《不等关系》教案北师大版

合集下载

北师大版数学八年级下册2.1《不等关系》教案

北师大版数学八年级下册2.1《不等关系》教案

北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。

这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。

但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

三. 教学目标1.了解不等式的概念和基本性质。

2.学会用不等式表示实际问题中的不等关系。

3.培养学生的逻辑思维和解决问题的能力。

四. 教学重难点1.不等式的概念和基本性质。

2.如何用不等式表示实际问题中的不等关系。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。

六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。

2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。

3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。

4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。

5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。

6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。

7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。

8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。

教学过程每个环节所用的时间如上所示,供您参考。

北师大版数学八年级下册2.1《不等关系》优秀教学案例

北师大版数学八年级下册2.1《不等关系》优秀教学案例
2.问题导向:在教学过程中,我注重引导学生提出问题、分析问题和解决问题,培养他们的逻辑思维能力和创新思维能力。这种问题导向的教学方法有助于提高学生的思维品质和解决问题的能力。
3.小组合作:我将学生分成若干小组,鼓励他们在小组讨论中互相学习、互相启发,共同解决问题。这种小组合作的学习方式有助于培养学生的团队协作精神,提高他们的沟通能力和合作能力。
在教学过程中,我以学生的生活经验为切入点,设计了一系列具有针对性和实用性的教学活动。首先,我通过设置一些简单的实际问题,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。然后,我引导学生总结不等关系的定义,并通过举例让学生理解不等关系的本质。接下来,我利用多媒体课件展示了一些具体的不等式,让学生观察、分析并总结不等式的性质,从而加深他们对不等关系概念的理解。
北师大版数学八年级下册2.1《不等关系》优秀教学案例
一、案例背景
本案例背景以北师大版数学八年级下册2.1《不等关系》为依托,旨在探索如何在教学过程中引导学生理解不等关系的本质,培养他们的逻辑思维能力和解决实际问题的能力。本节课的主要内容包括不等关系的定义、不等式的性质以及如何用不等关系表示实际问题中的数量关系。
1.自我评价:引导学生对自己的学习过程进行反思,总结自己在学习不等关系过程中的优点和不足。
2.同伴评价:让学生互相评价,互相借鉴,共同提高。
3.教师评价:教师对学生的学习过程和结果进行客观、公正的评价,给予鼓励和指导,为学生指出明确的发展方向。
四、教学内容与过程
(一)导入新课
1.设计生活实例:我会选择一些与学生生活密切相关的情景,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用。
三、教学策略
(一)情景创设
1.利用生活实例:在教学导入环节,我会选择一些与学生生活密切相关的实例,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。

北师大版数学八年级下册第二章第一节不等关系教学设计

北师大版数学八年级下册第二章第一节不等关系教学设计
-运用启发式教学法,引导学生通过自主探究、合作交流的方式,发现不等式的性质和解法。
-结合数形结合的教学方法,让学生通过观察数轴、图像等,直观地理解不等式的解集。
2.教学过程:
(1)导入:以实际情境引入,如比较两个物体的长度、重量等,让学生认识到生活中存在的不等关系。
(2)新课导入:通过实例,引导学生发现不等式的定义和性质,并尝试用数学符号表达不等关系。
在课堂尾声,我将引导学生对本节课的知识进行总结归纳,包括:
1.不用。
2.不等式的解法:梳理求解一元一次不等式的步骤,强调数轴在解题过程中的重要性。
3.课堂收获:让学生分享在本节课中学到的知识和解题方法,以及自己的感悟。
五、作业布置
为了巩固学生对不等式知识的掌握,提高学生的解题能力,我将在课后布置以下作业:
4.能够运用数轴表示不等式的解集,理解解集的概念,并能够通过观察数轴直观地判断不等式的解集。
(二)过程与方法
1.通过实例引入,让学生观察、思考、总结,培养学生从具体问题中发现数学规律的能力。
2.采用问题驱动法,引导学生通过自主探究、合作交流的方式,理解和掌握不等式的性质和解法。
3.利用数形结合的方法,培养学生将数学问题与图形结合起来的思维习惯,增强学生的直观想象力和逻辑思维能力。
二、学情分析
北师大版数学八年级下册第二章第一节不等关系的内容,对学生来说是一个承上启下的重要部分。在此之前,学生已经掌握了方程和方程组的解法,对于数学中的等量关系有了一定的理解。然而,不等关系作为一种新的数学概念,对学生而言既有挑战性也充满新鲜感。
在这个阶段,学生正处于形象思维向抽象思维过渡的关键时期,他们对数学符号的理解和使用能力有限,对不等式的理解可能还停留在表面层次。因此,教学中需要关注以下几点:

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。

3.1《不等关系》课件(北师大版必修5)

3.1《不等关系》课件(北师大版必修5)
4.一个重要结论 a+m > a. 设 a,b 为正实数,且 a<b,m>0,则 b b+m

1.若b<0,a+b>0,则a-b的值( A.大于零 B.小于零 C.等于零 D.不能确定 解析: ∵b<0,a+b>0, ∴a>-b>0,∴a-b>0. 答案: A的速度 v 的最大限速为 120 km/h,行驶过程中,同一车道上的车间距 d 不得小于 10 m,用不 等式表示为( ) B.v≤120(km/h)或 d≥10(m) D.d≥10(m)
a 已知 12<a<60,15<b<36,求 a-b 及b的取值范围.
a 1 欲求 a-b,应先求-b 范围,欲求 ,应先求 范围,再 b b 利用不等式性质可求解.
[解题过程] ∵15<b<36,∴-36<-b<-15. ∴12-36<a-b<60-15,∴-24<a-b<45. 1 1 1 12 a 60 1 a 又 < < ,∴ < < ,∴ < <4. 36 b 15 36 b 15 3 b 1 a ∴-24<a-b<45,3<b<4.
3.利用不等式的性质判断下列各结论是否成立,并简述 理由. a b (1)若 2> 2,则 a>b; c c 1 1 (2)若 a>b,ab≠0,则a<b; (3)a>b,c>d⇒a-c>b-d; 1 1 (4)若 a>b, > ,则 a>0,b<0. a b
解析:
(1)正确.∵c2≠0,∴c2>0.

某厂使用两种零件A、B,装配两种产品: 甲、乙,该厂的生产能力是月产甲最多2 500 件,月产乙最多1 200件,而组装一件甲需要4 个A,2个B;组装一件乙需要6个A,8个B.某个月, 该厂能用的A最多有14 000个,B最多有12 000 个.用不等式将甲、乙两种产品产量之间的关 系表示出来.

北师大版数学八年级下册2.1《不等关系3》说课稿

北师大版数学八年级下册2.1《不等关系3》说课稿

北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。

本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。

在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。

然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。

最后,通过练习题,让学生巩固所学的不等关系知识。

二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。

但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。

同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。

此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。

三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。

2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。

通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。

3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。

四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。

2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。

五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。

六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。

北师大版八年级下册2.1《不等关系》教学设计

北师大版八年级下册2.1《不等关系》教学设计
2.教学内容:布置课后作业,巩固所学知识。
教学过程:布置一些具有代表性的习题,要求学生在课后完成。同时,鼓励学生在日常生活中观察和发现不等式的应用,将数学知识与社会实践相结合。
五、作业布置
为了巩固学生对《不等关系》这一章节知识的掌握,激发他们的学习兴趣,培养独立思考和解决问题的能力,特布置以下作业:
6.定期进行课堂小结,引导学生总结所学知识,形成知识体系,提高他们的概括和归纳能力。
7.关注学生的个体差异,实施差异化教学,针对学生在不等式学习中的薄弱环节,给予个性化指导,帮助他们克服困难。
8.创设问题情境,引导学生运用所学知识解决实际问题,培养他们的创新意识和实际操作能力。
9.强化过程评价,关注学生在课堂上的表现,鼓励他们积极参与、主动思考,激发学习积极性。
4.将实际问题转化为不等式问题,解决实际问题。
(二)教学难点
1.学生对不等式性质的理解和运用。
2.图像法、区间法等求解不等式方法的掌握。
3.解决实际问题时,对问题的分析和不等式的构建。
(教学设想)
1.采用情境教学法,以生活中的实例引入不等式的概念,帮助学生理解不等式与现实生活的联系,激发学习兴趣。
2.利用比较法,将等式与不等式进行对比,引导学生发现两者的共性与差异,加深对不等式性质的理解。
1.采用问题驱动的教学方法,以实际问题引入不等式的概念,激发学生的兴趣和探究欲望。
2.通过小组合作、讨论交流等形式,引导学生发现和总结不等式的性质,培养他们的合作精神和探究能力。
3.利用图像法、区间法等直观方法,帮助学生形象地理解不等式的解集,提高他们解决问题的能力。
4.设计不同难度的习题,引导学生教学内容:针对学生的解题过程,进行个别辅导。
教学过程:在学生解题过程中,教师密切关注每个学生的进展,及时发现问题并进行个别辅导。对学生的疑问给予解答,帮助他们找到解题的思路和方法。

北师大版高中数学选修4-5《不等式选讲》全套教案

北师大版高中数学选修4-5《不等式选讲》全套教案

课 题: 第01课时 不等式的基本性质 目的要求: 重点难点: 教学过程: 一、引入:不等关系是自然界中存在着的基本数学关系。

《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢?”、“电灯挂在写字台上方怎样的高度最亮?”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。

要使制成的盒子的容积最大,应当剪去多大的小正方形?”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。

而且,不等式在数学研究中也起着相当重要的作用。

本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。

人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。

还可从引言中实际问题出发,说明本章知识的地位和作用。

生活中为什么糖水加糖甜更甜呢?转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么?分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab 即可。

怎么证呢?二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。

2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等关系》教案(北师大版必修5)
1、不等关系
素质教育目标
(一)知识储备点
感受生活中存在着大量的不等关系,了解不等式的意义,会
列不等式的表示数量关系。

(二)能力培养点
经历由具体实例建立不等式模型的过程,进一步发展学生的
符号感与数学化的能力。

(三)情感体验点
使学生体会列不等式是研究量与之间关系的重要模型之一。

学法引导
引导学生通过对众多实例的学习抽象出不等式的意义,并学
会不等式来表示数量关系。

教学设想
教学重点:理解不等式的意义,列不等式表示数量关系。

教学难点:正确理解题意列出不等式
教学方法:讨论、探索法
教学过程:
一、实验揭题:
[师]我们学过等式,知道利用等式可以解决许多问题。

那么:
1.什么样的式子叫做等式?
2.在天平两边的秤盘里,放有不同的重物,如果这时天平
是平衡的,那么天平两边的重物之间有什么关系?如果在天
平左边再加上一块方铁块,那么天平产生什么样的变化?
[交流联想]例如:1+2=3,x+6=5x,-------象这样用"="来
表示相等关系的式子叫做等式。

在天平两边的秤盘里,放有
不同的重物,如果这时天平保持平衡,那么天平两边的重物
的重量是相等的。

但是,如果在天平的左边放入一块方铁,
这是天平就会失去平衡,向左边倾斜。

通过实验使学生经历
了从相等关系转化到不等关系的过程,明白现实世界中既存
在相等关系的量,也存在不等关系的量。

由此揭示课题:不
等关系。

[教师活动]提出问题,操作实验,引导发现。

[学生活动]回顾联想,观察实验,回答问题。

二、创设情景,引入新课:
下面我们来看关于等周问题的趣话:《贪婪的巴霍姆》
贪婪的巴霍姆--等周问题趣话
巴霍姆到草原去购买土地,卖地的酋长出了一个奇怪的地价:"每天1000卢布。

"这是什么意思呢?原来,这个卖地者提
出的价格是,谁出1000卢布,他就可以去圈土地。

圈多少呢?没有限制,可是有时间限制:圈一天--在一天之内能走
多少地方,那么走过线路所圈的土地就全部属于他。

此外,
还附带一个条件是:一定要在日出时从规定地点出发,在日落前返回原出发点。

如果在太阳落山前赶不回原出发处,那么走得再多也得不到半点土地,同时那1000卢布也就算白出了。

巴霍姆觉得这个条件对自己有利,于是就付了1000卢布,接受了这笔买卖。

他决心拿出吃奶的劲儿,跑出最远的路,获得最多的土地。

第二天,太阳刚从地平线升起,巴霍姆就赶忙在草原上大踏步向前走去。

他走啊,走啊,走了足有10俄里(1俄里=1.0668公里),这才朝左拐弯;接着又走了很久,才再向左拐弯;然后他又走了2俄里。

这时他看到天色不早,也早已累得不行了,可是离清晨出发的地方还足有15俄里,于是不得不马上改变方向,径直朝出发点拼命跑去。

最后,巴霍姆总算在日落之前赶回了原地,但他却丝毫未能捞到便宜。

因为他劳累过度,待到出发地点,还未立停,就两腿一软,口吐鲜血死了。

分析巴霍姆的死因,真是令我们感叹:一是他贪心太大,死了活该;二是他不懂数学,愚昧无知。

那末,在这一天中,巴霍姆究竟走了多远的路?圈的土地有多大呢?......[师]引导学生画出巴霍姆行走的路线图。

提问:假如你是巴霍姆,你打算如何行走呢?
[生]走一个正方形或一个圆。

[师]为什么呢?请看下面的例题:
三、探索活动:
如图,用两根长度均为l cm的绳子,分别围成一个正方形和圆,
(1)如果要使正方形的面积不大于25cm2,那么绳长l应满足怎样的关系式?
(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?
(3)当l=8时,正方形和圆的面积哪个大?l=12呢?
(4)你能得到什么猜想?改变l的取值再试一试?
[师]解决这个问题,首先要了解"不大于"、"不小于"的含义。

[生]"不大于"就是小于或等于;"不小于"就是大于或等于。

[师]谁能解决这个问题?
[生](1)因为绳长l是正方形的周长,所以正方形的边长为。

根据正方形面积不大于25㎝2,可列出( )2≤25,即≤25。

(2)因为圆的周长为l,所以圆的半径为R= 。

根据圆的面积不小于100 cm2,可列出π( )2≥100,即
≥100。

(3)当l=8时,正方形的面积为( )2=4㎝2,圆的面积为5.1㎝2。

因此,在l=8时,正方形的面积小于圆的面积。

当l=12时,正方形的面积为()2=9㎝2,圆的面积为 11.5㎝2。

可见,在l=12时,正方形的面积还是比圆的面积小。

通过上述两个具体的例子,我们可以猜想:
用两根长度均为lcm的绳子,分别围成一个正方形和圆,无论l取怎样的正数值,圆的面积总是大于正方形的面积,即>。

[教师活动]:操作课件,提出问题
[学生活动]:参与其中,合作探究
四、做一做:
通过测量一棵树的树围(树干的周长),可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少生长多少年其树围才能超过2.4m?(只列关系式)[教师活动]:对学生列出的不等式,鼓励学生说出列式的理由,并尝试和学生合作交流。

五、议一议:
[师]:观察上面得到的关系式,它们有什么共同特点?由此提出不等式的概念:一般地,用符号"〈"(或"≤"),"〉"(或"≥")连接的式子叫做不等式。

六、例题讲解:
例用不等式表示:(1)a是正数;(2)a与6的和小于5;(3)x与2的差大于-1;(4)y的一半小于3.
七、练一练:
八、课时小结:
(1)注意根据题意列出不等式
(2)通过不等关系的式子,归纳出不等式的概念
(3)谈谈你对不等式的认识,及不等式与等式的区别
九、作业:
教学总结:
对于课本中问题(1)(2)涉及"不大于""不小于",对此教科书以肢注的形式进行了解释。

因此教学时,可在提出该问题之前,举例说明这两个词的含义及其符号表示。

板书设计:
不等关系
问题一的结论不等式的意义
做一做的结论练习板演。

相关文档
最新文档