晶体的感应双折射
双折射原理

双折射原理
双折射原理是指当光线射入具有非正交晶轴的晶体时,将会发生折射现象。
在晶体内部,光线将会分裂为两束光线,传播方向不同,并且具有不同的折射率。
这种现象称为双折射。
双折射是由晶体的非均匀性引起的,晶体的非正交晶轴导致它的结构不均匀,从而导致光线以不同的速度在不同的方向上传播。
根据双折射原理,光线在进入晶体时会被分成两束光线,分别称为普通光和非普通光。
普通光是垂直于晶体轴的光线,它的传播速度和折射率与在无折射时相同。
非普通光是平行于晶体轴的光线,它的传播速度和折射率与普通光不同。
因此,当光线通过晶体时,它们的传播方向和速度会发生改变。
双折射原理在实际应用中有着广泛的应用。
例如,在光学仪器如显微镜和光学仪表中,双折射原理被用于制造偏光器件,如偏光片和偏光棱镜。
通过利用晶体的双折射性质,可以选择性地分离和控制光线的偏振状态。
此外,双折射原理在材料科学和工程领域也有很多应用。
例如,在材料的应力分析中,通过观察材料中光线的双折射现象,可以判断材料内部的应力分布情况。
双折射原理在光纤通信领域也有应用,例如制造偏光保护器和光纤光栅等。
总之,双折射原理是光学领域的重要原理之一,它描述了光线在晶体中发生双折射现象的规律。
这个原理的应用涉及到光学仪器、材料科学和工程等领域,对于理解和应用光学现象具有重要的意义。
晶体的双折射现象(精)

•
光轴
• •
o光
e光
o光 e光
3. 光轴平行晶体表面,自然光垂直入射
o光
• •
e光
• •
• •
e光
• •
o光
•
此时,o, e 光传播方向相同,但传播速度不同。从晶体出
射后,二者产生相位差。
三. 晶体偏振器
no (1.658) n(1.55) ne (1.486)
1. 尼科耳棱镜
••
•
•
2. 渥拉斯顿棱镜
•
光轴 o光
•
••
••
o光
e光
e光
o光Biblioteka ••上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
负晶体 no ne
o光 ie,o
••
e光
加拿大树胶
••
e
o
•
• e光 o光
3. 波晶片(光轴平行于表面且厚度均匀的晶体)
自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。
§14.13 晶体的双折射现象
一. 双折射现象
1.双折射
双折射现象 一束光入射到
各向异性的介质后出现两
s
束折射光线的现象。
方解石
R2
R1
2. 寻常光和非寻常光
两折射光线中有一条始终在入 射面内,并遵从折射定律,称 为寻常光,简称 o 光
i n1
n2
e o
e光
o光
另一条光一般不遵从折射定律,称非常光,简称 e 光
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生双折射,该 方向称为晶体的光轴。 例如 方解石晶体(冰洲石)
晶体的双折射

惠更斯研究双折射现象提出:在各向异性的晶体中,子波源会
同时发出o光、e光两种子波。
光轴
o光的子波,各方向传播的速度相同为
v0,点波源波面为球面,振动方向始终 垂直其主平面。(如图)
··· v t ·· ·· ·· ·· · ·· ·· · ·· ·· ·· ·
o
o光只有一个光速vo
一个折射率no
c n0 v0
晶体的双折射
有些透明媒质,如玻璃、水、肥皂液等,不论光沿哪个 方向,传播速度都是相同的,媒质只有一个折射率,这样的 媒质称为光学各向同性媒质。 同时还存在另一类媒质,主要是透明晶体物质,如方解 石(化学成分是CaCO3)、石英、云母、硫磺等,光在其中
传播时,沿着不同方向有不同的传播速率,这样的媒质
方解石晶体的光轴方向就是从它的一个钝隅所作的等分角 线方向,即与钝隅的三条棱成相等角度的那个方向。
o光振动方向垂直于该光线(在晶体中)与光轴组成的平面。 e 光振动方向平行于该光线(在晶体中)与光轴组成的平面。
若光轴在入射面内,实验发现:o光、 e光均在入射面
内传播,且振动方向相互垂直。
若沿光轴方向入射,o光和e光具有相同的折射率和相同
正晶体 :
ne> no (e< o)
如石英、冰等。
负晶体 :
ne< no (e>o)
光轴 vet 光轴
如方解石、红宝石等。
vot
子波源
vot
vet
子波源
正晶体 (vo > ve)
负晶体 (vo < ve )
在晶体中o光和e光以不同的速率传播。o光的速率在各 个方向上是相同的,所以在晶体中任意一点所引起的子波 波面是一球面。e光的速率在各个方向上是不同的,在晶 体中任一点所引起的子波波面可以证明是旋转椭球面。
晶体双折射原理

晶体双折射原理
两种不同折射率的光波通过一个折射率为n2的介质时,两种不同折射率的光波将发生干涉,这时会产生一个新的介质界面。
这个界面是由两种折射率不同的光波组成的。
这种现象叫晶体双折射。
晶体双折射现象在光学上称为双折射,它是由两种折射率不同的光波在同一介质中相互作用产生的,是一种光学现象。
在晶胞中,每一晶胞由两个平行排列、大小相同、方向相同的晶粒组成。
晶体是由许多晶胞组成的,每一个晶胞中都有一个晶粒,它从中心到边界依次排列,相邻晶胞之间通过一个特定的空间角度相连接。
一个晶粒与另一个晶粒之间在空间上是互相垂直的。
晶体中任意两个晶粒间都存在着一种特殊关系:当光波从晶体中某一方向射入晶体时,当入射角大于某一特定值时,晶体中两个晶粒就会发生干涉。
如果入射角大于某一特定值时,在入射角和入射方向都相同的情况下,晶体中每一晶粒都会与另一晶粒发生干涉,同时出现两个折射光线:当入射角大于某一特定值时,折射光线互相平行。
—— 1 —1 —。
晶体的感应双折射教材

l
α---介质的旋光本领称旋光率 石英的旋光率是色散的,见图
②在某些液体中,光振动旋转角度还与浓度成正比:
cl
c为溶液浓度,由此可以测量浓度
③不同的介质中,光振动转动的方向还不同, 即有左旋与右旋之分 如:葡萄糖为右旋旋光介质 果糖为左旋介质 石英既可右旋,也可左旋 石英之左旋或右旋与其晶体结构对称性有关, 左右旋之结构是镜像对称的
对于对称中心晶体,应有
ij Ej ij (Ej )
ij 0
ij 与晶体对称性有关
对具体晶体而言,18个分 量中只有几个分量不为0
即具有对称中心的晶体不存在线性电光效应
仍然以主折射率椭球 为例,当外加电场E后,坐标轴与折射率椭球主轴就 不再平行,依然有6个分量:
1
n12
x12
1 n22
晶体各向异性
D 0E 0e E 0r E rij n2
外场作用下, r 必定发生变化,相应的折射率n也发生变化,
则折射率椭球形状和趋向、主折射率都会变化
分类:
线性电光效应:
所加电场大小分:
n n0 aE bE2
非线性电光效应: n n n0 aE bE2
线性 非线性效应
2 63E3x1x2
1
x2
x1,x2,x3已不再是新椭球主轴,但是若将x1,x2旋转
45°,即图中x1’,x2’,则x1’,x2’,x3’就是此新折射率
椭球之主轴坐标系
x12 x22 x32 1
n2 n 2 n2
x1
x2
x3
x3 x3
x2
(x1, x2)
(x1, x2)
x1
晶体双折射现象的原因和现象

晶体双折射现象的原因和现象晶体双折射现象,听起来好像很高深莫测,其实呢,它就是指一块晶体在不同的方向上看,会有不同的颜色。
这可不是闹着玩儿的,它可是科学家们研究了好久才搞明白的事情哦!
那么,为什么晶体会双折射呢?这个问题可不简单,要我说,它就像是一个人穿了一件衣服,但是从不同的角度看,这件衣服的颜色就会发生变化。
晶体也是这样,它穿上了一种叫做“光栅”的衣服,但是从不同的角度看,这件衣服的颜色就会发生变化。
这个现象最早是在18世纪的时候被发现的,当时科学家们还不知道这是怎么一回
事呢。
后来,随着科学技术的发展,人们逐渐搞明白了这个现象的原因。
原来,这是因为晶体的结构有两种不同的模式,就像是两个人长得有点像,但是却有一些细微的差别。
当光线通过晶体的时候,这些差别就会被放大,导致我们看到了不同颜色的现象。
那么,晶体双折射现象有哪些应用呢?其实呀,它的应用可广泛了呢!比如说,我们可以用它来制作显微镜、望远镜等光学仪器;还可以用它来制造激光器、光纤通信等高科技产品。
所以说,晶体双折射现象可是科学家们的宝贝哦!
晶体双折射现象虽然看起来很复杂,但是只要我们用心去理解,就会发现它其实是非常有趣的一个现象。
就像一个人穿了一件衣服,从不同的角度看就会有不同的效果一样,晶体也会因为结构的不同而呈现出不同的颜色。
希望我们都能够对这个神奇的现象有一个更深入的了解哦!。
晶体双折射现象的原因和现象

晶体双折射现象的原因和现象晶体双折射现象,听起来好像很高大上,其实呢,就是一块玻璃或者水晶,透过光线看,会有两条不同的光线相互交叉,就像眼睛里有两只眼睛一样。
这个现象啊,不仅有趣,还有很多科学道理呢。
咱们来聊聊为什么会出现晶体双折射现象吧。
这是因为晶体的结构有点像一个迷宫,光线在进入晶体的时候,不是一条直线走的,而是会分成两条路,分别沿着不同的路径传播。
当光线从一个方向射入晶体后,再从另一个方向出来时,就会发生折射,而且还会互相干扰,形成双折射现象。
那么,为什么有些晶体会发生双折射现象呢?这是因为晶体的结构不同。
比如说,一些常见的水晶饰品,如水晶球、水晶瓶等,就是因为它们的结构比较特殊,容易发生双折射现象。
而一些普通的玻璃杯子啊,就不会有这个现象了。
接下来,咱们来说说晶体双折射现象有哪些有趣的应用吧。
其实啊,这个现象在科学实验室里经常被用来研究光的性质和行为。
另外呢,一些光学仪器啊,如显微镜、望远镜等,也利用了这个原理来放大物体的图像。
还有一些装饰品啊、玩具啊等等,也会利用这个原理来制造出一些有趣的效果。
最后呢,咱们再来聊聊晶体双折射现象背后的科学道理吧。
其实啊,这个现象背后涉及到很多物理学的知识,如光的波动性和粒子性、晶体的结构和性质等等。
要想真正理解这个现象背后的科学道理啊,还需要学习更多的知识才行。
总之呢,晶体双折射现象虽然看起来很神奇,但实际上只是物理学的一个小小分支而已。
只要我们用心去学习和探索,就能发现更多有趣的事情哦!。
晶体的双折射现象(精)

方解石
光轴
o光
e光
o光
e光
3. 光轴平行晶体表面,自然光垂直入射
o光
e光
e光
o光
此时,o, e 光传播方向相同,但传播速度不同。从晶体出 射后,二者产生相位差。
三. 晶体偏振器 1. 尼科耳棱镜 2. 渥拉斯顿棱镜
no (1.658) n(1.55) ne (1.486)
光轴
v o t
v e t
( 平行光轴截面 )
( 平行光轴截面 )
ve
vo
( 垂直光轴截面 )
ve
vo
( 垂直光轴截面 )
二. 单轴晶体中的波面 ( 惠更斯作图法(ve>vo) )
1. 光轴平行入射面,自然光斜入射负晶体中 B
光轴
A
光轴
B'
方解石
o光 e光
2. 光轴平行入射面,自然光垂直入射负晶体中
光轴
o光
负晶体 no ne
加拿大树胶
o光 e光
e光 o光
o光 ie,o e光
e光
e
上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
o
o光
3. 波晶片 (光轴平行于表面且厚度均匀的晶体) 自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。 出射 o 光 e 光的相差为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 n2
x1
1 no 2
63E3
1 n2
x2
1 no 2
63E3
11
n2 x3
ne2
n x1
no
no3 2
63E3
63E3
1 no2
1no2 63E3
1/2
1
1 2
no2
63
E3
n x2
no
no3 2
63E3
n x3
ne
讨论
由于nx1’ ≠nx2’,∴KDP晶体加电场后就由单轴晶体变为双轴晶体 1、未加电场时,单轴晶体主轴坐标系为 x1,x2,x3,而(x1x2)内截面为一圆
11 12 13
21
22
23
ij
31 41
32 42
33 43
51
52
53
61 62 63
11 12 13
21
3
ij E j
j 1
31 41
51
22 32 42 52
23 33 43 53
E1 E2 E3
61 62 63
n3 ne
x12 no2
x22 no2
x32 ne2
2 41E1x2 x3
2 52E2 x3x1
2 63E3x1x2
1
一、纵向电光效应
纵向电光效应是指外加电场与 光线方向平行的电光效应
E1 E2 0, E3 0
此关系代入上式,
则折射率椭球方程简化为
x12 x22 no2
x32 ne2
1 n2
6
x1x2
1
主坐标轴与折射率椭球主轴一致时则变为3个分量
x12 x22 x32 1 n12 n22 n32
当晶体加上电场E后折射率各分量都有一个附加折射率变化,且与E为线性关系
1 n2
i
3
ij E j
j 1
i1E1 i2 E2 i3E3
ij ---电光系数,有18个分量,矩阵表示
x1 x1 cos 45 x2 sin 45
1 2
x1 x2
x1 x1
x2 x1 sin 45 x2 cos 45
1 2
x1 x2
45o
x3
x3 x3 代入前一式则得
o
x3
1
no
2
63
E3
x12
1 no 2
63
E3
x22
x32 ne2
1
x2
x2
将()式与()式比较,可得
2
no3 63V
这是由于电光效应引起的位相延迟称电光延迟。
x1 x1 x2
E3 x3
x2
当△ =π时,晶体的作用就是将偏振面旋转90°
----这相当于一个λ/2波片,此所加电压为半波电压V π
V
2no3 63
半波电压与晶体厚度无关
电光延迟可表示为
V
V
KDP晶体
no 1.5064, 63 1.06 1012 m /V
2 63E3x1x2
1
x2
x1,x2,x3已不再是新椭球主轴,但是若将x1,x2旋转
45°,即图中x1’,x2’,则x1’,x2’,x3’就是此新折射率
椭球之主轴坐标系
x12 x22 x32 1
n2 n 2 n2
x1
x2
x3
x3 x3
x2
(x1, x2)
Hale Waihona Puke (x1, x2)x1
O
x1
坐标转换
当 694.3nm 红宝石激光时
V 9670V
二、横向电光效应
横向电光效应是指外加电场与光线方向垂直的电光效应
切割:KDP---45°-z切割,按x1‘,x2’平行方向切割,
相当于两侧面分别与x1‘,x2’垂直
电场:仍然加在x3轴方向,E1=E2=0,E3≠0
光波:沿x2’方向传播
两个振动电矢量对应的折射率为nx1’ 和nx3=ne
对于对称中心晶体,应有
ij Ej ij (Ej )
ij 0
ij 与晶体对称性有关
对具体晶体而言,18个分 量中只有几个分量不为0
即具有对称中心的晶体不存在线性电光效应
仍然以主折射率椭球 为例,当外加电场E后,坐标轴与折射率椭球主轴就 不再平行,依然有6个分量:
1
n12
x12
1 n22
晶体各向异性
D 0E 0e E 0r E rij n2
外场作用下, r 必定发生变化,相应的折射率n也发生变化,
则折射率椭球形状和趋向、主折射率都会变化
分类:
线性电光效应:
所加电场大小分:
n n0 aE bE2
非线性电光效应: n n n0 aE bE2
线性 非线性效应
n
n x1
nx3
no
no3 2
63E3
ne
2
no
ne l
1 2
no3 63
l d
V
选择 no ne l k,则半波电压为
V
no3 63
d l
∴横向电光效应之半波电压与l,d有 关,可以通过调节晶体几何尺寸来 降低半波电压
三、电光效应的应用
光学调制---用改变光波的振幅、频率、相位、强度、偏振状态等参数来实现信 息传输的方法
x22
1 n32
x32 2
ij
ij E j xi x j
1
例KDP晶体:
1、4度对称轴:晶体绕x3轴旋转π/2,晶体结构不变 x1,x2是2度对称轴:线x1或x2轴转π ,晶体结构不变
2、为单轴晶体,42m系:γ41= γ52≠0, γ63≠0,其余为0
n1 n2 no
KDP线性电光效应折射率椭球方程
例:将激光束作为载波,把欲传播的信息加载于激光辐射,此激光束起携 带低频信号的作用,称为载波 起控制作用的低频信号称为调制信号
因此与上述相应的有振幅调制,频率调制,相位调制,强度调制等, 亦即用调制信号去改变载波束的振幅,频率,相位,强度 ∴有内调制,外调制之分
第五章 晶体的感应双折射
当晶体在外场(电场、磁场、应力场)作用下,结构将 产生变化,因此光波在其间的传播规律也将发生变化, 产生与外场相关的双折射现象---晶体的感应双折射
§5.1 电光效应 §5.2 磁光效应 §5.3 声光效应(弹光效应)
§5.1 电光效应
电光效应---外电场作用下产生的双折射效应
加电场后变为双轴晶体,x3不再是光轴,主轴坐标系为x1‘,x2’,x3‘ ,而 ( x1‘x2’ )内截面为一椭圆
2、未加电场时,光波沿x3轴(光轴)传播,o,e二电矢量速度相等,位相延迟
△ =0
加电场后,x3轴不再是光轴,两电矢量传播速度不等,产生了位相延迟:
2
n n
x2
x1
d
2
no3 63E3d
考点 电场方向与光波方向分:
纵向电光效应:电场方向与光波方向一致
横向电光效应:电场方向与光波方向垂直
§5.1.1 pockels效应---线性电光效应
折射率椭球通式有6个分量
1 n2
1
x12
1 n2
2
x22
1 n2
3
x32
2
1 n2
4
x2 x3
2
1 n2
5
x3 x1
2