EDA电路仿真
EDA 实验一 简单门电路设计与仿真

海南师范大学物理与电子工程学院实验报告(2020----2021学年第 1学期)课程名称:EDA技术实验实验名称:简单门电路设计与仿真专业班级:学号:姓名:实验时间:2020年10月14日(第七周)注:报告内容根据具体实验课程或实验项目的要求确定,一般包括实验目的、实验仪器、原理摘要、数据记录及结果分析等。
如纸张不够请自行加纸。
一、实验目的1、熟悉QuartusⅡ6.0或QuartusⅡ9.0软件的使用方法2、通过实验掌握组合逻辑电路的EDA原理图输入设计法,通过电路的仿真和硬件验证,学会对实验板上的FPGA/CPLD进行编程下载,进一步了解门电路的功能。
二、实验内容1、为本项工程设计建立文件夹(文件名不能用中文)2、输入设计项目和存盘(1)打开原理图编辑窗口(2)编辑4选1数据选择器的原理图(3)文件存盘以mux41.bdf为文件名保存在工程目录中。
(4)建立工程。
(5)编译3、仿真4、引脚锁定5、编程下载与硬件验证三、实验条件1、开发软件: QuartusII 9.0。
2、实验设备:GW48-PK2++型 EDA实验开发系统3、拟用芯片:EP1C6Q240C8N。
四、实验设计1、系统的原理框图真值表表1-1 4选1数据选择器的真值表输入 输出 D S 1 S 0 Y D 0 0 0 D 0 D 1 0 1 D 1 D 2 1 0 D 2 D 311D 3逻辑表达式013012011010S S D S S D S S D S S D Y +++=2、VHDL 源程序输入数据4选1 数据选择器Y 输出信号D 0 D 1 D 2 D 3S 1 S 0选择控制信号图1-1 4选1数据选择器示意框图3、管脚锁定信号名实验箱位置锁定目标器件引脚(EP1C6Q240)D0键5PIN_237键5键6PIN_238D2键7PIN_239D3键8PIN_240S0键1PIN_233S1键2PIN_234Y D1PIN_8备注验证设备:GW48-PK2实验开发系统五、实验结果及总结1、系统时序仿真情况2、硬件验证情况3、实验心得键8 (D3)亮灯时,按下键2,键1(S1,S0)则输出Y(D1)亮。
射频EDA仿真软件介绍

射频EDA仿真软件介绍射频EDA(Electronic Design Automation)是一种用于射频芯片设计和仿真的软件工具,它通过电磁场仿真和电路仿真等功能,可以帮助设计者优化射频电路的性能和可靠性。
本文将介绍几款常用的射频EDA仿真软件。
1. ADS(Advanced Design System)ADS是美国Keysight(前身为安捷伦科技)推出的一款强大的射频和微波电路设计和仿真工具。
它包含了多种电路仿真方法,如基于S参数的线性仿真、基于混合EM的电磁仿真和基于直接时间域的高速数字仿真等。
ADS还内置了丰富的器件模型和库,方便用户进行仿真和优化。
此外,ADS还支持与SI/PI和系统仿真软件的集成,使得整个设计流程更加高效。
2. HFSS(High Frequency Structure Simulator)HFSS是美国ANSYS公司开发的一种基于有限元分析(FiniteElement Analysis)的高性能电磁场仿真软件。
它主要用于射频和微波领域,可以模拟复杂的电磁场分布和信号传输。
HFSS具有优异的求解速度和准确度,并且支持多种仿真技术,如频域仿真、时域仿真和混合仿真等。
此外,HFSS还提供了强大的后处理功能,可以用于绘制场强分布图、辐射图和散射参数图等。
3. CST Studio SuiteCST Studio Suite是德国CST公司开发的一款电磁场仿真软件套件,广泛应用于射频、天线和微波电路的设计和仿真。
CST基于有限差分时域(FDTD)方法,具有较高的计算速度和较低的内存占用。
CST StudioSuite提供了丰富的建模功能和后处理工具,可以实现多尺度建模、参数扫描和优化等操作。
此外,CST还支持与ADS和HFSS等软件的数据交换,方便不同工具之间的协同设计和分析。
4. AWR Microwave OfficeAWR Microwave Office是美国National Instruments(前身为奇美电子)开发的一款射频和微波电路设计软件。
简述eda技术

简述eda技术EDA技术,即电子设计自动化技术(Electronic Design Automation),是应用计算机技术和软件工具来辅助电子系统的设计、验证和制造的一种技术。
EDA技术在电子系统设计领域起到了重要的作用,大大提高了设计效率和产品质量。
EDA技术主要包括电子系统级设计(ESL)、硬件描述语言(HDL)、逻辑综合、电路仿真、布局布线、测试和制造等方面。
其中,硬件描述语言是EDA技术的核心之一。
硬件描述语言是一种用于描述电子系统结构和行为的高级语言,常用的硬件描述语言有VHDL和Verilog。
通过硬件描述语言,设计工程师可以方便地描述电路的逻辑功能和时序特性,实现电路设计的高效、精确和灵活。
逻辑综合是EDA技术中的重要环节,它将高级语言描述的电路转化为门级电路的表示。
逻辑综合过程中,常常涉及到逻辑优化、时序优化和面积优化等技术。
逻辑综合的目标是使电路满足特定的性能指标,如时序约束、功耗限制和面积约束等,同时尽量减少电路的成本和设计周期。
电路仿真是EDA技术中另一个重要的环节,它通过计算机模拟电路的行为,验证电路的正确性和性能是否满足设计要求。
电路仿真可以分为功能仿真和时序仿真两个层次。
功能仿真主要验证电路的逻辑功能是否正确,而时序仿真则进一步验证电路的时序特性是否满足设计要求。
通过仿真,设计工程师可以及时发现和解决电路设计中的问题,提高设计的可靠性和稳定性。
布局布线是EDA技术中的另一个重要环节,它主要负责将逻辑电路映射到物理布局上,并进行连线。
布局布线过程中,需要考虑到电路的时序约束、功耗和面积等因素,以及避免电路中的时序冲突和信号干扰等问题。
布局布线的目标是使电路在给定的约束条件下,尽量满足性能要求,并达到最佳的物理布局效果。
测试是EDA技术中的另一个重要环节,它主要用于验证电路的正确性和可靠性。
测试过程中,常常需要设计和生成一系列的测试模式,以覆盖电路的所有可能工作状态,并通过测试模式来判断电路的输出是否与预期一致。
EDA设计实验二 负反馈放大器设计与仿真

实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
集成电路EDA与验证技术课件:模拟集成电路设计与仿真

模拟集成电路设计与仿真
常用命令格式: (1) DEFINE 格式:DEFINE <库名> <库路径> 例: DEFINE sample /export/cadence/IC615USER5/tools.lnx86/dfII/samples/cdslib/sa mple (2) INCLUDE 格式:INCLUDE <另外一个cds.lib 的全路径>
模拟集成电路设计与仿真
图3.2 Spectre中包含的各种仿真器
模拟集成电路设计与仿真
2.精确的晶体管模型 Spectre为所有的仿真器提供一致的器件模型,这有利于 消除不同模型间的相关性,从而得到快速收敛的仿真结果。 模型的一致性也保证了器件模型在升级时可以同时应用于所 有的仿真器。 3.高效的程序语言和网表支持 Spectre仿真平台支持多种设计提取方法,并兼容绝大多 数SPICE输入平台。Spectre可以读取Spectre、SPICE以及 Verilog-A格式的器件模型,并支持标准的Verilog-AMS、 VHDL-AMS、Verilog-A、Verilog以及VHDL格式的文本输 入。
模拟集成电路设计与仿真
5.有力衔接了版图设计平台 对于完整的版图设计平台而言,Spectre是不可或缺的重 要环节,它能方便地利用提取的寄生元件参数来快速完成后 仿真(post-layout simulation)的模拟,并与前仿真(pre-layout simulation)的模拟结果作比较,紧密的连接了电路 (Schematic)和版图(layout)的设计。 6.交互的仿真模式 设计者可以在仿真过程中快速改变参数,并在不断调整 参数和模拟之中找到最佳的电路设计结果,减少电路设计者 模拟所花费的时间。
eda仿真实验报告

eda仿真实验报告EDA仿真实验报告一、引言EDA(Electronic Design Automation)是电子设计自动化的缩写,是指利用计算机技术对电子设计进行辅助、自动化的过程。
在现代电子设计中,EDA仿真是不可或缺的一环,它可以帮助工程师验证电路设计的正确性、性能和可靠性。
本篇报告将介绍我在EDA仿真实验中的经验和收获。
二、实验背景本次实验的目标是对一个数字电路进行仿真,该电路是一个4位加法器,用于将两个4位二进制数相加。
通过仿真,我们可以验证电路设计的正确性,并观察其在不同输入情况下的输出结果。
三、实验步骤1. 电路设计:首先,我们根据给定的要求和电路原理图进行电路设计。
在设计过程中,我们需要考虑电路的逻辑关系、时序要求以及输入输出端口的定义等。
2. 仿真环境搭建:接下来,我们需要选择合适的EDA仿真工具,并搭建仿真环境。
在本次实验中,我选择了Xilinx ISE Design Suite作为仿真工具,并创建了一个仿真项目。
3. 仿真测试向量生成:为了对电路进行全面的测试,我们需要生成一组合适的仿真测试向量。
这些测试向量应该覆盖了电路的所有可能输入情况,以验证电路的正确性。
4. 仿真运行:在仿真环境搭建完成后,我们可以开始进行仿真运行了。
通过加载测试向量,并观察仿真结果,我们可以判断电路在不同输入情况下的输出是否符合预期。
5. 仿真结果分析:仿真运行结束后,我们需要对仿真结果进行分析。
通过对比仿真输出和预期结果,可以判断电路设计的正确性。
如果有不符合预期的情况,我们还可以通过仿真波形分析,找出问题所在。
四、实验结果与讨论在本次实验中,我成功完成了4位加法器的仿真。
通过对比仿真输出和预期结果,我发现电路设计的正确性得到了验证。
无论是正常情况下的加法运算,还是特殊情况下的进位和溢出,电路都能够正确地输出结果。
在实验过程中,我还发现了一些有趣的现象。
例如,在输入两个相同的4位二进制数时,电路的输出结果与输入完全一致。
电路仿真工具比较与选择指南

电路仿真工具比较与选择指南电路仿真工具在电子设计领域扮演着重要的角色,它们可以帮助工程师验证设计的正确性、提高设计效率和减少试错成本。
然而,市场上存在众多不同类型的电路仿真工具,如SPICE仿真器、EDA工具、嵌入式系统仿真工具等,选择合适的工具变得至关重要。
在本文中,我将对几种常见的电路仿真工具进行比较,并提供选择指南,帮助工程师们更好地选择适合自己需求的工具。
1. SPICE仿真器SPICE(Simulation Program with Integrated Circuit Emphasis)是一种通用的电路仿真工具,具有广泛的应用范围。
它可以模拟各种电路,包括模拟电路、数字电路、混合信号电路等。
SPICE仿真器的核心是基于各种电路元件的数学模型进行计算,能够准确地模拟电路的行为和特性。
然而,SPICE仿真器的计算速度比较慢,对于大型复杂电路的仿真可能会耗费较长的时间。
2. EDA工具EDA(Electronic Design Automation)工具是一类专门用于电子设计的集成软件工具,包括原理图绘制、电路仿真、PCB设计、封装设计等功能。
EDA工具在电子设计过程中起着至关重要的作用,可以帮助工程师快速、高效地完成设计任务。
常见的EDA工具有Cadence、Mentor Graphics、Altium Designer等,它们提供了强大的仿真功能,适用于各种不同类型的电路设计。
3. 嵌入式系统仿真工具嵌入式系统仿真工具主要用于嵌入式系统设计,可以帮助工程师验证系统的功能和性能,减少硬件设计和调试的时间。
常见的嵌入式系统仿真工具有ModelSim、Quartus II等,它们具有强大的仿真和调试功能,能够帮助工程师快速验证系统设计的正确性。
在选择电路仿真工具时,工程师应根据自己的设计需求和预算来进行评估和比较。
以下是一些建议的选择指南:1. 确定设计需求:首先要明确自己的设计需求,包括电路类型、仿真规模、仿真精度等,然后选择功能和性能适合的仿真工具。
EDA实验2差动放大电路的设计与仿真

实验二差动放大电路的设计与仿真一、实验要求1.设计一个带射极恒流源的差动放大电路,要求负载5.6k时的A VD 大于50。
2.测试电路每个三极管的静态工作点值和 、r be 、r ce值。
3.给电路输入直流小信号,在信号双端输入状态下分别测试电路的A VD、A VD1、A VC、A VC1值。
二、实验步骤1.实验所用的电路电路图如下图所示:放大倍数:A vd=V od/Vid=1.266V/20mV=63.32.三极管的静态工作点值和β、Rbe、Rce①.测试Q1、Q3管由上图可知三极管Q1和三极管Q3所用的三极管型号一样且互相对称,经过分析可知这两个三极管的静态工作点的值应该全部一样。
Q1(Q3)静态工作点值:测β1:β1=ic/ib=289.28/1.891=152.98 求Rbe1:由上图得Rbe1=dx/dy=4.93KΩ求Rce1:有上图得Rce1=dx/dy=10.47KΩ②.测试Q2管Q2静态工作点值:求Rbe2:由上图得Rbe2=dx/dy=2.24KΩ求Rce2:由上图得Rce2=dx/dy=5.0KΩ求β2:β2=△Ic/△Ib=(1.9302-1.6065) /2×1000=161.9所以恒流源输出电阻R0=Rce2(1+β2×R5/(Rbe2+R1//R4+R5))=5.0×(1+161.9×5/(2.24+40//50+5))= 5.0×28.5=142.5KΩ3.测量双端输入直流小信号时电路的A VD、A VD1、A VC、A VC1(1)求A vd:A vd(实际)=V od/Vid= -1.282/0.02= -64.1A vd(理论)= -β1(R2//(R6/2/)//rce1)/rbe1=-152.98×(10//2.8//10.47)/4.93= -152.98×2.0/4.93= -62.1E=|A vd(实际)-A vd(理论)|/|A vd(理论)|=2/62.1=3.2%(2)求A vd1:A vd1(实际)=(0.222-1.009)/0.02=39.35A vd1(理论)=-0.5β1(R2//R6//Rce1)/rbe1=-0.5×152.98×(10//5.6//10.47)/4.93=-0.5×152.98×2.6/4.93=40.34E=| A vd1(实际)- A vd1(理论)|/| A vd1(理论)|=0.99/40.34=2.5%(3)求A vc:A vc=V oc/Vic=0(4)求A vc1:断开直流小信号:A vc1(实际)=(1.00887-1.00889)/0.01=-0.0020A vc1(理论)= -β1(R2//R6//Rce1)/(Rbe1+2(β1+1)R0)= -152.98×(10//5.6//10.47)/(4.93+2×(152.98+1) ×142.5)=-0.0091两者数量级一致三、分析总结在普通的放大电路会由于某些外界因素的变化比如温度的变化,会使输出的电压发生微小的变化,若是在多级放大电路中,这种微小的变化会被逐级放大,以至于在输出端会出现很大的噪声信号,使输出端的信噪比严重下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RL 2 0 {rr}
IS 0 1 5
.PARAM rr=10
.DC Lin PARAM rr 1 100 1
.PROBE
.END
由图可以看出,当RL为பைடு நூலகம்时,它的吸收功率最大,最大为:25w。
电路的交流分析(AC分析)
1. RLC串联电路如图所示,试求电路的幅频特性和相频特性,复阻抗的幅频特性,相频特性。(程序EX-3-1.cir)
解:
(1)当R=0.5kΩ时
(2)当R=2.5kΩ时
1006070231
C 1 0 1u
L 2 0 1H
R 1 2 0.5K
.IC V(1)=10V V(2)=0V
.TRAN 0.1ms 40ms
.PRINT TRAN V(C) V(R) V(R)
.PROBE
.END
解:1006070203
VS 1 0 pwl (0 3 2 3 2.01 0 4 0)
R1 2 0 1
C1 1 2 {cc}
.PARAM cc=0.1
.STEP PARAM cc LIST 0.1 0.5 1
.TRAN 0.01s 10s
.PRINT TRAN V(VS) V(2)
.PROBE
.END
1.电路如图所示,试对运算放大器电路分析输出电压V(6)的幅频特性和相频特性。(EX-5-1)三极管参数描述:
Q1* * *Qmod
.model Qmod npn(bf=80 rb=100 cjc=2pf cje=3pf tf=0.3ns tr=6ns)
解:
1006070203
VC 3 0 DC 12
PSpice直流仿真(1)
1.直流电路如图所示,试求节点电压V(2)。
解:
2.电路如图所示,试验证基尔霍夫电流、电压定律。(试证明,流入节点0的电流代数和为零;节点0,1,2,3,0构成的回路电压降代数和为零。)
解:
PSpice直流仿真(2)
1.非线性电路如图所示,其中非线性电阻的电阻大小和温度的关系为
,求在27度、38度和50度时电路节点电压V(2)。(程序:ex-2-1)
解:
1006070203
R1 1 2 3K
R2 1 0 4K
R3 2 0 RMOD 1K
V1 1 0 5V
.MODEL RMOD RES (R=0.8 TC1=0.02 TC2=0.005)
.TEMP 27 38 50
.DC V1 LIST 0 5
不同Q值下Z的实部的频率特性观测:在ADD_TRACE命令下键入分别表示阻抗实部的表达式R(V(1)/I(R1))
不同Q值下Z的虚部的频率特性观测:在ADD_TRACE命令下键入分别表示阻抗实部的表达式IMG(V(1)/I(R1))
Q为回路的品质因数,当发生谐振时,回路的感抗和容抗相等。把谐振时的回路感抗值(或容抗值)和回路电阻的比值称为回路的品质因数。Q=0.5,Q=1时是低通滤波,Q=2,Q=4时是带通滤波
说明:复阻抗频率特性观测在ADD_TRACE命令下键入分别表示阻抗模的表达式V(1)/I(R1)、V(1)/I(R2)、V(1)/I(R3)、V(1)/I(R4)。
复阻抗的相频特性观测在ADD_TRACE命令下键入分别表示阻抗角的表达式VP(1)/IP(R1)、VP(1)/IP(R2)、VP(1)/IP(R3)、VP(1)/IP(R4)。
V1 10 AC1
C1 1 2 30u
C2 4 6 30uF
CE 5 0 30uF
RB1 3 2 40K
RB2 2 0 20K
RC 3 4 4K
RE 5 0 2K
RL 6 0 4K
Q1 4 2 5 Qmod
.model Qmod npn(bf=80 rb=100 cjc=2pf cje=3pf tf=0.3ns tr=6ns)
.PRINT DC V(2)
.PROBE
.END
可以看出在27度、38度和50度时电路节点电压V(2)分别为:1.053v,1.637v,2.613v。
2.如图所示直流电路中的RL可变,试问RL为何值时它吸收的功率为最大,此最大功率为多少?(程序:ex-2-2)
解:
1006070203
R1 1 2 3
(1)C=0.1F时
(2)C1=0.5时
(3)C1=1F时
2.二阶电路如图所示。电容器有初始电压10V,当电阻分压分别是0.5kΩ、2kΩ、2.5kΩ时,观察电容器上电压、电感上电压和电阻两端的电压暂态响应。(ex-4-2.cir)
本题目的主要是研究RLC电路参数变化以后,电路的放电性质发生的变化。根据参数的不同,电路将产生振荡性和非振荡性放电。本电路的暂态响应即RLC串联电路的零输入响应,当R=2.5kΩ时,电路过阻尼放电( ),电容在整个过程中始终释放储存的电能,电容器上电压随时间增长逐渐衰减至零。选择R=2kΩRLC串联电路是临界阻尼放电( ),电容电压不做振荡变化,即具有非振荡的性质,其波形与过阻尼情况下波形相似,但是这种过程是振荡和非振荡过程的分界线,此时的电阻被称作临界电阻,将电阻大于临界电阻的电路称为过阻尼电路,反之称为欠阻尼电路。选择R=0.5kΩ,RLC串联电路是欠阻尼(振荡)放电( ),电容波形周期性改变方向,储能元件周期性交换能量。
.AC DEC 10 110G
.PROBE
.END
电压V(6)的幅频特性和相频特性为:
电路的暂态分析(TRAN分析)
1.微分电路如图所示,试观察在改变电容参数下的输入信号和输出信号V(2)的波形图。电容参数分别为0.1F、0.5F、1F。(ex-4-1.cir)
vs 1 0 pwl (0 3 2 3 2.01 0 4 0 )
解:
1006070203
R1 1 2 200
L1 2 3 10mH
C1 3 0 1uF
R2 1 4 100
L2 4 5 10mH
C2 5 0 1uF
R3 1 6 50
L3 6 7 10mH
C3 7 0 1uF
R4 1 8 25
L4 8 9 10mH
C4 9 0 1uF
V1 10 AC1
.AC DEC 10 25HZ 25KHZ
.PROBE
.END
2.在图示电路中,已知 ,Xc=500Ω, XL=1000Ω, RL=2000Ω,f=50HZ,求电流 。
注意:Pspice中所有的元件都必须是用元件的大小表示,不用阻抗表示。所以必须先计算电感大小和电容大小。
解:
可以得出电流 的大小为:106.070mA。
PSpice模拟电路仿真