步。
异步通信方式的“异步”主要体现在字符与字符之间通信没有严格的定时要求。
异步传输中,字符可以是连续地、一个个地发送,也可以是不连续地、随机地进行单独发送。
在一个字符格式的停止位之后,立即发送下一个字符的起始位,开始一个新的字符的传输,这叫做连续的串行数据发送,即帧与帧之间是连续的。
断续的串行数据传送是指在一帧结束之后维持数据线的“空闲”状态,新的起始位可在任何时刻开始。
一旦传送开始,组成这个字符的各个数据位将被连续发送,并且每个数据位持续的时间是相等的。
接收端根据这个特点与数据发送端保持同步,从而正确地恢复数据。
收/发双方则以预先约定的传输速率,在时钟的作用下,传送这个字符中的每一位。
起止式异步协议的特点是一个字符一个字符传输,并且传送一个字符总是以起始位开始,以停止位结束,字符之间没有固定的时间间隔要求。
每一个字符的前面都有一位起始位(低电平,逻辑值0),字符本身有5~7位数据位组成,接着字符后面是一位校验位(也可以没有校验位),最后是一位,或意味半,或二位停止位,停止位后面是不定长度的空闲位。
停止位和空闲位都规定为高电平(逻辑值),这样就保证起始位开始处一定有一个下跳沿。
异步串行通信的可靠性高,但由于要在每个字符的前后加上起始位和停止位这样一些附加位,使得传输效率变低了,只有约80%。
因此,起止协议一般用在数据速率较慢的场合(小于19.2kbit/s)。
在高速传送时,一般要采用同步协议。
1.1.2 同步传输协议在同步传输方式中,以帧为数据传输单位,每个帧中含有多个字符代码,而且字符代码与字符代码之间没有间隙以及起始位和停止位。
和异步传输相比,数据传输单位的加长容易引起时钟漂移。
为了保证接收端能够正确地区分数据流中的每个数据位,收发双方必须通过某种方法建立起同步的时钟。
可以在发送器和接收器之间提供一条独立的时钟线路,由线路的一端(发送器或者接收器)定期地在每个比特时间中向线路发送一个短脉冲信号,另一端则将这些有规律的脉冲作为时钟。
这种技术在短距离传输时表现良好,但在长距离传输中,定时脉冲可能会和信息信号一样受到破坏,从而出现定时误差。
另一种方法是通过采用嵌有时钟信息的数据编码位向接收端提供同步信息。
(1)面向字符的同步协议这种协议的特点是一次传送由若干个字符组成的数据块,而不是只传送一个字符,并规定了10个字符作为这个数据块的开头与结束标志以及整个传输过程的控制信息,它们也叫做通信控制字。
由于被传送的数据块是由字符组成,故被称作面向字符的协议。
(2)面向比特的同步协议该协议的特点是所传输的一帧数据可以是任意位,而且它是靠约定的位组合模式,而不是靠特定字符来标志帧的开始和结束,故称“面向比特”的协议。
1.2 串口通信的基本概念1.2.1 串行通信串行通信数据传送的特点是:数据传送按位顺序进行,最少只需要一根传输线即可完成,节省传输线。
与并行通信相比,串行通信还有较为显著的优点:传输距离长,可以从几米到几千米;在长距离内串行数据传送速率会比并行数据传送速率快;串行通信的通信时钟频率容易提高;串行通信的抗干扰能力十分强,其信号间的互相干扰完全可以忽略。
但是串行通信传送速度比并行通信慢得多,并行通信时间为T,则串行时间为NT。
1.2.2 串行通信的工作模式串行数据通信的基础是单线传输信息,数据通常是在两个站(点对点)之间进行传送,按照数据流的方向可分成3种传送模式:单工形式、半双工形式和全双工形式。
(1)单工形式:在单工形式中数据传送是单向的。
通信双方中,一方固定为发送端,另一方则固定为接收端。
信息只能沿一个方向传送,使用一根传输线,例如,计算机与打印机之间的通信是单工形式,因为只有计算机向打印机传送数据,而没有相反的数据传送。
还有在某些通信信道中,如单工无线发送等。
(2)半双工形式:半双工通信使用同一根传输线,既可发送数据又可接收数据,但不能同时发送和接收。
在任何时刻只能由其中的一方发送数据,另一方接收数据。
因此半双工形式既可以使用一条数据线,也可以使用两条数据线。
半双工通信中每端需有一个收/发切换电子开关,通过切换来决定数据向哪个方向传输。
因为有切换,所以会产生时间延迟。
但是对于像打印机这样单方向传输的外围设备,用半双工方式就能满足要求了,不必采用全双工方式,可节省一根传输线。
(3)全双工形式:全双工数据通信分别由两根可以在两个不同的站点同时发送和接收的传输线进行传送,通信双方都能在同一时刻进行发送和接收操作,在全双工方式中,每一端都有发送器和接收器,有两条传送线,可在交互式应用和远程监控系统中使用,信息传输效率较高。
1.3 RS-232简介在串行通讯时,要求通讯双方都采用一个标准接口,使不同的设备可以方便地连接起来进行通讯.本次课程设计采用RS-232接口。
RS-232-C接口(又称EIA RS-232-C)是目前最常用的一种串行通讯接口. ("RS-232-C"中的"-C"只不过表示RS-232的版本,所以与"RS-232"简称是一样的)它是在1970年由美国电子工业协会(EIA)联合贝尔系统,调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准.它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个25个脚的DB-25连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定.后来IBM的PC机将RS232简化成了DB-9连接器,从而成为事实标准.而工业控制的RS-232口一般只使用RXD,TXD,GND三条线.它适合于数据传输速率在0~20000b/s范围内的通信。
这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。
在TxD和RxD上:逻辑1(MARK)=-3V~-15V,逻辑0(SPACE)=+3~+15V,在RTS、CTS、DSR、DTR和DCD等控制线上:信号有效(接通,ON状态,正电压)=+3V~+15V信号无效(断开,OFF状态,负电压)=-3V~-15RS232的逻辑电平与TTL以高低电平表示逻辑状态的规定不同。
因此,为了能够同计算机接口或终端的TTL器件连接,必须在EIA-RS-232C与TTL电路之间进行电平和逻辑关系的变换。
实现这种变换的方法可用分立元件,也可用集成电路芯片。
目前较为广泛地使用集成电路转换器件,如MC1488、SN75150芯片可完成TTL电平到EIA电平的转换,而MC1489、SN75154可实现EIA电平到TTL电平的转换。
MAX232芯片可完成TTL←→EIA双向电平转换。
第2章 VC++软件简介2.1 VC++6.0简介VC++6.0是Microsoft公司推出的一个基于Windows系统平台、可视化的集成开发环境,它的源程序按C++语言的要求编写,并且加入了微软提供的功能强大的MFC(Microsoft Foundation Class)类库。