第十四章光学 光的偏振
(完整版)工程光学习题参考答案第十四章光的偏振和晶体光学

第十四章 光的偏振和晶体光学1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。
解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=⎪⎪⎭⎫ ⎝⎛-====θθθn n n n o①()()()()06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+--=θθθθθθθθp s r r002222min max min max 8.93=+-=+-=ps ps r r r r I I I I P ②oB n n 3354.11tan tan1121=⎪⎭⎫ ⎝⎛==--θ ③()()4067.0sin 1sin ,0,5790212021=+--===-==θθθθθθθθs p B B r r 时,0298364.018364.011,8364.01=+-===-=P T r T p s s注:若221122,,cos cos p p s s t T t T n n ηηθθη===)(cos ,21222220min 0max θθ-=+-===ps s ps p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。
解:每片玻璃两次反射,故10片玻璃透射率()2022010.83640.028s s T r =-==而1p T =,令m m I I in axτ=,则m m m m I I 110.026890.94761I I 10.02689ax in ax in p ττ---====+++3. 选用折射率为2.38的硫化锌和折射率为1.38的氟化镁作镀膜材料,制作用于氟氖激光(632.8nm λ=)的偏振分光镜。
光学光的偏振与偏振光的特性

光学光的偏振与偏振光的特性在物理学中,光的偏振是指光波中电场矢量方向的振动方式。
光可以是偏振的,也可以是非偏振的。
而偏振光则是一种特殊的光,它的电场矢量在特定方向上振动。
本文将介绍光学光的偏振以及偏振光的特性。
一、光的偏振现象光的偏振源于光波的电场矢量在传播方向上的振动方式。
普通的自然光是一个无规则的、非偏振的光波。
当光传播的过程中经历特定的介质如晶体或者偏振器材料时,光的电场矢量的方向将被限制在特定的方向上,使得光变为偏振光。
二、线偏振光与圆偏振光偏振光可以分为线偏振光和圆偏振光两种类型。
1. 线偏振光线偏振光是一种电场矢量在一个平面内振动的偏振光。
这种振动方式有两个方向:水平方向与垂直方向。
线偏振光可以通过偏振片或者通过特定的介质来实现。
当光经过一个偏振片时,只有与偏振片相同方向的电场矢量分量得以透过,垂直于偏振片的电场矢量分量则被完全吸收或者反射。
2. 圆偏振光圆偏振光是一种电场矢量绕着传播方向以圆形轨迹运动的光波。
圆偏振光可以通过经过特定的偏振器材料或者使用偏振片与波片组合而成。
圆偏振光可以分为左旋圆偏振光和右旋圆偏振光两种类型,取决于电场矢量的旋转方向。
三、偏振光的特性偏振光具有一些独特的特性,这些特性使得偏振光在许多领域中有着重要的应用。
1. 偏振态偏振态是描述光的偏振状态的方式。
偏振态可以用一个矢量来表示,这个矢量被称为偏振矢量或者偏振态矢量。
偏振矢量可以通过确定光波在三个相互垂直的方向上的电场矢量的振幅和相位来完全描述。
2. 光的吸收与透射当平面偏振光通过一个介质时,只有与偏振光方向相同的电场矢量分量能够透过介质,垂直于光的方向的电场矢量分量则会被吸收或者反射。
这可用于制作偏振片和滤光镜等光学材料。
3. 光的干涉和衍射偏振光具有与非偏振光不同的干涉和衍射行为。
干涉是指两个或多个光波相遇时的相互作用,而衍射则是指光通过一个有限尺寸的孔或者遇到一个障碍物时的传播行为。
偏振光的干涉和衍射特性可以为光学仪器和光学应用提供各种方案。
第十四章 第2讲 光的干涉、衍射和偏振-2025届高中物理

第十四章光学第2讲光的干涉、衍射和偏振课标要求核心考点五年考情核心素养对接1.观察光的干涉、衍射和偏振现象,了解这些现象产生的条件,知道其在生产生活中的应用.知道光是横波,会用双缝干涉实验测量光的波长.2.通过实验,了解激光的特性.能举例说明激光技术在生产生活中的应用.光的干涉现象2023:山东T5,北京T2,上海T15,浙江6月T15,浙江1月T15,辽宁T8;2022:山东T10,浙江6月T4;2021:山东T7,湖北T5,江苏T6,浙江6月T16;2020:北京T1 1.物理观念:理解光的干涉、衍射和偏振现象;进一步增强物质观念,认识光的物质性和波动性.2.科学思维:通过光的干涉、衍射等论证光具有波动性,增强证据意识及科学论证能力.3.科学探究:通过实验,观察光的干涉、衍射和偏振等现象,了解激光的性质,认识波动性.4.科学态度与责任:光的干涉、衍射、偏振和激光在生产生活中的应用.光的衍射和偏振现象2023:天津T4;2020:上海T9;2019:北京T14,江苏T13B (2),上海T4命题分析预测高考主要考查光的干涉、衍射与偏振现象的理解和应用.题型多为选择题,难度较小.预计2025年高考可能会联系生产生活实际,考查光的干涉、衍射和偏振等现象的理解与结论的应用.考点1光的干涉现象1.光的干涉(1)定义:在两列光波叠加的区域,某些区域相互加强,出现[1]亮条纹,某些区域相互减弱,出现[2]暗条纹,且加强区域和减弱区域相互[3]间隔的现象.(2)条件:两束光的频率[4]相同、相位差[5]恒定.2.双缝干涉(1)双缝干涉图样的特点:单色光照射时,形成明暗相间的[6]等间距的干涉条纹;白光照射时,中央为[7]白色亮条纹,其余为[8]彩色条纹.(2)条纹间距:Δx=λ,其中l是双缝到[9]屏的距离,d是[10]双缝间的距离,λ是入射光的[11]波长.3.薄膜干涉(1)利用薄膜(如肥皂液薄膜)[12]前后表面反射的光叠加而形成的.图样中同一条亮(或暗)条纹上所对应薄膜厚度[13]相同.(2)形成原因:如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.光照射到薄膜上时,从膜的前表面AA'和后表面BB'分别反射回来,形成两列频率[14]相同的光波,并且叠加.(3)明暗条纹的判断方法:两个表面反射回来的两列光波的路程差Δr等于薄膜厚度的[15]2倍,光在薄膜中的波长为λ.在P1、P2处,Δr=nλ(n=1,2,3,…),薄膜上出现[16]明条纹.在Q处,Δr=(2n+1)2(n=0,1,2,3,…),薄膜上出现[17]暗条纹.(4)应用:增透膜、检查平面的平整度.判断下列说法的正误.(1)光的颜色由光的频率决定.(√)(2)频率不同的两列光波不能发生干涉.(√)(3)在“双缝干涉”实验中,双缝的作用是使白光变成单色光.(✕)(4)在“双缝干涉”实验中,双缝的作用是用“分光”的方法使两列光的频率相同.(√)(5)薄膜干涉中,观察干涉条纹时,眼睛与光源在膜的同一侧.(√)命题点1光的干涉的理解和明暗条纹的判断1.[2024安徽芜湖模拟]如图,利用平面镜也可以实现杨氏双缝干涉实验的结果,下列说法正确的是(C)A.光屏上的条纹关于平面镜M上下对称B.相邻亮条纹的间距为Δx=+λC.若将平面镜向右移动一些,相邻亮条纹间距不变D.若将平面镜向右移动一些,亮条纹数量保持不变解析根据双缝干涉原理,单色光源和单色光源在平面镜中的像相当于双缝,在光屏上的条纹与平面镜平行,由于明暗条纹是由光源的光和平面镜的反射光叠加而成,在平面镜所在平面的上方,并非关于平面镜M上下对称,故A错误;根据双缝干涉的相邻亮条纹之间的距离公式Δx=L/dλ,类比双缝干涉实验,其中d=2a,L=b+c,所以相邻两条亮条纹之间的距离为Δx=b+c/2aλ,故B错误;若将平面镜向右移动一些,不影响光源的像的位置和L的大小,相邻亮条纹间距不变,故C正确;若将平面镜向右移动一些,射到平面镜边缘的两条光线射到屏上的位置向下移动,宽度减小,而条纹间距不变,亮条纹数量减少,故D 错误.易错提醒研究干涉现象时的三点注意1.只有相干光才能形成稳定的干涉图样,光的干涉是有条件的.2.单色光形成明暗相间的干涉条纹,白光形成彩色条纹.3.双缝干涉条纹间距:Δx=λ,其中l是双缝到光屏的距离,d是双缝间的距离,λ是入射光波的波长.命题点2薄膜干涉2.[2023山东]如图所示为一种干涉热膨胀仪原理图.G为标准石英环,C为待测柱形样品,C的上表面与上方标准平面石英板之间存在劈形空气层.用单色平行光垂直照射上方石英板,会形成干涉条纹.已知C的膨胀系数小于G的膨胀系数,当温度升高时,下列说法正确的是(A)A.劈形空气层的厚度变大,条纹向左移动B.劈形空气层的厚度变小,条纹向左移动C.劈形空气层的厚度变大,条纹向右移动D.劈形空气层的厚度变小,条纹向右移动解析由于C的膨胀系数小于G的膨胀系数,所以当温度升高时,G增长的高度大于C增长的高度,则劈形空气层的厚度变大,且同一厚度的空气膜向劈尖移动,则条纹向左移动,A正确,BCD错误.考点2光的衍射和偏振现象1.光的衍射(1)定义:光绕过障碍物偏离直线传播的现象称为光的衍射.(2)产生明显衍射的条件:只有当障碍物或孔的尺寸[18]接近光的波长或比光的波长还要小时能产生明显的衍射.对同样的障碍物,波长越[19]长的光,衍射现象越明显;相对某种波长的光,障碍物越[20]小,衍射现象越明显.任何情况下都可以发生衍射现象,只是明显与不明显的区别.2.光的偏振(1)自然光:包含着在垂直于传播方向上沿[21]一切方向振动的光,而且沿着各个方向振动的光波的强度都[22]相同.(2)偏振光:在[23]垂直于光的传播方向的平面上,只沿着某个[24]特定的方向振动的光.(3)偏振光的形成:①让自然光通过[25]偏振片形成偏振光.②让自然光在两种介质的界面发生反射和[26]折射,反射光和折射光可以成为部分偏振光或完全偏振光.(4)偏振光的应用:加偏振滤光片的照相机镜头、液晶显示器、立体电影、消除车灯眩光等.(5)光的偏振现象说明光是一种[27]横波.我们经常看到交通信号灯、安全指示灯、雾灯、施工警示灯等都是红色的信号灯,这除了红色光容易引起人们的视觉反应外,还有一个重要原因,这个原因是红光波长较长,比其他可见光更容易发生衍射现象.当阳光照射较厚的云层时,日光射透云层后,会受到云层深处水滴或冰晶的反射,这种反射在穿过云雾表面时,在微小的水滴边缘产生衍射现象.试判断下列现象的成因与上面描述是(√)否(×)相同.(1)雨后的彩虹.(✕)(2)孔雀羽毛在阳光下色彩斑斓.(√)(3)路面上的油膜阳光下呈现彩色.(✕)(4)阳光照射下,树影中呈现一个个小圆形光斑.(✕)命题点1干涉、衍射图样的比较3.[2023天津南开中学校考]关于甲、乙、丙、丁四个实验,以下说法正确的是(D)A.四个实验产生的条纹均为干涉条纹B.甲、乙两实验产生的条纹均为等距条纹C.丙实验中,产生的条纹间距越大,该光的频率越大D.丁实验中,适当减小单缝的宽度,中央条纹会变宽解析甲、乙、丙实验产生的条纹均为干涉条纹,而丁实验是光的衍射条纹,故A错误;甲实验产生的条纹为等距条纹,而乙是牛顿环,空气薄层不均匀变化,则干涉条纹间距不相等,故B错误;根据干涉条纹间距公式Δx=λ,丙实验中,产生的条纹间距越大,则波长越长,频率越小,故C错误;丁实验中,产生的明暗条纹间距不相等,若减小单缝的宽度,中央条纹会变宽,故D正确.易错提醒1.光的干涉与衍射的比较2.图样不同点3.图样相同点干涉、衍射都属于光的叠加,都是波特有的现象,都有明暗相间的条纹。
光的偏振概念

光的偏振概念1. 概念定义光的偏振是指光波在传播过程中,电矢量振动方向固定的特性。
光波是由电场和磁场构成的电磁波,而光的偏振则是指电场振动方向的特定取向。
通常情况下,光波中的电场矢量可以沿着任意方向振动,这种情况下称为自然光或非偏振光。
然而,在某些情况下,光波中的电场矢量会沿着特定方向进行振动,这种现象被称为偏振。
2. 重要性2.1 揭示光的本质通过对光的偏振进行研究,可以更深入地理解和揭示光的本质。
在19世纪初期,法国物理学家菲涅耳提出了“以波解释光”的观点,并通过对偏振现象的研究来支持这一观点。
他发现了自然光通过某些材料后会发生偏振现象,并提出了“法布里-珀罗”效应来解释这种现象。
这一发现推动了光的波动理论的发展,为后来的光学研究奠定了基础。
2.2 应用于光学器件光的偏振现象在许多光学器件中起着重要作用。
例如,偏振片可以通过选择性地透过或阻挡特定方向的偏振光来实现光的分离、滤波和调制等功能。
在液晶显示器中,通过控制液晶分子的偏振方向来实现图像显示。
而在激光器中,通过选择合适的偏振方式可以提高激光束的质量和稳定性。
2.3 在生物和医学领域中的应用光的偏振也在生物和医学领域中得到广泛应用。
例如,在显微镜技术中,通过使用偏振滤波器可以增强对细胞组织结构和分子取向等细节信息的观察。
此外,由于某些生物组织具有特定的偏振特性,因此通过对其偏振状态进行测量可以实现对组织病理变化、肿瘤诊断等方面提供有价值的信息。
3. 应用举例3.1 光通信光通信是一种高速、大容量的通信方式,广泛应用于现代通信系统中。
在光纤传输中,光信号被编码为脉冲序列,并通过光纤进行传输。
而这些光脉冲可以通过调制光的偏振来实现信息的传输和解调。
例如,利用偏振分束器和偏振旋转器等器件,可以将不同偏振方向的光脉冲进行分离和复用,从而提高光纤传输的容量和效率。
3.2 光学显微镜在生物学和医学研究中,显微镜是一种重要的工具。
其中偏振显微镜常常被用于观察材料的组织结构、晶体取向等信息。
光的偏振现象

光的偏振现象光的偏振现象是指光波在传播过程中,由于不同方向的振动方式而导致的现象。
这是一个重要的光学现象,在科学研究和实际应用中都有广泛的应用。
本文将介绍光的偏振现象的基本概念和原理,以及其在光学仪器和通信技术中的应用。
一、光的偏振现象的基本概念和原理1. 偏振光的特点光是由电场和磁场相互垂直振动而构成的电磁波,而偏振光则是指在某个方向上振动的光。
偏振光具有以下特点:(1)振动方向:偏振光只在一个特定的方向上振动,而垂直于该振动方向的光则被滤去。
(2)振动相位:偏振光的振动相位是固定的,即光波在传播过程中的相位差保持不变。
2. 光的偏振方式光的偏振方式主要有线偏振和圆偏振两种形式。
(1)线偏振:线偏振光是指光波中的电场矢量沿着特定方向振动的光。
线偏振光的传播方向可以是任意方向。
(2)圆偏振:圆偏振光是指光波中的电场矢量在传播过程中绕光轴旋转形成的光。
圆偏振光可以分为左旋圆偏振和右旋圆偏振两种形式。
3. 光的偏振现象原理光的偏振现象可以通过光波的叠加原理来解释。
当两束偏振方向不同的光波叠加时,交替相加或相互抵消,从而形成了偏振现象。
二、光的偏振现象在光学仪器中的应用1. 偏光镜偏光镜是一种根据光的偏振特性来控制光线传播方向的光学元件。
它广泛应用于显微镜、摄影镜头、激光器和光学仪器中。
通过偏光镜的使用,可以选择性地通过或滤除特定方向上的偏振光,从而实现对光线的调节和控制。
2. 偏振片偏振片是一种能够选择性地通过或滤除特定方向上偏振光的光学元件。
它常用于液晶显示器、太阳镜等光学设备中。
偏振片通过特殊的制备工艺,使得只有特定方向的偏振光能够通过,从而实现对光线的调节和过滤。
三、光的偏振现象在通信技术中的应用1. 光纤通信光纤通信是一种利用光的偏振特性传输信息的技术。
通过控制光的偏振方向和相位,可以实现光信号的调制和传输。
光纤通信具有高速、大容量和长距离传输等优点,已成为现代通信领域的重要技术。
2. 光栅光栅是一种使用光的偏振现象进行信息编码和解码的光学元件。
光学中的光的偏振与衍射

光学中的光的偏振与衍射光的偏振与衍射是光学领域中重要的概念。
光的偏振指的是光的电场振动方向,在不同的介质中传播时会发生变化。
而光的衍射是指光线经过一个绕射物体或者通过孔隙时产生的光的分散现象。
本文将介绍光的偏振和光的衍射的基本原理和应用。
一、光的偏振光的偏振是指光波中电场振动方向的变化。
一般来说,自然光是无偏振的,它的电场振动方向在各个方向上都是不确定的。
但是在某些情况下,光的振动方向会被限制在一个平面上,这就是偏振光。
光的偏振可以通过偏振片来实现。
偏振片是具有规则排列的分子链,当自然光通过偏振片时,只有与分子链排列方向相同的光能够透过,而其他方向的光则被阻挡。
因此,偏振片可以将自然光转化为偏振光。
光的偏振在许多领域中都有重要应用,例如显微镜、光学检测和光通信等。
通过控制光的振动方向,可以实现更精确的成像、检测和通信。
二、光的衍射光的衍射是指光线通过一个绕射物体或者通过一个孔隙时产生的光的分散现象。
当光线遇到一个绕射物体时,它会发生弯曲并从不同的方向分散出去。
这种现象可以用傍晚夕阳下窗户的模样来形象地理解。
光的衍射现象在日常生活中也有很多应用。
例如,CD、DVD等光盘的读取原理就是利用了光的衍射现象。
当激光光束照射在光盘表面刻有微小螺纹的部分时,光线会发生衍射,通过检测衍射光的强度和相位变化,可以将光盘上的信息解码。
此外,光的衍射还广泛应用于干涉仪、衍射望远镜等光学设备中。
通过精确地控制光的干涉和衍射现象,可以实现高分辨率的成像和测量。
三、光的偏振与衍射的关系光的偏振和衍射是密切相关的。
当偏振光通过一个孔隙或者绕射物体时,它的振动方向会发生变化,导致光的分散现象。
同样,通过控制光的偏振状态,也可以改变光的衍射效果。
例如,在光学应用中常用的偏振衍射光栅就是通过通过光的偏振和衍射相结合的技术实现的。
偏振衍射光栅可以将不同偏振方向的光分散到不同的位置,从而实现光的分光和调制。
此外,通过使用偏振光进行光的衍射实验,还可以研究物质的光学性质和结构。
大学物理 光的偏振

A//
A cos 0
而光强 I A2
I // IO
A/2/ A0 2
( Ao
c os a) 2 A0 2
I I0 cos2 a
AM 0
A
N
A//
o
14
如果入射到检偏片的线偏振光是穿过起偏器的光,则公式
一串光波列是横波。但从宏观上看,光源发出的光中包含了所有方向的光振动, 振动面可以分布在一切可能的方位,任何方向光矢量对时间的平均值是相等的。
所以自然光的光振动对光的传播方向是轴对称而又均匀分布的。
x E
c z
y
S
5
光振动的振幅在垂直于光波的传播方向上,既有时间分布的均匀性,又有空间分 布的均匀性,具有这种特性的光就叫自然光 。 ( 或者说,具有各个方向的光振动, 且又无固定的位相关系的光)。
9
§14-2 起偏和检偏 马吕斯定律
一、偏振片的起偏、检偏
起偏: 把自然光变成偏振光。
1、偏振器:把自然光变成为全偏振光的仪器。 有些晶体(例如硫酸金鸡钠硷)对互相垂直的两个分振动
光矢量具有选择性吸收,这种现象称作晶体的二向色性。 自然光通过这种晶体薄片后,只剩下一个方向的振动,而
另一个方向的振动则被吸收。这种晶体薄片就可做偏振片。
n sin i0 1.73
sin 0
或者,由
将i0=600代入,得
tan i0
n2 n1
n2
n=1.73
26
§14-4 光的双折射现象 一、光的双折射
当一束光投射到两种媒质的交界处,一般只能看到一束折射光,折射定律为:
光学中的光的偏振与干涉

光学中的光的偏振与干涉光学是研究光以及光与物质相互作用的学科。
在光学中,光的偏振与光的干涉是两个重要的概念,它们在解释光的行为和应用中起着至关重要的作用。
一、光的偏振光的偏振是指光波中电场矢量的方向。
通常情况下,光波中的电场沿着一个平面振动,在这种情况下,我们称光波为偏振光。
不同的偏振方向会对光的传播和相互作用产生影响。
光的偏振可以通过偏振片的使用来实现。
偏振片可以将非偏振光转换为偏振光,也可以选择性地通过特定方向的偏振光。
这种技术在很多应用中被广泛使用,比如液晶显示器和太阳镜。
二、光的干涉光的干涉是指两个或多个光波的相互作用。
当两个光波相遇并叠加时,它们会发生干涉现象。
干涉可以是构造性的,也可以是破坏性的,取决于光波的相位和振幅差异。
干涉现象通过干涉条纹来展示。
干涉条纹是在干涉过程中由于不同光波的叠加而形成的亮暗交替的条纹。
通过这些条纹,我们可以观察和分析光的波动特性以及光的性质。
干涉在各个领域都有应用,比如干涉测量、光学干涉仪、干涉光谱学等。
通过利用干涉现象,科学家可以实现对物质的测量和分析,也可以研究光的传播和相互作用的规律。
三、光的偏振与干涉的联系光的偏振和干涉虽然是两个不同的概念,但它们之间存在一定的联系。
一方面,偏振光可以用于干涉实验。
通过选择特定方向的偏振光,可以产生特定的干涉条纹,从而实现对光的干涉的研究。
另一方面,偏振光在干涉过程中也会受到影响。
不同偏振方向的光波在叠加时会产生相位差,这会导致干涉条纹的改变。
通过分析干涉条纹的变化,可以进一步研究光的偏振性质以及光与物质的相互作用。
四、光的偏振与干涉的应用光的偏振和干涉在很多领域都有广泛的应用。
在光通信领域,偏振光可以用于提高信号传输的质量和距离。
在材料研究中,干涉技术可以用于测量材料的厚度、折射率等参数。
在生物医学领域,光的偏振和干涉可以用于显微镜成像和组织结构的分析。
总结:光的偏振和干涉是光学中的重要概念,它们对于理解光的行为和应用至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2). 正晶体和负晶体
e 光与 o 光的速率在⊥光轴的方向上相差最大。
★正晶体: ve≤ vo或 ne≥ no的晶体 例:石 英
★负晶体: ve≥ vo或 ne≤ no的晶体 例:方解石
光轴
正
vet
晶 vot
• 子波源
体
光轴
负 晶
vot•
子波源
ve t
体
椭球面在球面内
椭球面在球面外
自然光
线偏振光
● ●●●
P1
起偏器
P2
检偏器
两偏振片的偏振化方向相互垂直,光强为零
自然光
线偏振光
● ●●●
P1
起偏器
P2
检偏器
两个偏振片的偏振化方向相互平行,光强最大
自然光
线偏振光
● ●●●
P1
起偏器
P2
检偏器
自然光通过旋转的检偏器,光强不变
自然光
线偏振光
● ●●● ● ●
P2 检偏器
自然光通过旋转的检偏器,光强不变
1. 利用晶体的二向色性;
二向色性 — 吸收一个方向光振动而透过另一个方向光
振动的特性
●
●
●
●
●
●
●
2. 利用自然光在介质表面的反射和折射;
3. 利用晶体的双折射;
4. 利用分子散射;
5. 利用新型激光。
§13-10 偏振光的获得和检测 (起偏和检偏)
一、起偏和检偏
1. 起 偏:使自然光或非偏振光变成线偏振光。
2. 没有优势方向; 2. 各方向的光矢量振幅相等; 3. 可用一对独立的、相互垂直的、
振幅相等的光矢量表示。
★ 自然光的表示方法:
•••• • ••• • •
“ •” 表示光振动⊥纸面;
“ ” 表示光振动∥纸面。
没有优势方向 自然光的分解
二、线偏振光 —只含某一个固定振动方向的光。
简称:偏振光
亦称:完全偏振光,平面偏振光
自然光
线偏振光
● ●●● ● ●
P2 检偏器
二、马吕斯定律
P
I0
I
E0 P
E0sin E0cos
I0 — 入射线偏振光强度
I — 出射线偏振光强度
II0co2s
I (E0cos)2 co2s
I0
E02
马吕斯定律(1809) (13-71)
(理想情况)
—入射偏振光的振动方向与偏振片偏振化方向的夹角
第 十三章
光 的 偏 振
§13-9 自然光 偏振光
★ 振动面: 振动方向与传播方向组成的平面
★ 偏 振: 光矢量 E 的振动方向对传播方向的不对称性
★ 偏振态: 光矢量在垂直光传播方向的平面内的振动状态
E
光矢量振动面
O
u
H
★ 结论:只有横波才有偏振现象。
一、自然光及其特点
1. 光矢量具有环绕传播方向的对称性, 垂直光传播方向的平面内,光振动
⑵ 自然光经过波片出射后仍为自然光;
(自然光进入波片时分成的 o、e 光无固定的相位差)
⑶ 入射线偏振光振动方向平行或垂直波片光轴(即
0, 2)出射光仍为原振动方向的线偏振光。
7). 波片的应用
⑴ /4 波片可改变偏振光的偏振性质,使线偏振光变为圆
或椭圆偏振光等,亦可鉴别自然光、圆或椭圆偏振光;
⑶ 光从真空 (或空气) 入射到折射率为 n 的透明介质界面上时,
起偏角 i0 满足: tain 0n
例:玻璃 n = 1.50 , i0 57 .
布儒斯特定律的应用 :
1. 反射起偏和检偏 2. 透射起偏
利用玻璃片堆 产生线偏振光
i ••••••0 •• •• •• •••••• •• ••••••••••
dmin
1 none
4
n o n e d 2 k 1 4
d (2 k 1 ) 1 , k 0 ,1 ,2 ,
(n o n e )4
5). 二—分满之足一波n 片on ed2k1 2的波片。
n o n ed 2 k 1 2, k 0 ,1 ,2 ,
Δ 2 n o n e d 2 k 1
I0
I
P1
P3
P2
I2 = ?
9 I2 4 I1
反射光和折射光的偏振:
入射光
自然光
i
r
反射光
部分偏振光
n1
n2
折射光
部分偏振光
反射光:⊥入射面的成份多于∥成份;
折射光:⊥入射面的成份少于∥成份。 (随 i 变化)
三、布儒斯特定律 (课本 p .513)
反射光的偏振化程度与入射角有关,当入射角等于某一
3). 惠更斯原理对双折射现象的解释 以负晶体方解石为例
⑴ 光轴∥晶体表面, 自然光⊥入射:
⑵ 光轴⊥晶体表面且∥入射面,
自然光斜入射:
●
●
●
●
●
●
●
●
●
i ● ●
●
●
i ● ● ●
光轴
●
●
●
●
o eo e
光 轴
re
r●
o●
● ●
●
●
o eo e
⑶ 光轴与晶体表面斜交,自然光⊥入射:
●
●
●
●
●
●
玻璃片堆
接近 线偏振光
四 光的双折射 (课本 p 513)
1、双折射现象
— 对于各向异性晶体,一束光射入晶体后,可观察到有
两束折射光的现象。 1). 寻常光和非常光
★ 寻常光 (简称 o光)
— 遵守折射定律
★ 非常光 (简称 e光)
— 不遵守折射定律
o 光和 e 光 都是线偏振光。
CAI
自然光
●
i ● ● ●
2、光轴 主平面
1). 光轴 — 当光在晶体内沿某个特殊方向传播时不发生双折射
, 该方向称为晶体的光轴。
102° A
例:方解石(CaCO3)
光轴
B 2). 光轴的特点:
⑴ 光轴是一特殊的“方向”,不是一条直线,凡平行于此 方向的直线均为光轴。
⑵ 沿光轴方向 ve = vo ,neno。
3). 单轴晶体和双轴晶体
··
∥纸面的光振动较强
·····
⊥纸面的光振动较强
四、圆偏振光和椭圆偏振光
★ 圆 偏 振 光 —光矢量在⊥传播方向的平面内
以一 定角频率旋转,且光矢量 端点的轨迹是圆的光。
★ 椭圆偏振光 —光矢量在⊥传播方向的平面内
以一 定角频率旋转,且光矢量 端点的轨迹是椭圆的光。
左旋光
右旋光
五、获得偏振光的方法
特定值 i0 时,反射光成为完全偏振光。
入射光
自然光
i0
r0
反射光
完全偏振光
n1 n2
折射光
部分偏振光
1. 布儒斯特定律 — 自然光从折射率为 n1 的介质射向折射
率为 n2 的介质的界面,当入射角 i 满足
tani0
n2 n1
,
(13-69) 时,反射光
成为振动方向⊥入射面的完全偏振光。
i 0 称 起偏振角 或 布儒斯特角。
自然光
线偏振光
● ●●● ● ●
P2 检偏器
自然光通过旋转的检偏器,光强不变
自然光
线偏振光
● ●●● ● ●
P2 检偏器
自然光通过旋转的检偏器,光强不变
自然光
线偏振光
● ●●● ● ●
P2 检偏器
自然光通过旋转的检偏器,光强不变
自然光
线偏振光
● ●●● ● ●
P2 检偏器
自然光通过旋转的检偏器,光强不变
3). 线偏振光透过波片时o 、e 光的光程差和相位差:
光程差:
(none)d
相位差: Δ 2 2(no-ne)d
4). 四分之一波片
— 满足 noned2k1 4的波片 n o n ed 2 k 1 4, k 0 ,1 ,2 ,
Δ 2 2 n o n e d 2 k 1 2
★ /4 波片的特点:
★ / 2 波片的特点:
(1) 一束线偏振光通过λ/2 波片后,
光轴 Ee入= Ee出
E出
E入
θθ
出射光仍为线偏振光,振动方向
转过 2θ 角。
Eo出
Eo入
(2)
/ 2 波片的最小厚度满足: dmin
1 none
2
d(2k1) 1
(n on e)2
6). 说明:
⑴ /4 波片和 /2 波片是对给定波长λ的光而言;
当方解石晶体旋转时,o光不动,e光围绕o光旋转
纸面
双 折
光 光
射
方解石 晶体
当方解石晶体旋转时,o光不动,e光围绕o光旋转
纸面
双 折
光光
射
方解石 晶体
当方解石晶体旋转时,o光不动,e光围绕o光旋转
纸面
双 折
光光
射
方解石 晶体
当方解石晶体旋转时,o光不动,e光围绕o光旋转
纸面
双
折 光光
射
方解石 晶体
⑴ 单轴晶体 — 只有一个光轴方向的晶体
例: 方解石,石英,冰
⑵ 双轴晶体 — 有两个光轴方向的晶体
例: 云母, 硫磺, 蓝宝石
4). 主截面 — 光轴与晶面法线构成的平面
5). 主平面 — 晶体中的光线与光轴构成的平面
o光的
主平面
····
e光的
主平面
光轴
o光 光轴
e光