后六章工程光学习题及解答
工程光学练习题与解答

工程光学练习题与解答工程光学练习题与解答光学作为一门应用广泛的工程学科,对于工程师们来说是非常重要的一门课程。
理解光学原理和应用是工程师在设计和制造光学器件和系统时必备的技能。
为了帮助读者更好地理解和掌握工程光学知识,本文将提供一些光学练习题和详细的解答。
1. 一个平行光束垂直入射到一个半径为R的球面透镜上,透镜的焦距为f。
求出该透镜的曲率半径和球面上的光焦点位置。
解答:根据透镜公式,1/f = (n-1)(1/R1 - 1/R2),其中n为透镜的折射率,R1和R2分别为透镜两个球面的曲率半径。
由于球面透镜是对称的,所以R1 = R2 = R。
将入射光束的方向与透镜法线方向垂直,可以得到R = 2f。
由于光线垂直入射到球面透镜上,入射角为0,根据球面折射定律,折射角为0。
因此,光线通过透镜后仍然是平行光束,光焦点位置在无穷远处。
2. 一个凸透镜的焦距为20cm,物距为30cm。
求出像的位置和放大倍数。
解答:根据薄透镜公式,1/f = 1/v - 1/u,其中f为透镜焦距,v为像距,u为物距。
代入已知数据,得到1/20 = 1/v - 1/30。
解方程得到v = 60cm。
根据放大倍数公式,放大倍数为m = -v/u。
代入已知数据,得到m = -60/30 = -2。
由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为2。
3. 一个凹透镜的焦距为-15cm,物距为30cm。
求出像的位置和放大倍数。
解答:由于凹透镜的焦距为负值,所以可以根据薄透镜公式得到1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
代入已知数据,得到1/-15 = 1/v - 1/30。
解方程得到v = -10cm。
根据放大倍数公式,放大倍数为m = -v/u。
代入已知数据,得到m = -(-10)/30 = 1/3。
由于负号表示像是倒立的,所以像是倒立的,并且放大倍数为1/3。
4. 一个平行光束垂直入射到一个半径为R的球面镜上,镜的焦距为f。
工程光学试题

工程光学试题—■判断(分,每题分)1.在介质中,光沿直线传播。
(X)2•同种光在不同介质中传播速度不同,频率不同。
(x)3.全反射发生的条件是光线从光疏介质射向光密介质。
(x)4.孔径角以光线起算转向光轴,顺时针旋转角度为正,逆时针旋转角度为负。
(X)5.在共轴球面光学系统中,横向放大率卩=3,表明该物所成的像为正立像且物像虚实相反。
(v6.垂直于光轴的物平面,其共轭像平面也必然垂直于光轴。
(v)7.在眼睛的光学成像系统中,明视距离就是近点距离。
(x)8.物方焦点和像方焦点,物方主店和像方主点是两队共轭点。
(x)9.对近视眼,显微镜所成的像应位于近视眼的远点上,应将目镜向前调。
(v)10.望远镜能使入射的平行光束仍保持平行地射出光学系统O(V)二.填空(分,每空分)1.一条入射线经转e角的平面镜反射,其反射光线转过兰角,2夹角为a的平面镜,光线从射入到射出总共反射了n次,则其出射线与入射线夹角为2n a。
2.用垂轴放大率判断物、像正倒关系方法:当0>0时正像,0<0时倒像。
3.光楔的顶角为a,则其最小偏向角为(n-1)a。
4.反射棱镜的作用转折光轴、转像、分像(分光、分色)合像。
5.正常眼的远点距为无穷远,近点距为眼前2£0_mm,视度调节范围为10屈光度,明视距离为250mm。
6•设计一个T=5x的放大镜,其焦距f=50mm。
7•已知某望远镜物镜焦距f1D=250mm,f2D=25mm,则该望远镜焦距fD=8,光学筒长L=275mm,放大倍数T=-10,此望远镜为开普勒(开普勒/伽利略)望远镜。
8.某人眼睛在放松状态下只能将位于眼睛前方0・5m处的物体成像在视网膜上,则此人眼睛的度数为一200度,应该戴一副焦距fD=—500mm的眼镜。
三■作图(分,每题分)1.完成光路图,标出A的像AQ,保留作图痕迹。
(1)答案:(2)用图解法求组合光组的基点(基面)的位置。
答案:、设输入为右手坐标系,画出经图中棱镜后的输出坐标系。
工程光学习题解答

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学基础教程习题答案完整

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学练习答案(带样题).doc

工程光学练习答案(带样题)期末,东北石油大学审查了09级工程光学的测量和控制材料。
第一章练习1,假设真空中的光速为3米/秒,则计算水中(n=1.333)、皇冠玻璃(n=1.51)、燧石玻璃(n=1.65)、加拿大树胶(n=1.526)、钻石(n=2.417)和其他介质中的光速。
解决方案:当灯在水中时,n=1.333,v=2.25m米/秒,当灯在皇冠玻璃中时,n=1.51,v=1.99m米/秒,当灯在燧石玻璃中时,n=1.65,v=1.82m米/秒,当灯在加拿大树胶中时,n=1.526,v=1.97m米/秒,当灯在钻石中时,n=2.417,v=1.24米/秒。
2.一个物体穿过针孔照相机,在屏幕上形成一个60毫米大小的图像。
如果屏幕被拉开50毫米,图像的尺寸变成70毫米,计算出从屏幕到针孔的初始距离。
解决方案:在同一个均匀的介质空间中,光直线传播。
如果选择通过节点的光,方向不会改变,从屏幕到针孔的初始距离为x,则可以根据三角形的相似性得到:因此,x=300mm毫米意味着从屏幕到针孔的初始距离是300毫米。
3、一块厚度为200毫米的平行平板玻璃(n=1.5),下面放一块直径为1毫米的金属板。
如果玻璃板上覆盖有圆形纸片,则要求玻璃板上方的任何方向都不能看到纸片。
这张纸的最小直径是多少?解决方案:如果纸片的最小半径是x,那么根据全反射原理,当光束从玻璃发射到空气中的入射角大于或等于全反射临界角时,就会发生全反射,正是由于这个原因,在玻璃板上方看不到金属片。
全反射的临界角由下式确定:(1)其中N2=1,n1=1.5,根据几何关系,利用平板的厚度和纸张与金属片的半径计算全反射临界角的方法如下:(2)纸张的最小直径x=179.385mm毫米可以通过组合等式(1)和(2)来获得,因此纸张的最小直径为358.77毫米4.光纤芯的折射率是n1.包层的折射率为n2,光纤所在介质的折射率为n0。
计算光纤的数值孔径(即n0sinI1,其中I1是光在光纤中以全反射模式传播时,光在入射端面的最大入射角)。
后六章工程光学习题及解答

I1]) / 1.471 相同,故前光线的光程差为 OPD ([ AO] [ A1
后光线:以 M 面作为起始面,后光线的初始数据为:
X 1 DEP /2,Y1 L tan U, Z1 0 K1 0, L1 n1 sin U , M1 n1 cosU
[AO]=[AB]+[BC]+[CD]+[DE]+[EF]+[FG]+[GH]-[HO]; 计算可得每一段的光程为: [AB]=0.311mm,[BC]=8.119mm,[CD]=8.380mm, [DE]=2.689mm,[EF]=7.121mm,[FG]=4.341mm, [GH]=69.847mm,[HO]=80.533mm. 故主光线的光程为:[AO]=20.274mm. 上光线:同样以 M 面作为起始面开始光线追迹,依次经过每个折射面,到达高斯像面后反 向追迹到参考波前,可得到上光线的光程. 上光线的光程为:
OPD
子午面
H1 H
M
I1
A1
A1'
出瞳
F1
D1
E1
上光
G1
G
线
B1
C1
D
B
E
F
主光
线Leabharlann 高 斯 像 面AT
C
O
线 下光
参考波前 实际波前
提示:主光线和其它光线分别从垂直于主光线并过T点的切平 面进行光线追迹至参考球,再求它们间的光程差
图 7.1 解: (1)确定照相物镜的入瞳位置 L :由于系统没有专门设置的光孔,这里假设第四面为孔 径光阑.于是先根据 ynu 光线追迹方法计算入瞳的位置(逆光线计算).设轴上点发出的光线 在 第 一 面 上 的 高 度 为 y1 10mm , 物 距 此 时 等 于 间 隔 t1 1.6mm , 所 以 ,
工程光学基础教程习题答案完整

第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
第三版工程光学答案

第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。
4、一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01c o s 22=-=I 88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n.16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K1 0, L1
n1 DEP / 2 h
DEP / 2 h
n1 L L
2
LL =
2
=
-(20/2-20) (20/2-20) 2 (16.35452 100) 2 16.35452+100
=0.08563,
M1
DEP / 2 h
2
=0.24967,
M1 Leabharlann DEP / 2 h
2
L L
16.35452+100 (20/2+20) 2 (16.35452 100) 2
2
0.96833
主光线的初始数据为:
X 1 0, Y1 h 20, Z1 0
K1 0, L1
2.根据图 3.2.6 所示的三片式 Cooke(库克)照相物镜的结构参数,设入瞳直径 D=20mm, 试确定光束光线的初始数据: (1)当无限远轴外点发出的平行光束以 21视场角进入该系统 时,求上光线、主光线和下光线的初始数据; (2)当物高为 h=-20mm,位于系统前 100mm 处时,分别求物顶点发出上光线、主光线和下光线的初始数据. 解:首先,确定该结构的入瞳位置 L .由于系统没有专门设置的光孔,这里假设第四面为孔 径光阑.于是先根据 ynu 光线追迹方法计算入瞳的位置(逆光线计算).设轴上点发出的光线 在第一面上的高度为 y1=10mm, 物距此时等于间隔 t1=1.6mm, 所以, u1 = y1 t1 10 /1.6 6.25 . 按照第 2 章中的 ynu 光线追迹过程,得到入瞳的位置为 l4 L 16.35452mm . (1)根据式(7.3.21)计算得上光线的初始数据为:
[AO]=[AB]+[BC]+[CD]+[DE]+[EF]+[FG]+[GH]-[HO]; 计算可得每一段的光程为: [AB]=0.311mm,[BC]=8.119mm,[CD]=8.380mm, [DE]=2.689mm,[EF]=7.121mm,[FG]=4.341mm, [GH]=69.847mm,[HO]=80.533mm. 故主光线的光程为:[AO]=20.274mm. 上光线:同样以 M 面作为起始面开始光线追迹,依次经过每个折射面,到达高斯像面后反 向追迹到参考波前,可得到上光线的光程. 上光线的光程为:
X 1 DEP /2,Y1 L tan U, Z1 0 K1 0, L1 n1 sin U , M1 n1 cosU
光线追迹得到前光线的光程为:
[ A1I1] 2.266+5.438+7.632+5.751+6.420+1.878+71.426-80.539=20.273mm
'
以高斯像面为参考面时,出瞳的位置为 L 10.46278 67.4907 77.95348mm .
'
(2) 主光线:先以第一个折射面垂直于光轴的切平面 M 作为起始面,将已知数据代入式 (7.3.21) ,得到主光线的初始数据,利用公式(7.3.5)到式(7.3.19)可以分别计算出光线 在每个折射面上的坐标和折射后的光学方向余弦.从 M 面开始追迹光线,依次经过每个折射 面,到达高斯像面后反向追迹到出瞳面,得到主光线的光程. 主光线的光程为:
计算边光线的光程差应从与光线垂直的切平面开始进行光线追迹,故上光线的光程应加上
YA1 YA sin14。 =
DEP sin14。 2.419mm . 2
故上光线的光程差为 OPD=([AO]-([A1I1]+2.419))/λ=-19.185λ. 同理,下光线的工程为:
[ A2 I 2 ] [ A2 B2 ] [ B2C2 ] [C2 D2 ] [ D2 E2 ] [ E2 F2 ] [ F2G2 ] [G2 H 2 ] [ H 2 I 2 ] 3.606 3.624 7.938 5.863 5.947 3.220 73.006 80.511 22.693mm
OPD
子午面
H1 H
M
I1
A1
A1'
出瞳
F1
D1
E1
上光
G1
G
线
B1
C1
D
B
E
F
主光
线
高 斯 像 面
A
T
C
O
线 下光
参考波前 实际波前
提示:主光线和其它光线分别从垂直于主光线并过T点的切平 面进行光线追迹至参考球,再求它们间的光程差
图 7.1 解: (1)确定照相物镜的入瞳位置 L :由于系统没有专门设置的光孔,这里假设第四面为孔 径光阑.于是先根据 ynu 光线追迹方法计算入瞳的位置(逆光线计算).设轴上点发出的光线 在 第 一 面 上 的 高 度 为 y1 10mm , 物 距 此 时 等 于 间 隔 t1 1.6mm , 所 以 ,
下光线的初始数据为:
X 1 0,Y1 L tan U DEP /2= 16.35452 tan(21 )-20/2= 16.27791mm, Z1 0
K1 0, L1 n1 sin U =sin(21)=0.35837, M1 n1 cosU =cos(21)=0.93358
不论是从 M 面开始追迹或是从与光线垂直的切平面开始追迹,前光线与主光线的光程差都
I1]) / 1.471 相同,故前光线的光程差为 OPD ([ AO] [ A1
后光线:以 M 面作为起始面,后光线的初始数据为:
X 1 DEP /2,Y1 L tan U, Z1 0 K1 0, L1 n1 sin U , M1 n1 cosU
[ A1I1 ] [ A1B1 ] [ B1C1 ] [C1D1 ] [ D1E1 ] [ E1F1 ] [ FG 1 1 ] [G1H1 ] [ H1I1 ] 0.728 7.436 7.367 5.450 7.034 0.533 69.904 80.586 17.866mm
第七章像差概论
1. 设参考像点在像平面上的坐标为(0,0) ,有五条光线与像面相交,它们相对于该参考像点 的坐标分别为(3,1) , (2,3) , (-2,2) , (-1,-2) , (2,-1) ,求该弥散斑的 RMS 尺寸.单位:μm. 解:因为 RMS x
1 5 x x0 5 i 1 i
2 2 解:(1) W W422 H 4 4 cos2 W422 H 4 x 2 p yp yp
H 0
y
x
R W R 3 , W442 H 4 2 x 2 (2) y p yp 4 yp rp y p rp R W R x W442 H 4 2 y 2 p xp rp x p rp
2
L L
2
(20/2-20) 2 (16.35452 100) 2
0.99633
3.根据图 3.2.6 所示的三片式 Cooke(库克)照相物镜的结构参数,设入瞳直径 D=20mm, 第四面是孔径光阑.如图 7.1 所示,当入射光的波长 587.562nm ,并以 14视场角从无限 远轴外点入射时,试确定: (1) 该照相物镜入瞳和出瞳的位置. (2) 子午面内上光线 ( x p 0, y p 1 ) 和下光线 ( x p 0, y p 1 ) 的光程差 OPD. (3) 弧矢面内前光线 ( x p 1, y p 0 ) 和后光线 ( x p 1, y p 0 ) 的光程差 OPD.
同上,下光线的光程应减去
YA2 YA sin14。 =
DEP sin14。 2.419mm . 2
故下光线的光程差为 OPD=([AO]-([A2I2]-2.419))/λ=0.337λ. (3)弧矢面内主光线的光程与子午面内主光线的光程相等,为[AO]=20.274mm. 前光线:以 M 面作为起始面,前光线的初始数据为:
(2)根据式(7.3.23)计算得上光线的初始数据为:
X 1 0, Y1 h 20, Z1 0
K1 0, L1
n1 DEP / 2 h
DEP / 2 h
n1 L L
2
LL
2
=
20/2+20 (20/2+20) (16.35452 100)2
h n1
h
2
LL =
2
=
20 202 (16.35452 100)2
=0.16940,
M1
n1 L L
2
16.35452+100 20 (16.35452 100) 2
2
h
2
LL
0.98555
下光线的初始数据为:
X 1 0, Y1 h 20, Z1 0
d D zD z , d | || | z f f f /#
5. 一个八级波像差系数是 W442 . (1)写出该像差系数下波像差 W 的表达式. (2)运用该系数推导垂轴像差 x 、 y 的表达式,结果用 x p 、 y p 来表示. (3)运用这些结果,写出子午和弧矢光线的垂轴像差表达式. (4)画出光线在 H =0 、 H =0.7 、和 H =1 时的垂轴像差曲线图.在坐标轴上标出数值和单位. 假设系统的 F 数为 5(f/5) , W442 =1μm .
主光线的初始数据为:
X 1 0,Y1 L tan U = 16.35452 tan(21 )= 6.27791mm, Z1 0