初中数学专题“分类讨论”专题练习(含答案)

合集下载

中考数学分类讨论题(含答案)

中考数学分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B.如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

初二分类讨论练习题

初二分类讨论练习题

初二分类讨论练习题分类讨论是数学中常用的解题方法之一,通过将问题分解为若干个同类子问题来解决整体问题。

在初二数学学习中,分类思维的训练对于培养学生的逻辑思维和分析问题的能力是十分重要的。

本文将给出一些初二分类讨论的练习题,帮助学生加深对该解题方法的理解和运用。

一、排列组合类练习题1. 一个三位数,各位数字均不相同,且都是奇数,有多少个?解析:首先,百位数有5个选择(1、3、5、7、9),十位数有4个选择(0除外),个位数有3个选择,所以总共的不同三位奇数有15个。

2. 一桶里共有红球、蓝球、黄球各若干个,其中红球至少有两个,蓝球至少有三个,黄球至少有四个。

问这桶球中至少有几个球?解析:设红球个数为x,蓝球个数为y,黄球个数为z,根据题意,可列出不等式组如下:x >= 2y >= 3z >= 4求解这个不等式组,我们可以得到最少球的个数为2+3+4=9个。

二、几何形状类练习题1. 如图所示,已知矩形ABCD的长为6cm,宽为4cm,将其四个角各剪去一个相同的小正方形,则所得图形的面积为多少?解析:设每个小正方形的边长为x cm,根据题意,可列出如下方程:(6-2x)(4-2x) = 24将方程化简并解方程,得到x=1,故每个小正方形的边长为1cm,所得图形的面积为24-4=20平方厘米。

2. 如图所示,正三角形ABC的边长为8cm,点P在边BC上,且AP的长度为5cm,则三角形ABP的面积为多少?解析:根据正三角形的性质,角APB也是一个等边三角形,所以三角形ABP的面积为1/2 * 5 * 4 = 10平方厘米。

三、代数方程类练习题1. 一个数的九倍减去这个数的四倍等于24,求这个数是多少?解析:设这个数为x,根据题意,可列出方程9x - 4x = 24解方程得到x = 4,所以这个数是4。

2. 一个三位数能被3整除,且百位、十位、个位数字之和为15,求这个三位数是多少?解析:首先,百位数字至少为1,因为3个位数的情况下最小值为102。

初中数学专题复习分类讨论(含答案)

初中数学专题复习分类讨论(含答案)

专题复习二 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(2005,南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式. 解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】(2005,武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习试卷简介:分类讨论在中招试题中十分常见,这类题目不仅考查了学生对数学基础知识和方法的掌握,也考查了学生思维的深刻度。

而解决这类问题时,因考虑不全导致的失分现象十分严重,针对这个问题,本套题目以等腰三角形为依托,详细介绍了何时分类、如何分类的思想与方法,希望能对大家有所启发。

学习建议:分类不全面、不知如何分类是同学们在解决分类讨论型问题时的常见问题,如何才能做到最终结果的不重不漏,同学们需要重点注意一下几点:1、熟悉不同图形间的差异,并根据图形做出分类的初始判断;2、准确把握题目告知的信息,从问题中找到分类的依据;3、了解常见问题的分类准则;4、永远比其他人多想一步。

一、单选题(共12道,每道10分)1.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm答案:C解题思路:此题属于腰或底边不确定时注意分类讨论,两条边长轮流做三角形的腰长:(1)6cm做腰长时(如图):周长为6+6+3=15(cm)(2)3cm做腰长时:周长为3+3+6=12(cm)验证,第一种情况:最短边+较短边>最长边(3+6>6),可以构成三角形. 第二种情况:由于3+3=6,不符合最短边+较短边>最长边,构不成三角形. 综上:C选项正确试题难度:一颗星知识点:三角形三边关系2.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°答案:D解题思路:解题思路:此题属于角不确定时注意50°可能是顶角,可能是底角:(1)50°为顶角时(如图),这个等腰三角形的顶角为50°(2)50°为底角时(如图),可知等腰三角形的两个底角相等,均为50°,由三角形内角和为180°,可求得顶角度数为:80°.综上,D选项正确试题难度:一颗星知识点:等腰三角形的性质3.等腰三角形的两角之差为30°,求该三角形顶角的度数为()A.80°B.40°C.40°或80°D.50°或80°答案:C解题思路:此题属于角不确定时,设顶角为x度,底角为y度,注意分类讨论:(1)顶角-底角=30°此时,满足方程组:解得:(2)底角-顶角=30°,此时满足方程组解得:综上:顶角度数为40°或80°,所以,C 选项正确试题难度:二颗星知识点:等腰三角形的性质4. 如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于()A.80°B.70°C.60°D.50°答案:C解题思路:此题直接给出了图形,所以不用再分类讨论了.由三角形内角和为180°得∠A+∠ABC+∠C=180°,已知∠A=20°得,∠ABC+∠A=160°,又因为三角形ABC为等腰三角形,即∠ABC=∠C,所以∠ABC=80°,因为DE为线段AB的垂直平分线,所以∠A=∠ABE=20°,从而∠CBE=∠ABC-∠ABE=60°.所以:C选项正确试题难度:二颗星知识点:等腰三角形的性质5. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°答案:D解题思路:此题属于高的位置关系不确定时, 要考虑两种情况(1)(如图)已知△ABC中AB=AC,BD为AC线的高,即∠ABD=30°则∠A=90°-30°=60°(2)(如图)已知△ABC 中AB=AC,BD垂直于AC交CA的延长线于点D,其中∠ABD=30°,则∠ABD=60°,从而∠BAC=180°-60°=120°综上,顶角度数为60°或120°,D选项正确试题难度:二颗星知识点:等腰三角形的性质6. 在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.15答案:C解题思路:先根据题意做出图形,如图:设AD长为x,BC长为y则CD的长为x,AB为2x,则中线BD分三角形周长两部分为x+2x=3x,x+y从而应有两种情况,即:或解得或最后要检验:最短边+较短边>第三边,此题经过检验,均符合题意,所以底边长为7或11,答案为C试题难度:二颗星知识点:等腰三角形的性质7. 在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A.70°B.50°C.70°或20°D.20°答案:C解题思路:根据题意作图:题干中说的是AB的中垂线与AC所在直线相交所得的锐角为50°,所以分两种情况:(1)如图与AC线段相交所得锐角为50°,即∠1=50°,则此时∠A=40°,∠B=∠C=(180°-40°)/2=70°(2)如图与AC线段所在直线相交所得锐角为50°,即∠1=50°,则此时∠BAE=40°,所以,∠B=∠C=(180°-140°)/2= 20°综上,C选项正确.试题难度:三颗星知识点:等腰三角形的性质8.等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A.B.6D.6或答案:D解题思路:设腰长为x,底边长为y,因不知腰长与底边长的大小关系,注意分类讨论:(1)x>y时,此时有以下方程组成立:,解得:(2)x<y时,此时有以下方程组成立:,解得:验证:最短边+较短边>最长边,由4+4>6知第一种情况成立,即:腰长为6. 由+>知第二种情况也成立,即:腰长为. 综上:答案为D试题难度:三颗星知识点:等腰三角形的性质9.已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A.2个B.4个C.6个D.8个答案:C解题思路:此题属于腰或底边不确定时,分两种情况:(1)线段AB为腰时,此时如图:有等腰直角三角形ABC,等腰直角三角形ABD,等腰直角三角形ABG,等腰直角三角形ABF (2)线段AB为底边时,此时如图:有等腰三角形ABI,有等腰三角形ABK 综上共有6个,从而答案为C试题难度:三颗星知识点:等腰三角形的性质10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()A.15B.15或7C.7D.11答案:C解题思路:此题属于腰或底边不确定时,分两种情况讨论(1)7为底时,腰=(29-7)/2=11 (2)7为腰时,底=29-7-7=15,此时7+7=14小于15不满足构成三角形的条件,舍去正确答案:C试题难度:二颗星知识点:等腰三角形的性质11. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()A.30°B.80°C.30°或80°D.90°答案:C解题思路:此题属于角不确定时(1)顶角与底角之比为1:4,由三角形内角和定理可得底角+底角+顶角=180°求得底角=80°(2)底角与顶角之比为1:4,同样可求得底角=30°正确答案:C试题难度:二颗星知识点:等腰三角形的性质12.等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()A.50°B.40°或20°或70°C.70°或20°D.40°或70°答案:B解题思路:此题属于高的位置关系不确定时,如图图一不符合实际,舍去正确答案:B试题难度:三颗星知识点:等腰三角形的性质。

初中分类讨论专题训练(含详解)

初中分类讨论专题训练(含详解)

分类讨论专题训练1.已知,且,则的值等于()A. 或B. 或C. 或D. 或2.已知,,则的值等于()A. 或B. 或C.D.3.在同一直线上有、、、四点,已知,,且,求的长.4.如图,点在射线上,若,,点是线段的中点,则的长为________.5.在直线上有,,三个点,已知,点是的中点,且,求线段的长.6.如图,将一条长为的卷尺铺平后沿着图中箭头的方向折叠,使得卷尺自身的一部分重合,然后在重合部分沿与卷尺的边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度比为,则折痕对应的刻度可能的值有________.7. 阅读下面材料并解决有关问题:我们知道:.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值).在实数范围内,零点值和可将全体实数分成不重复且不遗漏的如下种情况:①;②;③.从而化简代数式可分以下种情况:①当时,原式;②当时,原式;③当时,原式.综上讨论,原式.通过以上阅读,请你解决以下问题:1. 化简代数式.2.求的最大值.8. 如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为(大于)秒.1.点表示的数为________.2.当点运动到达点处时运动时间为________秒.3.运动过程中点表示的数的表达式为________.(用字母的式子表示).4.求当等于多少秒时,之间的距离为个单位长度.9. 如图,已知平分,射线在的内部,.1. 求的度数.2.作射线,使射线是三等分线,则的度数为________.10. 甲、乙两人从、两地同时出发,沿同一条路线相向匀速行驶,已知出发后经小时两人相遇,相遇时乙比甲多行驶了千米,相遇后再经小时乙到达地.1.甲,乙两人的速度分别是多少?2.两人从、两地同时出发后,经过多少时间后两人相距千米?11. 如图,已知直线上有一点,点、同时从出发,在直线上分别向左、向右做匀速运动,且、的速度之比是:,设运动时间为.1.当时,,此时,点的运动速度是________,点运动的速度是________.2.若点为直线上一点,且,求的值.3.如图,在的条件下,若、同时按原速向左运动,再经过几秒,?参考答案1.【答案】B【解析】解:,时,,则;时,,则.故选B.【知识点】绝对值的定义、综合-分类讨论2.【答案】B【解析】解:,,,,,当,时,,,,;当,时,,,,;故选B.【知识点】代入参数、综合-分类讨论3.【答案】或或【解析】解:依题意,有以下种情况,情况如图,,,设,则,,,,,.情况如图,,,设,则,,,,,,.情况如图,即,,,,,,,,.情况如图,,即,,,,,,,,.综上所述或或.【知识点】数轴上点运动与距离问题、综合-分类讨论4.【答案】或【解析】解:当点在点的左边时,,所以,当点在点的右边时,,所以.故答案为或.【知识点】线段的计算、综合-分类讨论5.【答案】见解析【解析】解:如图.设,则.是的中点,;如图.设,则.是的中点,.综上,当在的延长线上时,.当在的延长线上时,.【知识点】线段的计算、综合-分类讨论6.【答案】【解析】解:三段长度由短到长的比为,三段长度分别为:.①当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;②当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;③当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;④当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;⑤当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;⑥当剪切处右边上部分的长度为,剪切处左边的卷尺为时,折痕处为:;综上所述,折痕对应的刻度有种可能:.【知识点】线段的计算、综合-分类讨论7.(1)【答案】见解析【解析】当时,;当时,;当时,.【知识点】绝对值分类讨论化简【解析】当时,原式,当时,原式,当时,原式,则的最大值为.点睛:本题考查了绝对值的意义,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,即.【知识点】一元一次不等式的概念、综合-分类讨论8.(1)【答案】【解析】解:.【知识点】绝对值化简8.(2)【答案】【解析】解:(秒).【知识点】绝对值化简、动点问题8.(3)【答案】【解析】解:点每秒钟运动个单位,即秒钟运动个单位,起点为,则表达式为.【知识点】动点问题8.(4)【答案】见解析【解析】解:当点在点的左边时,,则秒,当点在点的右边时,,则秒,综上所述,当等于或者秒时,、之间的距离为个单位长度.【知识点】动点问题、综合-分类讨论【解析】因为,平分,可得.又,故可得.【知识点】角平分线、角的计算9.(2)【答案】或【解析】解:分两种情况求解即可.①当时,.,.②当时,.,.【知识点】角的计算、综合-分类讨论10.(1)【答案】见解析【解析】解:设甲的速度为千米/时,则,解得,,,即甲的速度为千米/时,乙的速度为千米/时.【知识点】一元一次方程的应用-行程10.(2)【答案】见解析【解析】解:设经过小时后两人相距千米,则或,解得,或,即经过小时或小时后两人相距千米.【知识点】一元一次方程的应用-行程、综合-分类讨论11.(1)【答案】见解析【解析】解:设点的运动速度为,点运动的速度为,由题意,得,解得:,即点的运动速度是,点运动的速度是.故答案为:.【知识点】一元一次方程的其他应用、动点问题11.(2)【答案】见解析【解析】解:如图所示,当在线段之间时,,,,设,则,,,;如图所示,当在的延长线上时,,,,设,则,,,.答:或.【知识点】线段的计算、综合-分类讨论11.(3)【答案】见解析【解析】解:设,同时按原速向左运动,再经过秒,,由题意,得或,解得:或.答:再经过秒或秒,.【知识点】一元一次方程的其他应用、动点问题。

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。

A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.若m 为实数,则点P (m -2,m+2)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.相交两圆公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于( )A .1B .2或6C .7D .1或77.如果关于x 的方程210x mx ++=的两个根的差为1,那么m 等于( )A .2±B .3C .5D .68.平面上A 、B 两点到直线l 的距离分别是2323与则线段AB 的中点C 到直线l 的距离是( )A .2B 3C .23D .不能确定 9.已知22(3)49x m x +-+是完全平方式,则m 的值是( )A .-3B .10C .-4D .10或-410.方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定二、填空题1.已知AB 是⊙O 的直径,AC 、AD 是弦,且AB =2,AC 2,AD =1,则∠CAD =_______.A BC 2.已知AB 、CD 是⊙O 的两条平行线,AB =12,CD =16,⊙O 的直径为20,则AB 与CD 之间的距离为________.3.方程560x x x ⋅-+=的最大根与最小根的积为______.4.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于________.5.已知ΔABC 中,∠C =90°,AC =3,BC =4,分别以A 和C 为圆心作⊙A 和⊙C ,且⊙C 与直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,那么r 的取值范围是______. 6.已知2225,7x y x y +=+=,则x y -的值等于_______.7.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第_____象限.8.两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .9.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为10.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为11.=+=-+-a 349332无解,求x x ax x 12. ==--+a 2112无解,求x ax13.若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为_____________.14.一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为_____三、解答题1.已知实数a ,b 分别满足221122,22,a a b b a b+=+=+求的值. 2.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同学们计算剪下的等腰三角形的面积.3.在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且Ad 与DC 的长度为27120x x -+=方程的两个根,⊙O 是△ABC 的外接圆,如果BD 长为(0)a a >.求△ABC 的外接圆⊙O 的面积.ME AB CDN 4.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y =x 上方及直线y=-x+2a 上方部分的面积为S ,(1)求12a =时,S 的值.(2)a 在实数范围内变化时,求S 关于a 的函数关系式.5.在直角坐标系XOY 中,O 为坐标原点,A 、B 、C 三点的坐标分别为A (5,0),B (0,4),C (-1,0),点M 和点N 在x 轴上,(点M 在点N 的左边)点N 在原点的右边,作MP ⊥BN ,垂足为P (点P 在线段BN 上,且点P 与点B 不重合)直线MP 与y 轴交于点G ,MG =BN. (1)求经过A 、B 、C 三点的抛物线的解析式.(2)求点M 的坐标.(3)设ON =t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等腰三角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.6.在直角坐标系xoy 中,一次函数32y =+的图象与x 轴交于点A ,与y 轴交于点B .(1)以原点O 为圆心的圆与直线AB 切于点C ,求切点C 的坐标.(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.9:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。

八年级数学分类讨论专题

八年级数学分类讨论专题

八年级数学分类讨论专题(每题5分,满分100分) 姓名 1、一个等腰三角形的两边长分别为2和5,则它的周长为 2.已知等腰三角形的一个内角为70°,则另外两个内角的度数分别是 3.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为4.等腰三角形的一个内角为70°,那么一腰上的高与底边所成的角等于___ __.5。

在一直线上有A 、B 、C 三点,AB=5,BC=8,则AC=____ ____.6。

∣x ∣=3,∣y ∣=2,则x-y 的值为____ ____.7.若23+a 表示一个整数,则整数a 可以取的值是____ ____. 8.如果三条长分别为3、x 、5的线段恰好能组成一个直角三角形,那么x 等于__ ___.9。

已知x 5-x =1,且x 为整数,则x 可以取___ _____.10.在等腰三角形ABC 中,AB =5,BC =6,则△ABC 的面积为_____ ___.11.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 .12. 若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为____________.13。

在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____ ___.14.有一直角三角形,两直角边长分别为6和8,现在要将它扩充成等腰三角形,且扩充部分是以8为直角边的直角三角形,则扩充后等腰三角形的周长是15。

一次函数y=kx+b ,当-3≤x ≤1时,对应的 y 值为1≤y ≤9 ,则此函数解析式是16.如图,直线y=2x+3与x 轴相交于点A,与y 轴相交于点B.过B 点作直线BP 与x 轴相交于P,且使OP=2OA , 则ΔABP 的面积是 。

17.点A 的坐标为(1,1),点B 是x 轴上一点,且△OAB 为等腰三角形,则点B 的坐标是 。

中考数学专题:例+练——第8课时 分类讨论题(含答案)

中考数学专题:例+练——第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“分类讨论”专题练习1.已知AB 是圆的直径,AC 是弦,AB =2,AC =2,弦AD =1,则∠CAD = .2. 若(x 2-x -1)x +2=1,则x =___________.3. 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为_______.4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b(a>b),则此圆的半径为( ) A.2a b+ B.2a b- C.2a b +或2a b- D. a+b 或a-b5.同一平面上的四个点,过每两点画一直线,则直线的条数是( ) A.1 B.4 C.6 D.1或4或66. 若||3,||2,,( )a b a b a b ==>+=且则A .5或-1B .-5或1C .5或1D .-5或-1 7.已知抛物线y =ax 2+bx +c 经过点(1,2).(1)若a =1,抛物线顶点为A ,它与x 轴交于两点B 、C ,且△ABC 为等边三角形,求b 的值.(2)若abc =4,且a ≥b ≥c ,求|a |+|b |+|c |的最小值.8.长宽都为整数的矩形,可以分成边长都为整数的小正方形。

例如一个边长2⨯4的矩形:可以分成三种情况: (1)(2)一个长宽为3⨯6的矩形,可以怎样分成小正方形,请画出你的不同分法。

9.已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.分成两个正方形,面积分别为4,4分成8个正方形,面积每个都是1分成5个正方形,1个面积为4,4个面积是110.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A C ,在坐标轴上,60cm OA =,80cm OC =.动点P 从点O 出发,以5cm/s 的速度沿x 轴匀速向点C 运动,到达点C 即停止.设点P 运动的时间为s t . (1)过点P 作对角线OB 的垂线,垂足为点T .求PT 的长y 与时间t 的函数关系式,并写出自变量t 的取值范围;(2)在点P 运动过程中,当点O 关于直线AP 的对称点O '恰好落在对角线OB 上时,求此时直线AP 的函数解析式; (3)探索:以A P T ,,三点为顶点的APT △的面积能否达到矩形OABC 面积的14?请说明理由.答案:1. 15°或105°2. 2、-1、0、-23. 腰长6底边9或腰长8底边54.C5.D6.C7. 解:⑴由题意,a +b +c =2, ∵a =1,∴b +c =1 抛物线顶点为A (-b 2,c -b 24)设B (x 1,0),C (x 2,0),∵x 1+x 2=-b ,x 1x 2=c ,△=b 2-4c >0 ∴|BC|=| x 1-x 2|=| x 1-x 2|2=(x 1+x 2)2-4 x 1x 2=b 2-4c ∵△ABC 为等边三角形,∴b 24 -c = 32b 2-4c即b 2-4c =23·b 2-4c ,∵b 2-4c >0,∴b 2-4c =2 3∵c =1-b , ∴b 2+4b -16=0, b =-2±2 5 所求b 值为-2±2 5⑵∵a ≥b ≥c ,若a <0,则b <0,c <0,a +b +c <0,与a +b +c =2矛盾. ∴a >0. ∵b +c =2-a ,bc =4a∴b 、c 是一元二次方程x 2-(2-a )x +4a =0的两实根.∴△=(2-a )2-4×4a≥0,∴a 3-4a 2+4a -16≥0, 即(a 2+4)(a -4)≥0,故a ≥4. ∵abc >0,∴a 、b 、c 为全大于0或一正二负.①若a 、b 、c 均大于0,∵a ≥4,与a +b +c =2矛盾; ②若a 、b 、c 为一正二负,则a >0,b <0,c <0, 则|a |+|b |+|c |=a -b -c =a -(2-a )=2a -2, ∵ a ≥4,故2a -2≥6当a =4,b =c =-1时,满足题设条件且使不等式等号成立. 故|a |+|b |+|c |的最小值为6. 8.分7种情况画图9.解:(1)由()332)1(+⋅=⋅-m m ,得m =-,因此k =(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =,BC =因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B ,故不符题意.当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF ,12AD m =,由点(1A --,,得点11(1)D m --,.因此()()32323111=+-+-m m ,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形.如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH mm =>,则2DH =,由点(10)C -,,得点22(1)D m -+, 因此()323122=⋅+-m m .解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形.如图3,当过点C 作AB 同理可得,点(2D --,,四边形ABCD 是梯形. 综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或(2D --,. 图1图2 图310.解:(1)在矩形OABC 中,60OA =,80OC =,100OB AC ∴===PT OB ⊥,Rt Rt OPT OBC ∴△∽△. PT OP BC OB ∴=,即560100PT t=,3y PT t ∴== 当点P 运动到C 点时即停止运动,此时t 的最大值为80165=.所以,t 的取值范围是016t ≤≤.(2)当O 点关于直线AP 的对称点O '恰好在对角线OB 上时,A T P ,,三点应在一条直线上(如答图2).AP OB ∴⊥,12∠=∠. Rt Rt AOP OCB ∴△∽△,OP AOCB OC∴=. 45OP ∴=.∴点P 的坐标为(450),设直线AP 的函数解析式为y kx b =+.将点(060)A ,和点(450)P ,代入解析式,得60045.a b k b =+⎧⎨=+⎩,解这个方程组,得4360.k b ⎧=-⎪⎨⎪=⎩, ∴此时直线AP 的函数解析式是4603y x =-+.(3)由(2)知,当4595t ==时,A T P ,,三点在一条直线上,此时点A T P ,, 不构成三角形.故分两种情况:(i )当09t <<时,点T 位于AOP △的内部(如答图3).过A 点作AE OB ⊥,垂足为点E ,由AO AB OB AE =可得48AE =.APT AOP ATO OTP S S S S ∴=--△△△△211160544843654222t t t t t t =⨯⨯-⨯⨯-⨯⨯=-+. 若14APT OABC S S =△矩形,则应有26541200t t -+=,即292000t t -+=.此时,2(9)412000--⨯⨯<,所以该方程无实数根.所以,当09t <<时,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.(答图2)(答图1)(ii )当916t <≤时,点T 位于AOP △的外部.(如答图4)此时2654APT ATO OTP AOP S S S S t t =+-=-△△△△.若14APT OABC S S =△矩形,则应有26541200t t -=,即292000t t --=.解这个方程,得192t +=,2902t -=<(舍去).由于288162525>=,991722t +∴=>=.而此时916t <≤,所以92t +=也不符合题意,故舍去. 所以,当916t <≤时,以A P T ,,为顶点的APT △的面积也不能达到矩形OABC 面积的14. 综上所述,以A P T ,,为顶点的APT △的面积不能达到矩形OABC 面积的14.。

相关文档
最新文档