51单片机水温水位控制系统

合集下载

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文基于单片机的水温控制系统摘要水在人们日常生活和工业生产中有着必不可少的作用,在不同环境和不同的需求中,水温的变化也对我们的生活和工业生产有着重要的影响,为了满足人们在各个领域所需要的水温,水温控制系统在各个领域也应运而生。

随着社会的发展,科技的进步,智能化已经是温控系统发展的主流方向,小到人们生活中的饮水机,大到工业生产中的大型水温加热控制设备等各种水温控制系统发展以趋于成熟。

传统靠人工控制的温度,湿度,液位等信号的测压、力控系统,外围电路比较复杂,测量精度较低,分辨率不高,需进行温度校正;并且他们的体积较大适用不方便,在工业生产中也可能应为各种认为的失误发生意外,针对此问题,本系统设计的目的就是实现一种可连续高精度持续调温的温度控制系统,它应用广泛,功能强大,操作简单,便于携带,是一款既实用又廉价的控制系统。

温度检测控制系统在工业生产中主要职责是对温度进行严格的监测,在温度发生变化不符合规定温度时,系统报警提示并做出相应的温度调整措施,以使得生产能够顺利进行,节省了大量的人工,产品的质量也得到充分的保障,同时也避免了各种潜在意外的发生。

从而提高企业的生产效率。

本系统以89C51单片机为核心,扩展外围控制电路,检测变送电路,按键电路,显示电路,复位电路,时钟电路,电源电路,报警电路;本系统的整体运行过程为:通过按键电路设定理想水温范围,实时水温通过检测变送电路模检测,并将检测到的物理量转化成电信号,然后放大电信号并将模拟量同过A/D 转换为单片机识别的数字量发送给单片机。

单片机系统将实时温度与设定温度进行对比,并通过显示电路将实时温度显示出来,如果实时温度大于设定的最高温度或者低于设定的最低温度一定时间,单片机将触发报警电路对过温或者低温进行警报,同时触发控制电路对水温的控制做出适当的调整,确保水温出在理想的温度值,满足需求。

系统检测变送电路中采用电流型温度传感器AD590将温度的变化量转变成电流量,然后采用OP-07将电流量转换为电压量。

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计

基于51单片机的太阳能热水器控制系统设计一、本文概述随着全球对可再生能源需求的日益增加,太阳能作为一种清洁、可持续的能源形式,已经引起了广泛的关注和应用。

太阳能热水器作为一种常见的太阳能应用产品,其在节能减排、提高生活质量等方面具有显著的优势。

然而,太阳能热水器在实际使用过程中,仍存在一些问题,如水温控制不稳定、能效利用率不高等。

为了解决这些问题,本文提出了一种基于51单片机的太阳能热水器控制系统设计方案。

该系统以51单片机为核心控制器,结合温度传感器、水位传感器、执行机构等硬件设备,实现了对太阳能热水器水温和水位的精确控制。

通过实时监测水温和水位信息,系统能够自动调整加热功率和补水流量,确保水温稳定在用户设定的范围内,同时避免了水资源的浪费。

系统还具有故障诊断功能,能够及时发现并处理潜在的故障问题,提高了系统的可靠性和稳定性。

本文首先介绍了太阳能热水器的工作原理和现状,分析了传统控制系统存在的问题和不足。

然后,详细阐述了基于51单片机的太阳能热水器控制系统的硬件组成和软件设计。

在硬件设计方面,本文介绍了各个硬件模块的功能和选型原则,包括温度传感器、水位传感器、执行机构等。

在软件设计方面,本文详细说明了系统的控制算法和程序流程,包括温度控制算法、水位控制算法、故障诊断算法等。

本文通过实验验证了系统的可行性和有效性,为太阳能热水器的智能化、高效化提供了有益的探索和实践。

本文的研究不仅有助于提升太阳能热水器的能效利用率和用户体验,还为其他可再生能源应用产品的智能化控制提供了有益的参考和借鉴。

本文的研究成果对于推动太阳能热水器行业的技术进步和产业发展具有重要的现实意义和应用价值。

二、太阳能热水器控制系统总体设计太阳能热水器控制系统的总体设计是确保整个系统高效、稳定运行的关键。

在设计过程中,我们充分考虑了太阳能热水器的实际应用场景和用户需求,以及51单片机的性能特点,从而构建了一个既实用又可靠的控制系统。

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计

基于 51 单片机的水温自动控制系统引言在现代的各种工业生产中,不少地方都需要用到温度控制系统。

而智能化的控制系统成为一种发展的趋势.本文所阐述的就是一种基于 89C51 单片机的温度控制系统。

本温控系统可应用于温度范围30℃到96℃。

设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。

(1) 利用摹拟温度传感器检测温度,要求检测电路尽可能简单。

(2) 当液位低于某一值时,住手加热。

(3) 用 AD 转换器把采集到的摹拟温度值送入单片机。

(4) 无竞争—冒险,无颤动。

(1) 温度显示误差不超过1℃.(2) 温度显示范围为0℃—99℃。

(3) 程序部份用 PID 算法实现温度自动控制。

(4) 检测信号为电压信号。

根据设计要求和所学的专业知识,采用 AT89C51 为本系统的核心控制器件。

AT89C51 是一种带4K 字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8 位微处理器。

其引脚图如图1 所示。

显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件.在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器 74LS164 作为显示电路,其优点在于占用主控系统的 I/O 口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。

方案二:采用动态显示的方案由单片机的 I/O 口直接带数码管实现动态显示, 占用资源少,动态控制节省了驱动芯片的成本,节省了电,但编程比较复杂,亮度不如静态的好。

由于对电路的功耗要求不大,因此就在尽量节省 I/O 口线的前提下选用方案一的静态显示.图 1 AT89C51 引脚图1 温度检测:有选用 AD590 和LM35D 两种温度传感器的方案,但考虑到两者价格差距较大,而本系统中对温度要求的精度不很高,于是选用比较便宜 LM35D。

51单片机水温水位控制系统(DOC)

51单片机水温水位控制系统(DOC)

摘要本温度设计采用现常见的89C51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。

单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。

系统包括单片机模块、温度检测模块、水位检测模块和驱动电路设计四个部分。

文中对每个部分功能、实现过程作了详细介绍。

关键词: DS18B20数字温度传感器 89C51 水温水位目录一.概述 (3)1.1课题研究的目的及意义 (3)1.2技术指标 (3)二.总体设计方案 (3)三.详细设计方案 (3)1.1温度检测系统 (3)1.2水位检测系统 (5)四.元件说明 (6)1.1 工作原理 (6)1.2单片机的选择 (6)1.3温度传感器 (8)1.4水位传感器 (11)1.5 显示元件 (11)五.硬件模块设计 (12)1.1单片机模块设计 (12)1.2温度检测模块 (13)1.3水位检测模块 (14)1.4 控制模块 (15)1.5 驱动电路设计 (15)六.软件设计 (16)1.2 温度检测系统 (17)1.3 水位检测系统 (18)1.4 DS18B20主程序............................................... 错误!未定义书签。

七.结论 (18)八.参考文献 (18)附录 (18)单片机与显示器件连接图 (18)系统软件源代码 (18)一.概述1.1课题研究的目的及意义目前市场上太阳能热水器的控制系统大多存在功能单一、操作复杂、控制不方便登问题,很多控制器只具有温度和水位显示功能,不具有温度控制功能。

即使热水器具有辅助加热功能,也可能由于加热时间不能控制而产生过烧,从而浪费电能。

鉴于此,我以89C51单片机为检测控制核心,采用数码管显示温度,设计了一种太阳能热水器微控制器,实现了温度和水位参数的实时显示,具有温度设定、水位控制功能。

1.2技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。

基于51单片机的智能水温水位控制系统

基于51单片机的智能水温水位控制系统

基于51单片机的智能水温水位控制系统作者:王家祥黄余双张一凡来源:《中国科技博览》2019年第08期[摘要]此水温控制系统采用市场上常见的89C51单片机进行数据的处理,使用DS18B20数字传感器进行温度的采集和数据的处理,利用单片机进行设置和储存温度的上限和下限。

单片机对接收到的温度信号与设定值进行比较判断,从而进行是否启动继电器来打开加热器等设备。

系统分为四个部分:温度检测部分、单片机部分、水位检测部分和驱动电路的设计。

[关键词]DS18B20数字温度传感器;89C51;水温水位电路中图分类号:G712 文献标识码:A 文章编号:1009-914X(2019)08-0081-01目前市场上的太阳能热水器控制系统大多存在功能单一、运行困难、控制不准确等问题。

市场上的加热器只显示温度和水位,实现不了对温度的精确控制,即使有部分热水器有辅助加热功能,也极易发生过烧或者干烧,从而浪费大量的电能,更有甚者会发生危险。

为此,我们以89C51单片机为核心的控制和检测,采用数字管显示温度,设计了太阳能热水器微控制器,从而实现了温度、水位、温度设定和水位控制功能。

炉温可手动设定在一定范围之内,当水箱水温发生变化时可以实现自动控制。

通过继电器的开合,控制加热的时间,使水箱水温保持在人工设定的温度范围之内,从而达到对水温的精确控制。

(1)温度的设定范围为25到85摄氏度,最小区分度为0.1摄氏度,温度控制的误差控制在正负0.5摄氏度之内。

(2)使用四位一体数码管实时显示温度的精确值1总体设计方案使用DS18B20温度传感器进行温度的采集,实时发送给89C51单片机,让单片机对接收到的数据进行分析与处理,并判断是否开合继电器进行加热或者冷却,自行设计水位电路,通过LED灯来显示实时的水位,使用三个按键来设定所需的温度,当水温超过设定值时启动蜂鸣器报警,而且当水箱缺水时,启动控制水泵的继电器进行加水的操作。

2总体结构设计在整个系统的电路设计主要分为三个部分:(1)主控芯片89C51;(2)数据显示部分;(3)传感器部分。

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文

基于51单片机的水温控制系统设计毕业论文基于51单片机的水温控制系统设计毕业论文基于单片机的水温控制系统摘要水在人们日常生活和工业生产中有着必不可少的作用,在不同环境和不同的需求中,水温的变化也对我们的生活和工业生产有着重要的影响,为了满足人们在各个领域所需要的水温,水温控制系统在各个领域也应运而生。

随着社会的发展,科技的进步,智能化已经是温控系统发展的主流方向,小到人们生活中的饮水机,大到工业生产中的大型水温加热控制设备等各种水温控制系统发展以趋于成熟。

传统靠人工控制的温度,湿度,液位等信号的测压、力控系统,外围电路比较复杂,测量精度较低,分辨率不高,需进行温度校正;并且他们的体积较大适用不方便,在工业生产中也可能应为各种认为的失误发生意外,针对此问题,本系统设计的目的就是实现一种可连续高精度持续调温的温度控制系统,它应用广泛,功能强大,操作简单,便于携带,是一款既实用又廉价的控制系统。

温度检测控制系统在工业生产中主要职责是对温度进行严格的监测,在温度发生变化不符合规定温度时,系统报警提示并做出相应的温度调整措施,以使得生产能够顺利进行,节省了大量的人工,产品的质量也得到充分的保障,同时也避免了各种潜在意外的发生。

从而提高企业的生产效率。

本系统以89C51单片机为核心,扩展外围控制电路,检测变送电路,按键电路,显示电路,复位电路,时钟电路,电源电路,报警电路;本系统的整体运行过程为:通过按键电路设定理想水温范围,实时水温通过检测变送电路模检测,并将检测到的物理量转化成电信号,然后放大电信号并将模拟量同过A/D 转换为单片机识别的数字量发送给单片机。

单片机系统将实时温度与设定温度进行对比,并通过显示电路将实时温度显示出来,如果实时温度大于设定的最高温度或者低于设定的最低温度一定时间,单片机将触发报警电路对过温或者低温进行警报,同时触发控制电路对水温的控制做出适当的调整,确保水温出在理想的温度值,满足需求。

基于51单片机的水温测控系统实验报告

基于51单片机的水温测控系统实验报告

摘要本次实验是软硬件相结合的实验,通过传感器得到的阻值与其它电阻,可以搭建一个电桥,将水温转化为电压,然后通过放大器将电压放大到所需要的值,将所得的电压送入单片机的AD转换电路,将模拟信号转换成数字信号,从而在单片机的液晶屏上显示当前的温度。

此烧水壶是可控制的,即设定温度,使水加热到设定温度且保温,此控制算法采用PID控制算法来控制继电器的通断,来保证水温恒定在设定温度处。

一、设计要求1.传感器:Pt100铂热电阻2.测量放大器:自己设计与搭建3.被控对象:400W电热杯,约0.5公斤自来水4.执行机构:12V驱动,5A负载能力的继电器5.控制系统:51单片机6.控制算法:PID7.温度范围:环境温度~100度8.测量误差1度,控制误差2度二、设计原理及方案1.热电阻传感器热电阻传感器是利用导体或半导体的电阻值随温度变化而变化的原进行测温的。

热电阻的工作原理:温度升高,金属内部原子晶格的振动加剧,从而使金属内部的自由电子通过金属导体时的阻碍增大,宏观上表现出电阻率变大,电阻值增加,我们称其为正温度系数,即电阻值与温度的变化趋势相同。

2.实验原理框图3.测量放大器电路图说明:电位器R10用来调节偏置电压,而电位器R7则用来调节增益。

实验时,用R10来调节零点,用R7来调节满度。

该电路将0℃-100℃转换为0-5V 电压。

上述电路图采用仪表放大器,将铂热电阻两端的电压U2与电位器R10两端的电压U1差放大,放大器输出电压U0与电压差的关系为:)-)(2(1127248U U R RR R U o ⨯+=由铂热电阻阻值与水温的关系可知,铂热电阻的范围是ΩΩ140~100。

则100)10012(12-140)140(1212)-(100)10012(12-100)10012(1212⨯+⨯+≤≤⨯+⨯+K K U U K K 整理得:V U U 04.0)-(012≤≤而仪表放大器的输出电压为0~5V ,所以放大倍数大约为:5/0.04=125。

单片机水箱水位控制系统硬件框图流程图电路图汇编源程序.

单片机水箱水位控制系统硬件框图流程图电路图汇编源程序.

单片机水箱水位控制系统+硬件框图+流程图+电路图+汇编源程序
单片机水箱水位控制系统+硬件框图+流程图+电路图+汇编源程序给水泵电机主控回路图如下:三本系统8051单片机控制部分结构本系统采用8051单片机,引脚具体控制如下:P1口和P3口为输入输出检测信号和控制信号。

下面是8051芯片引脚具体分配:P1.0:水位低低输入信号。

(低0 高1)P1.1:水位低输入信号。

(低0 高1)P1.2:水位高输入信号。

(高1,低0)P1.3:手动与自动转换输入信号。

(手动1,自动0)P1.4:M1起动KM1控制输出信号。

(手动1,自动0)P1.5:M2起动KM1控制输出信号。

(手动1,自动0)P1.6:M1开关状态输入信号。

(开0,关1)P1.7:M2开关状态输入信号。

(开0,关1)P3.0:水位低低报警输出信号。

论文网
P3.1:水位低报警输出信号。

P3.2:水位高报警输出信号。

P3.4:手动起动M1输入信号,低电频有效动作。

P3.5:手动起动M2输入信号,低电频有效动作。

P3.6:手动停M1输入信号,低电频有效动作。

P3.7:手动停M2输入信号,低电频有效动作。

上一页[1] [2] [3] [4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本温度设计采用现常见的89C51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。

单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。

系统包括单片机模块、温度检测模块、水位检测模块和驱动电路设计四个部分。

文中对每个部分功能、实现过程作了详细介绍。

关键词: DS18B20数字温度传感器 89C51 水温水位目录一.概述 (3)1.1课题研究的目的及意义 (3)1.2技术指标 (3)二.总体设计方案 (3)三.详细设计方案 (3)1.1温度检测系统 (3)1.2水位检测系统 (5)四.元件说明 (6)1.1 工作原理 (6)1.2单片机的选择 (6)1.3温度传感器 (8)1.4水位传感器 (11)1.5 显示元件 (11)五.硬件模块设计 (12)1.1单片机模块设计 (12)1.2温度检测模块 (13)1.3水位检测模块 (14)1.4 控制模块 (15)1.5 驱动电路设计 (15)六.软件设计 (16)1.2 温度检测系统 (17)1.3 水位检测系统 (18)1.4 DS18B20主程序............................................ 错误!未定义书签。

七.结论 (18)八.参考文献 (18)附录 (18)单片机与显示器件连接图 (18)系统软件源代码 (18)一.概述1.1课题研究的目的及意义目前市场上太阳能热水器的控制系统大多存在功能单一、操作复杂、控制不方便登问题,很多控制器只具有温度和水位显示功能,不具有温度控制功能。

即使热水器具有辅助加热功能,也可能由于加热时间不能控制而产生过烧,从而浪费电能。

鉴于此,我以89C51单片机为检测控制核心,采用数码管显示温度,设计了一种太阳能热水器微控制器,实现了温度和水位参数的实时显示,具有温度设定、水位控制功能。

1.2技术指标设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。

炉温可以在一定范围内由人工设定,并能在炉温变化时实现自动控制。

若测量值高于温度设定范围,由单片机发出控制信号,经过驱动电路使加热器停止工作。

当温度低于设定值时,单片机发出一个控制信号,启动加热器。

通过继电器的反复开启和关闭,使炉温保持在设定的温度范围内。

⑴温度设定范围为0~99℃,最小区分度为1℃,温度控制的误差≤1℃⑵能够用数码管精确显示当前实际温度值⑶按键控制:设置键、加一键、减一键二.总体设计方案以89C51为主控制芯片,温度采集采用DS18B20温度传感器,通过外围电路来采集水位,用四位数码管显示当前的水温,用LED灯指示水位,并且通过键盘来输入所需控制的水温。

并且当水温水位超于限制时启动报警系统。

如图2.1总体设计方案图所示。

图2.1 总体设计方案图三.详细设计方案3.1 总体结构设计方案一:测温电路的设计,可以使用DS18B20温度传感器利用其感温效应,在将随被测温度变化的电压或电流采集后,把采样得到的模拟信号送入ADC0809进行A/D转换读入单片机进行A/D转换后,通过串行口输入,就可以用单片机进行数据的处理,同时在显示电路上,就可以将被测温度显示出来。

方案二:考虑使用温度传感器,结合单片机电路设计,采用一只DS18B20温度传感器,直接读取被测温度值,之后进行A/D 转换,依次完成设计要求。

比较以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计容易实现,故实际设计中拟采用方案二。

在本系统的电路设计方框图如图3.1.1.2所示,它由三部分组成:⑴主控芯片89C51;⑵数据显示部分;⑶传感器部分。

图3.1.1 温度计电路总体设计方案 (1)控制部分采用传统的数字模似电路,功能可以实现,但电路复杂,温度误差大,成本高,可靠性也比较差;于是我选择采用单片机89C51控制,它结构简单,可以减少外围电路的搭接,并且89C51使用方便,成本比较低,性能稳定,还可以控制各模块输入输出。

但是由于其不能直接进行模数转换,因此要做外围电路设计中加AD0809芯片。

(2)显示部分四位一体的共阳数码管,(3)传感器部分DS18B20温度传感器是美国DALLAS 半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温。

这一部分主单 片 机DS18B20LED 显示指示灯加热继电器要完成对温度信号的采集和转换工作,由DS18B20数字温度传感器及其与单片机的接口部分组成。

数字温度传感器DS18B20把采集到的温度经数模转换后通过数据引脚传到单片机的P1口,单片机接受温度并存储。

此部分只用到DS18B20、AD0809和单片机,硬件很简单。

3.2水位检测系统对于水位进行控制的方式有很多,而应用较多的主要有3种,三种方式的实现如下:方案一:简单的机械式控制方式。

其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。

方案二:利用单片机进行水位检测和控制,基于数字电路的全自动控制,其工作过程是被测水位经过模拟信号采集模块进行采样,然后把采样得到的模拟信号送入ADC0809进行A/D 转换读入单片机,再由单片机进行处理,得出结果是否启动/停止控制电路执行信号以达到水位的控制,具体硬件流程框图入图3.2.1所示。

图3.2.1 方案二具体流程框图方案三:采用89C51单片机为核心控制器的电路。

因为单片机电路结构简单成本低廉、可靠性高,便于实现各个控制功能能很好的完成设计任务。

水位检测由本设计使用的电极式水位传感器通过检测来实现水位的改变。

获得当前水位并通过LED 灯显示。

综合以上三种方案,方案一和方案二由于缺少温度检测模块,而水温也是影响太阳能热水器很重要的一方面:比如说水箱中水温度过高导致水沸腾这时候虽然水所在刻度不是满的,实际上已经溢出,这样说来方案一和方案二的设计算不上智能。

方案三是在方案二的基础上完善和加强的,采用单片机键的双边通信,比起方案二更加方便,也更加合理。

A/D 转换 输 出 控 制 单 片 机控 制 水 位水位传感器四.元件说明4.1 工作原理本文阐述了基于单片机的水温水位控制系统的设计方法,此种方法是以89C51单片机为主控制单元,对水温水位参数进行控制,从而提高了电器的工作稳定性。

以DS18B20为温度传感器的对水温进行数据采集并实现温度控制。

该控制系统还可以实时存储相关的温度数据以及水位高度并能记录当前的时间。

为了实现功能本系统设计了相关的硬件电路和相关应用程序。

硬件电路主要包括89C51单片机最小系统,测温电路、测水位电路、LCD12864液晶显示电路以及报警电路、键盘输入参数等。

系统程序主要包括主程序,读出温度子程序,计算温度子程序、水位显示子程序、按键处理程序、12864液晶显示程序以及数据存储程序以及时间显示程序等4.2单片机的选择单片机的选择在整个系统设计中至关重要,要满足大内存、高速率、通用性、价格便宜等要求,本课题选择89C51作为主控芯片。

89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。

它是美国ATMEL公司的低电压,高性能CMOS8位单片机。

89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。

单片机的可擦除只读存储器可以反复擦除100次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。

89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

实物图如图4.1.2所示。

图4.1.2所示实物图1.2.1主要特性:⑴与MCS-51 兼容⑵4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年⑶全静态工作:0Hz-24Hz⑷三级程序存储器锁定⑸128*8位内部RAM⑹32可编程I/O线⑺两个16位定时器/计数器⑻5个中断源⑼可编程串行通道⑽低功耗的闲置和掉电模式⑾片内振荡器和时钟电路1.2.2管脚说明:VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH 编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在 FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。

相关文档
最新文档