信号与线性系统复习资料(绝对给力)

合集下载

《信号与系统》综合复习资料

《信号与系统》综合复习资料

《信号与系统》综合复习资料《信号与系统》综合复习资料一、简答题1、dtt df t f t f x e t y t )()()()0()(+⋅=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。

∑∑∫∫---+)(t f )(t y 1223+3、若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f+=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率sf 为 ____________KHz 。

4、设系统的激励为()f t ,系统的零状态响应)(t yzs与激励之间的关系为:)()(t f t y zs-=,判断该系统是否是时不变的,并说明理由。

5、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。

6、已知()1k+1 , 0,1,20 , k f k else ==⎧⎨⎩,()21 , 0,1,2,30 , k f k else==⎧⎨⎩设()()()12f k f k fk =*,求()f k 。

7、设系统的激励为()f t ,系统的零状态响应)(t yzs与激励之间的关系为:)1(*)()(-=k f k f k y zs,判断该系统是否是线性的,并说明理由。

8、已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。

∑∑DD---+)(k f )(k y 1223+9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad sωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔NT 为:_______________s 。

10、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率sf 为 ____________KHz 。

《信号与线性系统》总复习(2024级)

《信号与线性系统》总复习(2024级)

信号与线性系统总复习信号分析一、 信号的时域分析1、 常见信号①单位冲激函数:)(t δ定义:抽样性:②单位阶跃函数:)(t ε定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e t εα-⑤门函数:)(t G τ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ)(t f )(k f ⎩⎨⎧=01)(t ε00<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(2、 信号的运算:3、 信号的变换: 移位:反折:展缩:倍乘:4、 卷积:性质:延时特性:)()()(212211t t t f t t f t t f --=-*-微积分特性:二、 信号的频域分析(傅立叶变换分析法)1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔ ③延时:0)()(0t j e j F t t f ωω±↔± ④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数; 若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔;)()()(ωωj F j dt t f d n nn ↔ )(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k fi f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121⎰∞∞--=dt e t f j F tj ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)()()(21t f t f ±)()(21t f t f •⎰∞-*=td f dtt df ττ)()(21)(])([21t f d f t *=⎰∞-ττ)()(21t f t f *⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⑨频域微分:ωωd j dF t f jt )()()(↔-;n n nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔*)()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔ )]()([cos 000ωωδωωδπω++-↔t )]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t f Tn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞= 4、 周期信号的频谱①性质:离散性,谐波性,收敛性②级数绽开:③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;时域 频域周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 抽样定理①频带有限信号②满意关系:m s f f 2≥∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n tjn nec Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f Ta Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ三、 信号的复频域分析(拉普拉斯变换分析法)1、 定义:2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+ ②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F e t f t s -↔ ④尺度变换:)(1)(as F a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t )()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π 3、 常见信号的拉氏变换、收敛区 1)(↔t δ,st 1)(↔ε ,as t e t -↔1)(εα, 1!+↔n n s n t , 22sin ωωω+↔s t ,⎰∞-=0)()(dte tf s F st ⎰∞+∞-=j j stds e s F jt f σσπ)(21)(22cos ωω+↔s st4、 反变换a.部分分式绽开法nn s s k s s ks s k s F -++-+-=2211)( )()()(2121t e k e k e k t f t s n t s t s n ε+++=b.留数法∑==ni i s t f 1Re )(①单根i s 处的留数 Re [()()]i st i i s s s F s e s s ==-②p 重根i s 处的留数 111Re [()()](1)!i p st p i i s s p d s F s e s s p s-=-=-- 四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kzK F Z F )()(2、性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序:单边z 变换∑-=--↔+1)()()(n k knnzk f zz F z n k f)()()(z F z n k n k f n -↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n -↔-③ 尺度变换:)()(a zF k f a k ↔④ z 域微分特性:)()(z F dzdzk kf -↔⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π ⑥ 初、终值定理:)(lim )0(z F f z ∞→=)()1(lim )(1z F z f z -=∞→3、 常见序列的Z 变换 1)(↔k δ, 1)(-↔z zk ε , γγ-↔z zk , 2)1(-↔z zk4、 反Z 变换a. 长除法b. 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)( )()()()(22110k B B B k B k f kn n k k εγγγδ++++=c. 留数法1()Re ni i f k s ==∑①单根i z 处的留数 1Re [()()]i k i i z z s F z z z z -==-②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析1、 描述:a. 连续系统--微分方程b. 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续:离散:a. 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件确定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec ec t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 n λλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n nc c c rc c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnn ij A AA )(11=-b. 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析 1、频域系统函数2、系统特性幅频特性:相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------变为代数方程,其过程为: ①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k k k k k k k k -=--'--↔------ )0()0()0()()1(21------++'+=k k k k r r s r s s P 是与初始条件有关的关于s 的k 次多项式②)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l l l l l l l l -=--'--↔------ 0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔ ③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+-----)()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++--)()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=--01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=--)()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+= 可求得全响应:)()()(t r t r t r zs zi +=2、电路S 域模型等效法……3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

信号与系统_复习总结(完整资料).doc

信号与系统_复习总结(完整资料).doc

【最新整理,下载后即可编辑】第一章知识要点重难点一第A章A1.1本章重难点总结知识点一1)知识点定义2)背景或地位3)性质、作用4)相关知识点链接5)常见错误分析操作说明:当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。

按照学科的内在逻辑、顺序呈现,并表现在ppt中。

1.2冲刺练习题及解析第二章重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。

其周期为各个周期的最小公倍数。

①连续正弦信号一定是周期信号。

②两连续周期信号之和不一定是周期信号。

周期信号是功率信号。

除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。

1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号:sin ()t Sa t t=奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点。

(2) 单位冲激信号单位冲激信号的性质: (1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1()at t aδδ=(4)微积分性质 d ()()d u t t tδ= ; ()d ()tu t δττ-∞=⎰(5)冲激偶()()(0)()(0)()f t t f t f t δδδ'''=-;()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激(0)t <(0)t >()1t dt δ∞-∞=⎰ ()0t δ=(当0t ≠时)函数的强度。

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
总复习(信号与线性系统必过知识 点)
目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。

信号与线性系统知识点总复习

信号与线性系统知识点总复习

信号与线性系统知识点总复习1.信号的基本概念信号是电子信息工程中的重要概念,简单来说就是随时间(或空间)变化的物理现象。

信号可以分为连续信号和离散信号两种。

连续信号可以用函数表示,离散信号可以用数列表示。

2.常见信号的分类常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号、奇函数信号、偶函数信号等。

不同类型的信号在数学表示和性质上有所差异。

3.连续时间信号的基本性质连续时间信号可以通过振幅、频率、相位等参数来描述。

它们具有线性性质、时移性、尺度变换性质和时间反转性质。

这些性质对于信号的分析和处理都是重要的基础。

4.离散时间信号的基本性质离散时间信号是在离散时间点上取值的信号,通常用数列表示。

离散时间信号具有线性性质、时移性、尺度变换性质和时间反转性质。

此外,离散时间信号还有抽样定理、离散时间傅立叶变换等重要概念。

5.线性系统的基本概念线性系统是输入和输出之间存在线性关系的系统,可以用线性常微分方程或差分方程表示。

线性系统具有叠加原理、时不变性、因果性等基本特性。

线性系统的频率响应是分析系统特性的重要工具。

6.线性时不变系统的冲激响应冲激响应是线性时不变系统的重要性质,它描述了系统对单位冲激输入的响应。

从冲激响应可以得到系统的频率响应、相位响应等信息。

7.线性时不变系统的频率响应频率响应描述了线性时不变系统对不同频率的输入信号的响应特性。

它可以通过线性时不变系统的冲激响应来计算,常用的方法有离散时间傅立叶变换、连续时间傅立叶变换、z变换等。

8.线性系统的稳定性分析稳定性是线性系统分析中的重要性质。

对于连续时间系统,稳定性可以通过系统的传递函数的极点位置来判断。

对于离散时间系统,稳定性可以通过系统的差分方程的极点位置来判断。

9.线性系统的频域分析频域分析是信号与系统分析中的重要方法,可以通过傅立叶变换、拉普拉斯变换和z变换等来将信号从时域转换到频域。

频域分析可以得到信号的频谱特性、频率响应等信息。

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
n 0,1,2, ,
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)

2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0

《信号与线性系统》总复习(信息)#优选.

《信号与线性系统》总复习(信息)#优选.

信号与线性系统总复习信号分析一、 信号的时域分析 1、 常见信号①单位冲激函数:)(t δ 定义:抽样性:②单位阶跃函数:)(t ε 定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e tεα-)(t f )(k f ⎩⎨⎧=01)(t ε0<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(⑤门函数:)(t G τ ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω ⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ2、 信号的运算:3、 信号的变换: 移位:反折: 展缩: 倍乘:4、 卷积: 连续:离散:性质:(1)延时特性:连续:)()()(212211t t t f t t f t t f --=-*- 离散:112212()()()f k k f k k f k k k -*-=--(2)微积分特性:)(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k f i f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121)()(21t f t f ±)()(21t f t f •t t df )(121()[()]tdf t f d dt ττ-∞=*⎰)()(21t f t f *二、 信号的频域分析(傅立叶变换分析法) 1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔③延时:0)()(0tj e j F t t f ωω±↔±④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数;若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔; )()()(ωωj F j dtt f d nnn ↔ ⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⎰∞∞--=dte tf j F t j ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)(⑨频域微分:ωωd j dF t f jt )()()(↔-;nn nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔* )()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔)]()([cos 000ωωδωωδπω++-↔t)]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t fTn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞=4、 周期信号的频谱①性质:离散性,谐波性,收敛性 ②级数展开:∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n t jn n e c Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f T a Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;信号时域特性和频域特性关系:时域 频域 周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 取样定理 ①频带有限信号 ②满足关系:m s f f 2≥三、 信号的复频域分析(拉普拉斯变换分析法) 1、 定义:⎰∞-=)()(dte tf s F st⎰∞+∞-=j j st dse s F jt f σσπ)(21)(2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F et f ts -↔④尺度变换:)(1)(asF a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t)()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π3、 常见信号的拉氏变换1)(↔t δ,st 1)(↔ε,a s t e t-↔1)(εα,1!+↔n nsn t ,22sin ωωω+↔s t ,22cos ωω+↔s st4、 反变换(1).部分分式展开法n n s s k s s k s s k s F -++-+-= 2211)()()()(2121t e k e k e k t f t s n t s t s n ε+++=(2).留数法∑==ni i s t f 1Re )(①单根is 处的留数 Re [()()]i stii s s s F s e s s ==- ②p 重根i s 处的留数111Re [()()](1)!i p st pi i s s p d s F s e s s p s-=-=--四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kz K F Z F )()( 2、 性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序: 单边z 变换∑-=--↔+1)()()(n k k nn z k f zz F z n k f)()()(z F z n k n k f n-↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n-↔-③ 尺度变换:)()(az F k f a k ↔ ④z 域微分特性:)()(z F dzdz k kf -↔ ⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π⑥ 初、终值定理:)(lim )0(z F f z ∞→= 3、 常见序列的Z 变换1)(↔k δ ,1)(-↔z zk ε ,γγ-↔z zk,2)1(-↔z zk4、 反Z 变换 (1) 长除法 (2) 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)()()()()(22110k B B B k B k f kn n k k εγγγδ++++= (3) 留数法1()Re nii f k s ==∑①单根iz 处的留数 1Re [()()]i k ii z z s F z z z z -==- ②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析 1、 描述:(1) 连续系统--微分方程(2) 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n nn +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续: 离散:(1) 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件决定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec e c t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 nλλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n n c c c r c c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ(2) 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析1、频域系统函数2、系统特性011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnnij A AA)(11=-)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =幅频特性: 相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:变为代数方程,其过程为:①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k kk k k k kk -=--'--↔------)0()0()0()()1(21------++'+=k k k k r r s r s s P是与初始条件有关的关于s 的k 次多项式②)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l ll l l l ll -=--'--↔------0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+----- )()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++-- )()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=-- 01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=-- )()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+=可求得全响应:2、电路S 域模型等效法3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

信号与线性系统分析复习题及答案

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题。

1. 已知序列3()cos()5f k k π=为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( B )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 ( A )A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( A )A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ( B )A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为( B ) A .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为 ( ) A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为 ( )tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为( )A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 ( ) A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε- 27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为 ( )A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1
f (t )
n
Fn e jnt

信 号 特 点
信号 f (t ) f (t )
f (t ) f (t )
T f (t ) f (t ) 2 T f (t ) f (t ) 2
频率成分 只含直流和余弦分量 只含正弦分量
只含奇次谐波分量
def

f (t ) dt
2
功率信号 P <∞
E=∞
直流、 周期信号
1 P lim T T


©南昌航空大学电子信息工程
T 2 T 2 ■
f (t ) dt
第 3页
2
(二) 典型信号
阶跃、冲激和冲激偶信号
冲激信号
定义 奇偶性 抽样性 尺度性


t

( )d (t )
z
终值
f () lim sF ( s )
s 0
f () lim( z 1) F ( z )
z 1
对称
F ( jt ) 2f ()
©南昌航空大学电子信息工程
▲ ■ 第 14 页
例10:已知理想低通滤波器的系统函数为
H ( j) 2u( ) u( )e j 3
整个z复平面, 即: 0≤ |z| ≤ ∞

©南昌航空大学电子信息工程学院电子工程系
第 10 页
例4: 解:
判断系统 y(t ) x(t ) x(2t 1) 的线性、时变性 和因果性。
① 系统中激励含二次项,该系统为非线性系统。 ② 方程中激励存在展缩变换; 该系统为时变系统。 ③ y(0) x(0) x(3) ,即输出与现在及未来激励有 关,该系统为非因果系统。
▲ ■ 第 15 页
f () 不存在 2s 5 F ( s) 即 f () ( s 1)(s 3) 极点P=1在S平面右侧
信号与系统 电子教案 例11: 已知因果信号f(t)对应的拉氏变换为 F(s)=(2s+5)/(s2 +2s-3) 则f (0+)= , f (∞)= 2s 5 2 解: f (0) lim sF ( s) lim s 2 s s
3、s与z变换的关系
s变换收敛域
z = e s T=re jθ
z变换收敛域
因果信号 双边信号
时限信号
边界右侧,即:> 0 带状区, 即: 1< < 2
整个S复平面, 即: > -∞
圆外,即: |z| >a
圆内,即: |z| <a
反因果信号 边界左侧,即:< 0
环状区, 即: a< |z| < b
1 1 (n) (at) (t ) n a a
(n)
f (k ) (k k0 ) f (k0 )
©南昌航空大学电子信息工程
▲ ■ 第 4页
(三) 系统特性 1.线性系统
①激励(含初始状态) 系统微分 ②响应(输出) 方程中 ③及其导数或积分 只能是一次项 而不能是它们的 ①绝对值 ②三角与指数函数 ③更不能含常数项
π f (t ) 1 5 cos( 1t 0.15 π) cos( 21t ) 4
a
三角形式傅里叶级数的系数
An A1
A0 2 1
A0 1
A2 1
0 0
2 0.25π
2.24
A2
单边频谱图
1
A1 5 2.24 1 0.15π
双边频谱图
O
1
相乘性 f (t ) (t t0 ) f (t0 ) (t t0 )



f (t ) (t t0 )dt f (t0 )



f (t ) (t t0 )dt f (t0 )
(at)
1 (t ) a
1 (at ) 2 (t ) a
L[ (t ) (t 2)] 1 e2 s

Re[s]
1 e 2 s [ (t 4n)] [ (t ) (t 2)] 1 e4 s n 0
n 0
---时域卷积性质
f (t ) L1[ F ( s)] [ (t 4n)] [ (t ) (t 2)]
① 系统中激励含二次项,该系统为非线性系统。 ② 方程中激励存在展缩变换; 该系统为时变系统。 ③ y(0) x(0) x(3) ,即输出与现在及未来激励有 关,该系统为非因果系统。
©南昌航空大学电子信息工程


第 6页
信号与系统
电子教案
二、信号的三大变换
(一)傅里叶变换
1、傅里叶级数
f (t ) a0 an cosn0t bn sinn0t
(t )
(k )
©南昌航空大学电子信息工程学院电子工程系

第 13 页
5.三大变换性质对比
f (t t0 ) F ( j )e
移位
j t 0
f (t t0 ) e st 0 F (s)
a t
双边 单边
k
f (k m) z m F ( z)
z
m k m k f (k ) z 1
s 2s 3

例12:
已知 f (k ) (k ) (2)k (k ) ,求 f (0) 与 f ()
z z 2z 2 z 解:F ( z) z 1 z 2 ( z 1)(z 2)
2z 2 z f (0) lim F ( z ) lim 2 z z ( z 1)(z 2) ( z 1) 2z 1 1 f () lim F ( z ) lim z 1 z 1 ( z 2) z 3
信号与系统 总复习
主讲: 熊文华
南昌航空大学电子信息工程 ©
南昌航空大学电子信息工程


第 1页
复习内容
Part1 信号、系统基础 Part2 信号的三大变换 Part3 系统分析
(含信号与系统的应用)
©南昌航空大学电子信息工程


第 2页
一、信号、系统基础
(一) 信号特性
1、正弦信号的周期性
f
( n)
(t ) s F (s)
n
k f (k ) z
d F ( z) dz
f1 () f 2 () F1 () F2 ()
f (t ) f (t ) 使频谱展宽为原来的2倍
f (0 ) lim sF ( s )
s
f (0) lim F ( z )
f (t )e
尺度
j 0 t
F j ( 0 ) f (t )e
F (s a)
1 f (at) F ( ) a a
1 s f (at) F ( ) a a
z a f (k ) F ( ) a
微分 卷积
初、
f (t ) ( j) F ( j)
( n) n
©南昌航空大学电子信息工程


第 11 页
π 例5:已知 f (t ) 1 sin 1t 2 cos 1t cos( 21t ), 4 请画出其幅度谱和相位谱。 解: a cos t b sin t a 2 b 2 cos( t ), arctg b
2 1
©南昌航空大学电子信息工程


第 12 页
信号与系统
电子教案
4、常用信号变换
序号 1 2
3
f (t)
F(jω)
1
F(S)
1 1 s
f (k)
F(z)
(t )
(t )
0
sin 0t
cos 0t
s2 2 s s2 2
4
1, z 0 1 z ( ) , z 1 (k ) (k ) j z 1 z k , z a sa ( ) a (k ) g (t ) za 2 z a k (k 1) z a , z a s z ( z cos0 ) cos(0t ) [ ( 0 ) ( 0 )] s 2 2 cos(0 k ) z 2 2 z cos 1 0 0
2 1
©南昌航空大学电子信息工程



第 9页
信号与系统
电子教案
(二)拉氏变换和z变换
s = ζ+jω

1.单边拉氏变换 F ( s) f (t )e st dt 0 2.z变换
F ( z ) f (k ) z
k 0 k
F ( z)
k


f ( k ) z k
离散性、谐波性、收敛性
▲ ■
©南昌航空大学电子信息工程
第 8页
π 例5:已知 f (t ) 1 sin 1t 2 cos 1t cos( 21t ), 4 请画出其幅度谱和相位谱。 解: a cos t b sin t a 2 b 2 cos( t ), arctg b
极点z 1 - 2,收敛域不含单位圆 f () 不存在! 、 , 即 f ()
©南昌航空大学电子信息工程学院电子工程系

第 16 页
1 例 13: 已知 F ( s ) 1 e 2s , 求F(s)的单边拉氏逆变换。
解: F(s)不是有理分式,不能展开为部分分式。
( e 2 s) 1 ( e 2 s) 1 F ( s) 2 s 2 s ( e )( e ) 1 e 4 s 1 1 1 1 L[ (t nT )] (t 4n) sT Re[s] 0 4 s 1 e 1 e n 0 n 0
相关文档
最新文档