电路设计中的接地设计
电子电路设计中的常见问题及解决方法

电子电路设计中的常见问题及解决方法电子电路设计是电子工程中一项重要的任务,而在电子电路设计的过程中,常常会遇到一些问题。
本文将就电子电路设计中的常见问题及解决方法进行详细介绍,并分点列出具体步骤。
一、常见问题:1. 电源供电问题:电子电路设计中经常会遇到电源供电不稳定的问题,如电压波动、电流不足等。
这会直接影响到电路的正常工作。
2. 温度变化问题:一些电子元件在工作过程中会因为温度的变化而产生电性能的变化,导致电路失效或性能下降。
3. 信号耦合问题:电子电路设计中的信号耦合问题常常会导致信号相互干扰,引起电路工作不正常。
4. 接地问题:电子电路设计中的接地问题对于电路的稳定工作至关重要,不良的接地设计可能会导致信号共模干扰、电流回流等问题。
二、解决方法:1. 电源供电问题解决方法:(1) 选择合适的电源:根据电路的功率需求选择功率合适的电源,确保电压稳定。
(2) 电源滤波:通过使用滤波器或稳压器等元器件对电源进行滤波,去除杂散频率和降低纹波。
(3) 电源隔离:对于一些对电源稳定性要求较高的电路,可以采用电源隔离的方式,避免干扰。
2. 温度变化问题解决方法:(1) 散热设计:合理安排电子元件和散热器的布局,保证散热器可以有效地将热量散出,避免过热。
(2) 温度补偿:对于一些对温度敏感的元件或电路部分,可以通过添加温度传感器,并通过反馈修正电路工作的偏差。
3. 信号耦合问题解决方法:(1) 电路隔离:对于容易产生信号耦合的电路部分,可以采用电路隔离的方式,如使用光耦、变压器等。
(2) 信号屏蔽:通过合理的信号屏蔽设计,将不同信号源之间的干扰降到最低,保证正常的信号传输。
4. 接地问题解决方法:(1) 单点接地:将所有的电路共地点设为单点接地,减少地回路上的干扰。
(2) 网状接地:对于复杂的电子电路设计,可以采用网状接地的方式,使电流在不同路径上回流,减少干扰。
(3) 防止地回流阻断:通过合理布局电泳连接、网络线和电容,防止地回流路径过长,增加回流电阻。
如何判断电路中的接地问题

如何判断电路中的接地问题电路中的接地问题一直是电工工程中的一个重要方面。
通过正确的接地设计和判断,可以确保电路的安全运行,并减少电击和其他安全风险。
本文将介绍如何判断电路中的接地问题,并提供一些实用的方法和技巧。
一、什么是接地问题在电路中,接地(Grounding)指的是将电流流向地面或地下,以降低电路中的电压差。
接地有助于保护人员和设备免受电击、过电压或其他电气故障的危害。
然而,不正确的接地设计或接地故障可能导致电流泄漏或电气火灾等问题。
二、常见的接地问题接下来,我们将介绍一些常见的电路接地问题,以及如何判断它们:1. 接地线路断开:当接地线路断开时,电流无法流向地面,从而导致接地失效。
可以通过测量接地线路的电阻来判断接地线路是否正常连接。
如果电阻值较高或无限大,则可能存在接地线路断开的问题。
2. 接地线路短路:接地线路短路可能会导致电流过大,引发电气火灾等安全问题。
可以使用绝缘测试仪来检测接地线路是否存在短路问题。
3. 接地线与其他线路相交:当接地线与其他线路相交时,可能会产生电磁干扰或接地故障。
可以使用场强仪等仪器来检测接地线路周围的电磁场情况,以判断是否存在相交问题。
4. 接地电流过大:当接地电流超过一定范围时,可能会引起设备损坏或安全隐患。
可以使用电流表等仪器来测量接地电流,判断是否超过了规定值。
三、如何判断电路中的接地问题下面是一些常用的方法和技巧,可用于判断电路中的接地问题:1. 测量接地电阻:使用数字接地电阻测试仪或万用表等工具,测量接地电阻的值。
一般情况下,接地电阻应小于规定的标准值,如果电阻较高,则可能存在接地线路断开的问题。
2. 检测接地线路的绝缘状况:使用绝缘测试仪等工具,对接地线路进行绝缘测试。
如果测试结果显示绝缘电阻较低,可能存在接地线路短路的问题。
3. 观察接地线路周围的设备是否有漏电现象:检查接地线路附近的设备,观察是否有漏电或电气火花现象。
如果发现异常,可能是接地线与其他线路相交或存在其他接地问题。
PCB板设计中的接地方法与技巧

PCB板设计中的接地方法与技巧在电子设备设计中,印制电路板(PCB)的地位至关重要。
PCB板的设计需要考虑诸多因素,其中之一就是接地问题。
良好的接地方式可以有效地提高设备的稳定性、安全性以及可靠性。
本文将详细介绍PCB板设计中的接地方法与技巧。
让我们了解一下PCB板设计的基本概念。
PCB板设计是指将电子元件按照一定的规则和要求放置在板子上,并通过导线将它们连接起来的过程。
接地是其中的一个重要环节,它是指将电路的地线连接到PCB 板上的公共参考点,以实现电路的稳定工作和安全防护。
在PCB板设计中,接地的主要作用是提高电路的稳定性,同时还可以防止电磁干扰和雷电等外界因素对电路的影响。
通过将电路的地线连接到PCB板的公共参考点,可以减少电路之间的噪声和干扰,提高设备的性能和可靠性。
接地方式的选择取决于PCB板的设计和实际需求。
以下是一些常见的接地方式及其具体方法:直接接地:将电路的地线直接连接到PCB板上的参考点或金属外壳。
这种接地方式适用于对稳定性要求较高的电路,但需要注意避免地线过长导致阻抗过大。
间接接地:通过电容、电感等元件实现电路与地线的连接。
这种接地方式可以有效抑制电磁干扰,提高设备的抗干扰能力。
混合接地:结合直接接地和间接接地的方式,根据实际需求在不同位置选择不同的接地方式。
这种接地方式可以满足多种电路的接地需求,提高设备的灵活性和可靠性。
多层板接地:在多层PCB板中,将其中一层作为地线层,将电路的地线连接到该层上。
这种接地方式适用于高密度、高复杂度的PCB板设计,可以提供良好的电磁屏蔽效果。
挠性印制电路板接地:对于挠性印制电路板,可以使用金属箔或导电胶带实现电路与地线的连接。
这种接地方式适用于需要弯曲或伸缩的电路,可以提供良好的可塑性和稳定性。
确保接地连续且稳定:接地线的连接必须牢靠、稳固,确保在设备运行过程中不会出现松动或脱落现象。
同时,要确保地线阻抗最小,以提高电路的稳定性。
避免地线过长导致阻抗过大:地线的长度应尽可能短,以减少阻抗。
电路板的接地设计方法

电路板的接地设计方法接地设计是电路板设计中的重要环节,它能够确保电路板稳定运行,提高抗干扰能力,并降低电磁干扰。
本文将介绍电路板的接地设计方法,主要包含以下几个方面:确定接地类型、选择合适的接地方式、优化地线布局、考虑接地点选择、采取降噪措施、进行仿真测试、考虑电磁兼容性、遵循安全规范。
1.确定接地类型在电路板的接地设计中,首先要确定接地类型。
常见的接地类型有单点接地、多点接地和混合接地。
单点接地是指整个电路系统中只有一个接地点,所有信号都通过这个接地点返回地线。
多点接地是指每个信号线都有一个独立的接地点,它们通过多点汇流排连接回到电源地。
混合接地则是单点接地和多点接地的结合,它适用于具有多种频率的信号电路。
2.选择合适的接地方式在确定接地类型后,需要选择合适的接地方式。
常见的接地方式有串联接地和并联接地。
串联接地是指将所有电路元件串联起来,公共端接到地线上。
这种接地方式简单,但当公共端出现故障时,整个电路系统都会失效。
并联接地是指将每个电路元件连接到单独的地线上,然后将它们汇总到一个总线上。
这种接地方式可以提高系统的可靠性,但需要更多的布线空间。
3.优化地线布局地线布局的优化是电路板接地设计的重要环节。
在布线时,应该尽量减小地线的长度,以减小电阻和电感。
此外,应该避免地线出现突然的弯曲和拐角,以减小涡流和噪声。
为了优化地线布局,可以使用网格状或平行线状的地线结构。
4.考虑接地点选择在电路板的接地设计中,需要考虑接地点选择。
接地点应该尽量靠近电路元件,以减小引线和连接器的电阻和电感。
此外,接地点应该具有较低的阻抗和较高的电导率,以减小噪声和干扰。
为了提高接地的效果,可以使用多层次的接地设计。
5.采取降噪措施在电路板的接地设计中,可以采取降噪措施来减小噪声和干扰。
可以在地线上增加滤波器或去耦电容来降低交流噪声。
此外,可以在地线上增加磁珠或电感来抑制高频噪声。
这些降噪措施可以有效地提高电路板的抗干扰能力和稳定性。
接地设计规范和指南

目录第一章概述 (1)1.1 “地”的定义 (3)1.2 “接地”的分类及目的 (4)1.2.1 接“系统基准地” (4)1.2.2 接“静电防护与屏蔽地” (4)1.2.3 接“大地” (4)1.3 接地设计的基本原则 (4)1.4 各种地相连的六种情况 (5)1.5 静电防护与屏蔽地 (5)1.5.1功能单板静电防护与屏蔽地的设计 (5)1.5.2后背板静电防护与屏蔽地的设计 (6)第二章设备的接地设计 (7)2.1 立式大机架设备的接地设计 (7)2.1.1 多层机框的接地 (7)2.1.2 设备接大地 (7)2.2 台式设备的接地设计 (8)2.3 射频设备的接地设计 (10)2.3.1 接地要求 (10)2.3.2 射频设备的接地设计 (10)2.3.3 射频设备天馈系统的接地设计 (10)2.4 监控设备的接地设计 (10)2.4.1 监控设备的特殊性及其接地要求 (10)2.4.2 模拟量输入电路 (11)2.4.3 开关量输入电路 (12)2.4.4 开关量输出电路 (12)2.4.5 视(音)频模拟电路 (13)2.4.6 监控设备接大地 (13)2.5 浮地设备的接地设计 (13)2.5.1 浮地的基本概念 (13)2.5.2 浮地设备的特殊问题 (14)2.5.3 浮地设备的接地设计 (14)2.5.4设计案例 (15)2.5.4.1 问题描述和原因分析 (15)2.5.4.2 设计改进和实验结果 (15)第三章PCB的接地设计 (16)3.1 共模干扰、信号串扰和辐射 (16)3.1.1 共模干扰 (16)3.1.2 串扰 (16)3.1.3 辐射与干扰 (17)3.2 PCB接地设计原则 (17)3.2.1 确定高di/dt电路 (17)3.2.2 确定敏感电路 (17)3.2.3 最小化地电感和信号回路 (18)3.2.4 地层分割和地层不分割的合理应用 (18)3.2.5 接口地保持“干净”,使噪声无法通过耦合出入系统 (18)3.2.6 电路合理分区,控制不同模块之间的共模电流 (18)3.2.7贯彻系统的接地方案 (18)3.3 双面板的接地设计 (18)3.3.1 梳形电源、地结构 (18)3.3.2 栅格形地结构 (19)3.4 多层板的接地设计 (20)3.4.1 多层板的好处 (20)3.4.2 信号回路 (20)3.4.2.1 信号回流路径 (20)3.4.2.2 回流分布 (20)3.4.2.3 信号回路的构成 (21)3.4.3 参考平面被分割的影响 (22)3.4.3.1 参考平面分割或开槽 (22)3.4.3.2 时钟信号走在地平面上 (22)3.4.3.3 参考平面上通孔的隔离盘尺寸过大 (22)3.4.4 参考平面的设计 (23)3.4.4.1 数字电路与模拟电路之间没有信号联系 (24)3.4.4.2 数字电路与模拟电路之间联系的信号线较少且集中 (24)3.4.4.3 数字电路与模拟电路之间联系的信号线较多且难以集中在一块 (26)3.4.5 后背板的接地设计 (27)3.4.6 PCB的叠层设计 (27)3.4.6.1 PCB的叠层设计的原则 (27)3.4.6.2 PCB的叠层设计举例 (28)3.4.7 地平面的处理 (29)3.5 有金属外壳接插件的印制板的接地设计 (31)3.6 PCB的布局设计 (31)3.6.1 混合电路的分区 (31)3.6.2 数字电路的分区 (32)3.6.3 高频高速电路和敏感电路的布局 (32)3.6.4 保护器件的布局 (32)3.6.5 去耦电容的放置 (32)3.6.6 与后背板相连的插座上地线插针的设计 (33)3.7 PCB的布线设计 (33)3.7.1 3W原则 (33)3.7.2 保护线 (34)3.7.3 高频高速信号走线 (34)3.7.4 敏感信号信号走线 (34)3.7.5 I/O信号走线 (34)3.7.6 金属壳体的高频高速器件 (34)3.8 设计案例 (35)3.8.1 问题描述 (35)3.8.2 原因分析 (35)3.8.3 改进措施 (35)3.8.4 试验结果 (35)第四章元器件的接地设计 (36)4.1 机壳上的元器件的接地设计 (36)4.2 功能单板上元器件的接地设计 (37)4.3 后背板上元器件的接地设计 (37)4.4 金属部件和解插件的接地设计 (37)第五章线缆的接地设计 (38)5.1 信号电缆的类型 (38)5.1.1 双绞线 (38)5.1.2 同轴电缆 (38)5.1.3 带状电缆 (38)5.2 信号电缆线的接地设计 (38)5.2.1 屏蔽双绞线的接地 (38)5.2.2 同轴电缆的接地 (38)5.2.3 带状电缆的接地 (39)第六章搭接 (39)6.1 搭接及其目的 (39)6.2 搭接的方式与方法 (39)6.2.1 搭接的方式 (39)6.2.2 搭接的方法 (40)6.2.2.1 直接搭接的方法 (40)6.2.2.2 间接搭接的方法 (40)6.3 搭接的要求和处理 (40)第一章概述1.1 “地”的定义大地——地球工作地——信号回路的电位基准点(直流电源的负极或零伏点),在单板上可分为数字地GNDD与模拟地GNDA。
电路设计中三种常用接地方法

电路设计中三种常用接地方法
地线也是有阻抗的,电流流过地线时,会产生电压,此为噪声电压,而噪声电压则是影响系统稳定的干扰源之一,不可取。
所以,要降低地线噪声的前提是降低地线的阻抗。
众所周知,地线是电流返回源的通路。
随着大规模集成电路和高频电路的广泛应用,低阻抗的地线设计在电路中显得尤为重要。
这里就简单列举几种常用的接地方法:
单点接地
单点接地,顾名思义,就是把电路中所有回路都接到一个单一的,相同的参考电位点上。
如下图所示。
单点接地可以分为串联接地和并联接地两种方式。
串联单点接地的方式简单,但是存在共同地线的原因,导致存在公共地线阻抗,如果此时串联在一起的是功率相差很大的电路,那么互相干扰就非常严重。
并联单点接地的方式可以避免公共地线耦合的因素,但是每部分电路都需要引地线到接地点上,需要的地线就过多,不实用。
所以,在实际应用时,可以采用串联和并联混合的单点接地方式。
在画PCB 板时,把互相不易干扰的电路放一层,把互相容易发生干扰的电路放不同层,再把不同层的地并联接地。
如下图所示。
单点接地在高频电路里面,因为地线长,地线的阻抗是永远避免不了的因素,所以并不适用,那怎么办呢?下面再介绍多点接地。
多点接地
当电路工作频率较高时,想象一下高频信号在沿着地线传播时,所到之处影响周边电路会有多么严重,因此所有电路就要就近接到地上,地线要求最短,。
电子电路中的电源线和接地设计原则

电子电路中的电源线和接地设计原则电源线和接地是电子电路设计中十分重要的两个方面。
正确的电源线和接地设计可以提高电路的稳定性、可靠性和抗干扰能力。
本文将详细介绍电源线和接地设计的原则和步骤,以供读者参考。
一、电源线设计原则1. 选择适当的电源线- 电源线的类型应根据电流和电压要求来选择。
对于高电流和高压的电路,应选用粗线材以承受较大的负载。
- 正确匹配电源线和插头,确保连接可靠,避免发生松脱或接触不良的情况。
2. 缩短电源线长度- 尽量将电源尽早引入电路板,以减少线路长度。
长的电源线会引入不稳定性和干扰。
- 对于需要长电源线的情况,可以使用金属盒或屏蔽材料来减少干扰。
3. 避免电源线与信号线相交- 电源线和信号线交叉会引入噪声和互相干扰,应尽量避免这种情况的发生。
- 若电源线与信号线不可避免地需要交叉,应通过增加距离或使用屏蔽材料来减少干扰。
4. 使用高质量的电源线- 选用好质量的电源线,可以减少线路电阻和损耗,提高电源传输效率。
- 使用扭曲一对导线的电源线,可以有效地降低电源线互感以及对其他线路的干扰。
二、接地设计原则1. 单点接地- 所有的接地点应尽可能地连接在一起,形成单点接地,以减少环路产生的回流干扰。
- 单点接地可以有效降低地线噪声和电流环路干扰。
2. 使用大面积的接地平面- 在PCB设计中,应尽量增加接地层的面积,以提高整个系统的抗干扰能力。
- 大面积的接地平面可以起到屏蔽和分散电磁干扰的作用。
3. 电源和信号线分离接地- 电源线和信号线的接地应分离,避免共用一条接地线。
- 电源和信号线单独接地可以有效减少信号传输过程中的干扰。
4. 使用低阻抗接地- 接地电阻应尽量低,以减少地线上的电流回流。
- 使用足够大的接地铜片和连接以降低接地电阻。
三、电源线和接地设计步骤1. 分析电路需求- 根据电路的电流和电压需求,确定适当的电源线选型和尺寸。
2. 确定电源线位置- 在进行PCB布局时,将电源线尽早引入电路板,缩短线路长度,并尽量避免与信号线交叉。
电路中的各种地

转载日志——电路中的地转至电子发烧友一、地的分类工程师在设计电路时,为防止各种电路在电路正常工作中产生互相干扰,使之能相互兼容地有效工作。
根据电路的性质,将电路中“零电位”———“地”分为不同的种类,比如按交直流分为直流地、交流地,按参考信号分为数字地(逻辑地)、模拟地,按功率分为信号地、功率地、电源地等,按与大地的连接方式分为系统地、机壳地(屏蔽地)、浮地。
不同的接地方式在电路中应用、设计和考虑也不相同,应根据具体电路分别进行设置。
1、信号地信号地(SG)是各种物理量的传感器和信号源零电位以及电路中信号的公共基准地线(相对零电位)。
此处信号一般指模拟信号或者能量较弱的数字信号,易受电源波动或者外界因素的干扰,导致信号的信噪比(SNR)下降。
特别是模拟信号,信号地的漂移,会导致信噪比下降;信号的测量值产生误差或者错误,可能导致系统设计的失败。
因此对信号地的要求较高,也需要在系统中特殊处理,避免和大功率的电源地、数字地以及易产生干扰地线直接连接。
尤其是微小信号的测量,信号地通常需要采取隔离技术。
2、模拟地模拟地(AG)是系统中模拟电路零电位的公共基准地线。
由于模拟电路既承担小信号的处理,又承担大信号的功率处理;既有低频的处理,又有高频处理;模拟量从能量、频率、时间等都很大的差别,因此模拟电路既易接受干扰,又可能产生干扰。
所以对模拟地的接地点选择和接地线的敷设更要充分考虑。
减小地线的导线电阻,将电路中的模拟和数字部分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感滤波和隔离,汇接到一起。
如图1所示。
模拟地和数字地3、数字地数字地(DG)是系统中数字电路零电位的公共基准地线。
由于数字电路工作在脉冲状态,特别是脉冲的前后沿较陡或频率较高时,会在电源系统中产生比较大的毛刺,易对模拟电路产生干扰。
所以对数字地的接地点选择和接地线的敷设也要充分考虑。
尽量将电路中的模拟和数字部分分开,在PCB布线的时候,模拟地和数字地应尽量分开,最后通过电感,汇接到一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路设计中的接地设计“地”可以分为“保护地”和“信号地”等,电子电路中接的“地”主要为“信号地”,主要是为了减少电磁干扰。
信号地采用何种力式取决于电路的形式、使用的频率、电路的复杂程度以及其他一些条件,应该根据实际情况灵活运用,没有一种到处可以套用的接地电路。
在设计时,要根据实际情况选择接地方式及接地点。
例如,微机辐射骚扰超过极限值的频率集中在30~200MHz范围之内,因此微机内部各单元及屏蔽电缆相对机壳应采用多点就近接地的方式。
下面将从接地线的选取和接地电路两方面谈一下接地的选取。
接地线的选用:经常可以看到这样的产品,其内部的接地线是很细的单股线,这种在其内部通过高频电流时,由于高频阻抗很大,接地效果可想而知。
因此,考虑到趋肤效应(注1),接地线需要选用带状编织线。
如果对接地要求很高,还可在其表面镀银,这主要是减小导线的表面电阻率,因而达到减小接地线高频阻抗的目的。
接地线应与接地面良好搭接,标准中一般规定,接地线与接地面的直流搭接阻抗应小于2.5mW为了高质量的接地,接地面应经过表面处理,避免氧化、腐蚀。
在接地线与接地平面之间不应有锁紧垫圈、衬垫,而且不应使用衬垫、螺栓、螺母作为接地回路的一部分。
接地电路:接地的电路大体上可以分为:浮地、单点接地、多点接地以及混合接地。
浮地的目的是将电路或设备与公共地线或可能引起环流的公共线路隔离开来。
缺点:由于设备不与大地直接相连,容易出现静电积累,达到一定程度后会产生击穿,这是一种破坏性很强的骚扰源。
折衷处理的办法是在浮地与大地之间接一个阻值很大的泄放电阻,以消除静电积累的影响。
实现浮地的办法:变压器隔离、充电隔离。
浮地除了使地线“浮”起来以外,还解决了单地系统中电位不一致带来的麻烦。
单点接地是指接地只有一个物理点被定义为接地参考点,其他各需要接地的点都直接接到这一点。
使用单点接地,会增加接地线的长度,如果接地线长度接近或等于骚扰信号波长的1/4时,其幅射能力将大大增加,接地线线将成为天线。
一般来讲,接地线的长度应小于2.5cm。
单点接地可以分为串行单点接地和并行单点接地两种:串行单点接地串行单点接地就是把各部分电路的地串接在一起,之后在某一点接到电源的地上。
它的好处是接线简单,布线方便,所以在噪声特性要求不高的电路中广泛使用。
在图1 所示意的串联接地方式中, 电路1、2、3 各有一个电流i1、i2、i3 流向接地点。
由于地线存在电阻, 因此,A 、B 、C 点的电位不再是零,于是各个电路间相互发生干扰。
尤其是强信号电路将严重干扰弱信号电路。
如果必须要这样使用,应当尽力减小公共地线的阻抗, 使其能达到系统的抗干扰容限要求。
串联的次序是, 最怕干扰的电路的地接A 点, 而最不怕干扰的电路的地应当接C 点。
并行单点接地并行单点接地就是各部分电路都使用各自独立的接地线,如图2所示。
在低频的情况下并行单点接地可以满足一般的设计要求。
并联接地中各个电路的地电位只与其自身的地线阻抗和地电流有关, 互相之间不会造成耦合干扰。
因此, 有效地克服了公共地线阻抗的耦合干扰问题, 工业控制机应当尽量采用并联接地方式。
值得注意的是, 虽然采用了并联接地方式, 但是地线仍然要粗一些, 以使各个电路部件之间的地电位差尽量减小。
这样, 当各个部件之间有信号传送时, 地线环流干扰将减小。
并行单点接地的缺点是:电路复杂、成本高、布线复杂。
如果系统工作频率很高,达到接地线长度可以与工作频率(信号的波长)相比拟的程度时就不能再用单点接地的方式了(接地效果已经不理想了),而要用多点接地了。
多点接地是指一个系统中各个接地点都直接接到距它最近的接地平面上,使接地线的长度为最短。
接地点可以是设备的底板,也可以是贯通整个系统的地导线,还可以是设备的结构框架等。
多点接地的优点是电路结构比单点接地简单。
由于采用了多点接地,就形成了许多接地回路,因此提高接地系统的质量就变得十分重要,需要经常维护,保持良好的导电性能。
地环路会引入干扰,尤其在各个接地点又离得比较远或接地点与交流电的地连接在一起的话,干扰更为突出。
抑制地环路引入的杂音干扰可采用以下几种方法:(1)切断“地环路”。
把多点接地改为一点按地以后可以解决部分地环路引入的杂音干扰。
(2)采用变压器切断地环路,此时地回路中的杂音电压作用在变压器的两个绕组之间,而不是作用在电路的输入端。
用变压器切断地环路的缺点是不能通过直流。
如果需要通过直流,则应该采用纵向共模电流扼流圈。
(3)采用光电耦合,采用光电耦合器件以后彻底切断了地环路。
此时地回路中的杂音电压作用在光耦合器上,而不是作用在电路的输入端。
(4)提高电路对地平衡度或人为进行平衡。
由于不平衡和不对称引入干扰,所以人为地把系统搞成对称,使之平衡,是防止(在制造阶段)或解决(在施工和维护中)干扰的一个重要方法。
(5)用差动放大器消除共模干扰。
(6)把两个接地点短路起来解决工频干扰。
有些测量仪表的“地”与被测电路的“地”之间的工频电传差很大,产生很强的工频干扰。
出现此种情况时,可把测量仪表的“地”与被测电路的“地”连接起来,把地环路的共模下扰电压短路掉。
混合接地:只对需要高频接地的地方采用多点接地,其余用单点接地。
接地长度以0.05λ~0.15λ来衡量,超出此值的应采用多点接地。
另外,以继电器等有大电流突变的场合,要用单独接地以减少对其他电路的瞬变耦合。
通常在电路这一级上不专门提出对接地的具体要求,因为在这一层次上提出具体要求是不合适的。
对数字电路而言,大多数逻辑芯片读采用单端电路的方式工作。
也就是说,所有信号的电位以电源回路为参考的话,其电位是0V。
在模拟电路中,情况也类似。
当元器件之间的距离很近时,要完成逻辑信号的产生、处理和波形整形是很容易的,但如果传输线过长或者参考点电位不正确的话,都会产生问题。
我们要建立这样的概念:接地并不是每个部分或每个系统都需要的,比如单块的线路板并不非要接地才能正常工作。
当设备之间要传输数据时,接地就是十分必要的了注:1、趋肤效应亦称为“集肤效应”。
交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。
这种现象称“趋肤效应”。
趋肤效应使导体的有效电阻增加。
频率越高,趋肤效应越显著。
当频率很高的电流通过导线时,可以认为电流只在导线表面上很薄的一层中流过,这等效于导线的截面减小,电阻增大。
既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。
因此,在高频电路中可以采用空心导线代替实心导线。
此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。
在工业应用方面,利用趋肤效应可以对金属进行表面淬火。
2、接地设计准则●电路尺寸小于0.05λ时可用单点接地,大于0.15λ时可用多点接地。
●对工作频率很宽的系统要用混合接地。
●出现地线环路问题时,可用浮地隔离(如变压器,光电)。
●所有接地线要短。
●接地线要导电良好,避免高阻性。
●对信号线,信号回线,电源系统回线以及底板或机壳都要有单独的接地系统。
●然后可以将这些回线接到一个参考点上。
●对于那些将出现较大电流突变的电路,要有单独的接地系统,或者有单独。
●接地回线以减少对其他电路的瞬态耦合。
●低电平电路的接地线必须交叉的地方,要使导线互相垂直。
●使用平衡差分电路,以尽量减少接地电路的骚扰影响。
●对于最大尺寸远小于λ/4的电路,使用单点接地的紧绞合线(是否屏蔽视实际情况而定),以使设备敏感度最好。
●交直流线不能绑扎在一起。
交流线本身要绞合起来。
●端接电缆屏蔽层时,避免使用屏蔽层辫状引出线。
●需要用同轴电缆传输信号时,要通过屏蔽层提供信号回路。
低频电路可在信号源端单点接地;高频电路则采用多点接地。
●高频、低电平传轴线要用多层屏蔽,各屏蔽层用单点接地。
●从安全出发,测试设备的地线直接与被测设备的地线联接;●还是从安全出发,要确保接地联接装置能够应付意外的故障电流,在室外终端接地时,能够应付雷电电流的冲击。
3、其他类型的接地简介:●接零:发电机、配电变压器的中性点叫做零点,由中性点引出的线叫做零线。
用电设备的金属外壳接到零线上称为接零。
●工作接地:供电系统变压器的中性点直接接地为工作接地,工作接地可以保证电器设备可靠地运行,降低人体接触电压。
●保护接地:所有电器设备在正常工作情况下,不带电的金属部分作良好的接地为保护接地,保护接地主要保护人员的工作安全。
●重复接地:将零线上的多点与大地多次作金属性连接称重复接地。
当中性点直接接地系统中发生碰壳或接地短路时,可以降低对地电压;当零线发生断裂时,可以使故障的危害程度减轻。
●静电接地:设备移动或物体在管道中移动,因摩擦产生静电,它聚集在管道、容器和储罐或加工设备上,形成很高的电位对人身安全及对设备和建筑物都危险。
作了静电接地,静电一旦产生就导入地中以消除其聚集的可能。
油罐车后尾及轿车后尾拖一根接触地面的导电橡胶即属于静电接地。
●直流工作接地(也称逻辑接地、信号接地):计算机及一切微电子设备大部分采用中、大规模集成电路,具有同一"电位"参考点,将所有设备的"零"电位点接于同一接地装置上,这样它可以稳定电路的电位,防止外来干扰这种接地称为直流工作接地。
●计算机房需设的接地:计算机房的接地问题是个很复杂的问题,目前它应设有四种接地:1、直流逻辑接地:见上面介绍;2、屏蔽接地:主机房屏蔽应有良好的接地;3、防雷接地:采用建筑物的防雷工程接地;4、交流工作接地:为保护接零系统,地极与屏蔽接地可以共用。