分式方程教学设计第二课时

合集下载

分式方程第2课时优秀教案

分式方程第2课时优秀教案
问:通过以上两道题的解题过程,你能总结出用分式方程解应用题的解题步骤是什么?
审——设——列——解——验——答
教师指出:解分式方程应用题要“双检”,既检验是否符合题意又要检验是否符合方程。
合作探究:
从甲地到乙地有两条公路:一条是全长600千米的普通公路,另一条是全长480千米的高速公路。某客车在高速公路上行驶的平均速度比在普通公路上快45千米,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间。
方法
经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程。
情感态度价值观
1、增强学生应用数学的意识,体现数学的应用价值。
2、教学中设置丰富的实例,关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并用分式方程表示,能否表达自己解决问题的过程,体验成功的喜悦。
分析:(教师引导学生建表并填表)
工作量
工作效率
工作时间

150
X+10

120
x
等量关系:甲所用的时间=乙所用的时间
解:设乙班每天植树x棵,那么甲每天植树(x+10)棵,根据题意,得
=
解之,得
x=40
经检验x=40是原分式方程的解
此时x+10=50
答:当乙班每天植树40棵,甲班每天植树50棵时,两个班能同时完成任务。
2、小华和姐姐用计算机输入1500个汉字,姐姐的输入速度是小华的3倍,结果姐姐比小华少用20分钟完成,求他们各自打字速度。
3、甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.

分式方程教学设计第二课时

分式方程教学设计第二课时
2、把第一个分式分子分母同时乘以2.8,变成两个同分母的分式相减再计算
3、根据等式的基本性质,左右两边同时乘以分母的最简公分母,直接去分母)
指导并肯定学生的想法。
问题4:什么是最简公分母?如何去分母?(学生举例回答,老师举例找最简公分母,强调去分母时应注意的问题。)
(三)









问题5、观察例1你认为如何解决这个问题?
.
(预设回答:根据等式的基本性质、乘除法互为逆运算、类比上题去分母)
问题3:对于 小组合作,看哪个小组能用用最快的速度解决这个问题并说明理由。
(预设做法:直接去分母、先约分再去分母)
肯定学生的做法。
合作探究:小组合作求出下列分式方程的解
老师巡回指导,并选取有代表性的做法展示,并请解答者讲解做法。
(预设做法:1、把第二个分式先约分,变成两个同分母的分式相减再计算
作业:
课本P128知识技能1、
. .
掌握验根的方法。
(六)




通过解方程 进一步完善步骤。
请一名同学黑板演示步骤。
(可能出现的问题:1、最简公分母的找法,落乘问题,正负号问题,检验问题)
学生总结本题应注意的问题。
(七)




例2、解方程
学生自己解决此题,并板演。
(问?



测:
解方程:
选做:
学习过程
学习内容
(一)




问题1:如何解一元一次方程?应该注意哪些问题?(去分母落乘问题、常数项落乘问题、正负号问题学生补充完整)

人教版八年级数学上册《分式方程(第2课时)》教学教案

人教版八年级数学上册《分式方程(第2课时)》教学教案

《分式方程(第2课时)》教学教案教学目标:能较熟练地列可化为一元一次方程的分式方程解应用题.重点:在实际问题中审明题意设未知数,列分式方程,解决实际问题.难点:在不同的实际问题中,设未知数列分式方程.教学流程:一、复习引入问题:解分式方程的一般步骤二、探究例1:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成. 哪个工程队的施工速度快? 分析:甲队单独施工1个月完成总工程的13,设乙队单独施工1个月能完成总工程的1x , 那么甲队半个月完成总工程的________,乙队半个月完成总工程的________, 两队半个月完成总工程的________.答案:16;12x ;1162x按施工进度,题中等量关系是:甲单干的工程量+甲乙合干的工程量=总工程量分式方程 整式方程a 是分式方程的解 x =aa 不是分式 方程的解去分母解整式方程 检验 目标最简公分 母不为0 最简公分母为0解:设乙队单独施工1个月能完成总工程的1x,记总工程量为1,根据工程的实际进度,得 1111362x++= 方程两边乘6x ,得2x +x +3=6x解得, x =1检验:当 x =1时,6x ≠0.所以原分式方程的解为x =1.由上可知,乙队单独施工1个月可以完成全部任务,甲队1个月完成任务的13,可知乙队的施工速度快.例2:某次列车平均提速v km/h .用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?分析:这里的字母v 、s 表示已知数据设提速前列车的平均速度是x km/h .那么提速前列车行驶s km 所用的时间为______ h .提速后列车的平均速度为_______ km/h,提速后列车运行(s +50)km 所用的时间为______ h . 答案:s x;()x v +;50s x v ++ 题中等量关系是:行驶时间相等强调:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量). 解:设提速前列车的平均速度是x km/h.根据题意 可列方程:50s s x x v+=+ 方程两边乘x (x +v ),得++50s x v x s =()()解得,50sv x = 检验:由于v ,s 都是正数,当50sv x =时x (x +v )≠0, 所以,原分式方程的解为50sv x =.答:提速前列车的平均速度为50sv km/h . 三、归纳 列分式方程解应用题的一般步骤:(1)审:审清题意,弄清已知量与未知量,找出已知的或隐含的等量关系;(2)设:设未知数;(3)列:列出分式方程;(4)解:解这个方程;(5)验:既要检验所求得的根是否为所列分式方程的解,又要检验所求得的解是否符合实际意义;(6)答:写出答案.练习:1.甲、乙两人加工一批零件,甲完成120个与乙完成100个所用的时间相同,已知甲比乙每天多完成4个.设甲每天完成x 个零件,依题意下面所列方程正确的是( ) A.120x =100x -4 B.120x =100x +4 C.120x -4=100x D.120x +4=100x答案:A2.一艘轮船在两个码头之间航行,顺水航行60千米所需时间与逆水航行48千米所需时间相同,已知水流速度是2千米/时,则轮船在静水中航行的速度为_______________. 答案:18千米/时四、应用提高商场用50 000元从外地采购回一批T 恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T 恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T 恤衫.解:设第一次购进x 件T 恤衫,由题意得,1860005000012.3x x-= 方程两边都乘3x ,得,186 000 -150 000 =36x ,解得,x =1 000.检验:当x =1 000时,3x =3 000≠0,所以, x =1 000是原分式方程的解,且符合题意.答:第一次购进1 000件T 恤衫.五、体验收获今天我们学习了哪些知识?1.说一说怎样利用分式方程解决实际问题?2.借助分式方程解决实际问题时,应注意哪些问题?六、达标测评1.九年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是( )A.10x =102x -13B.10x =102x -20C.10x =102x +13D.10x =102x+20 答案:C2.为了美化城市,某市计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,则原计划每天栽树______棵.答案:1003.八年级学生去距学校s km 的博物馆参观,一部分学生骑自行车先走,过了t min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.解:设学生骑车的速度是x km/h ,由题意得,.2s s t x x-= 方程两边同乘2x ,得2s -s =2tx .解得 x =2s t. 检验:由于s ,t 都是正数,x =2s t 时,2x ≠0, 所以,x =2s t是原分式方程的解,且符合题意. 答:学生骑车的速度是2s t km/h . 七、布置作业教材154页练习题1、2题.。

分式方程(第二课时)教学设计

分式方程(第二课时)教学设计

分式方程(2)〖教学目标〗◆1、掌握用分式方程解应用题的一般方法和步骤.◆2、理解公式变形的实质就是简单的字母分式方程,其在变形过程中的方法和分式方程的解法一致,但应注意谁是常量,谁是变量.◆3、掌握简单的公式变形方法,在实际应用中能基本变形.〖教学重点与难点〗◆教学重点:利用分式方程解应用题和公式变形是本节重点.◆教学难点:公式变形中用到字母分式方程的知识,学生较难理解,是本节难点.〖教学过程〗(一):1:复习用一元一次方程解应用题的一般步骤① 理解问题,搞清未知和已知,分析数量关系② 制订计划,考虑如何根据等量关系设元,列出方程③ 执行计划,列出方程并求解④ 回顾,检验答案的正确性及是否符合题意2:用分式方程解应用题的一般步骤和一元一次方程类似。

例1:工厂生产一种电子配件,每只成本为2元,毛利率为25%,后来该工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%,问这种配件每只的成本降低了多少元?(精确到0.01元)分析:这道题主要弄清楚一个分式,毛利率=100%-⨯售价成本成本解:设这种电子配件每只的成本降低了X 元,改进工艺前,每只售价为2(125%) 2.5⨯+=元,由题意得2.5(2)25%15%2x x--=+- 解这个方程约x=3140.21≈(元) 经检验:314x =是方程的根,且符合题意 答:每只成本降低了0.21元。

(二):分式变形:公式变形其实就是解字母方程,注意把要表示的字母当成未知数,其余的当成已知数。

例2:把公式111f u v=+ 变为已知f 、v ,求u 的公式 111v f u f v fv-=-= fv u v f ∴=- ②当堂训练:已知商品的买入价为a ,售出价为b ,毛利率b a p a-=(b>a )把这个分式变形成已知p 、b ,求a 的分式解:pa=b-apa+a=b(p+1)a=b1b a p =+ (三):课内练习:见书本习题(四):作业:见作业题教学反思:这个内容是要我们掌握用分式方程解应用题的一般方法和步骤.理解公式变形的实质就是简单的字母分式方程,其在变形过程中的方法和分式方程的解法一致,但应注意谁是常量,谁是变量.掌握简单的公式变形方法,在实际应用中能基本变形.教学的重点放在利用分式方程解应用题和公式变形上.但是公式变形中用到字母分式方程的知识,学生较难理解,是本节难点.。

《分式方程》(第2课时) 教案

《分式方程》(第2课时) 教案

8.5分式方程[教学目标]1.知道分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际问题,并能根据实际问题的意义检验所得结果是否合理.此外,通过经历“实际问题一建立数学模型(方程)一解释、应用与拓展”的过程,体验解决问题的基本策略,发展应用意识和解决问题的技能.[教学过程(第二课时)]1.情境创设创设问题情境:给出分式方程无解的例题,让学生感受,既便遵循解分式方程的规范操作过程,也可能出现所求得的解并不适合原分式方程的现象,激发学生探索原委的欲望.2.探索活动以课本上的问题“为什么所求得的根不适合原分式方程?”,引导学生探索解分式方程产生增根的现象,并讨论出现增根的原因及检验方法.例如可按以下问题串展开探索活动:(1)例1与例2的求解步骤有差异吗?(2)你能说出为什么用同样的方法求解,例1有解,而例2却无解吗?(3)你认为在解分式方程的过程中,那一步变形可能引起增根?(4)你能用较便捷的方法检验解分式方程产生的增根吗?探索时,要把握探索活动的节奏和层次:由(1)、(2)明确由于所求的根恰使原分式方程中的分母为0,从而造成原分式方程失去意义,但此分式方程解法又是正确无误的,所以断定原分式方程无解.在给出增根的定义后,再用问题(3)进一步引导学生探索产生增根的原因,感受解分式方程时验根的必要性.为使学生领悟“方程两边同乘值为0的代数式,便会产生增根”的道理,教师可以根据学生的具体情况,用浅显的例子来说明.例如,在方程x-6=0的两边同乘x,则得x(x—6)=0.若x≠0,则方程的解仍然是x=6;若x=0,则方程x(x —6)=0的解增加为两个:x=6和x=0,扩大了方程的解的范围,产生了增根.最后用问题(4)引导学生探索验根的便捷方法.3.例题教学通过以上探索活动,学生对解分式方程的步骤和规范表述应该有进一步的认识.例3给出了分式方程有解与无解的两种常见情况及简洁而规范的书写格式,要求学生通过练习与作业认真落实.。

人教版八年级数学上册《分式方程(第2课时)》示范教学设计

人教版八年级数学上册《分式方程(第2课时)》示范教学设计

分式方程(第2课时)教学目标1.会分析工程问题和行程问题中的数量关系,能列出分式方程解决实际问题.2.类比列一元一次方程解应用题的一般步骤,探索并掌握列分式方程解应用题的一般步骤.3.经历分析相等关系、列分式方程的过程,培养分析和解决问题的能力.教学重点列分式方程解决实际问题.教学难点找出相等关系列出分式方程,将实际问题数学化.教学过程知识回顾1.分式方程的概念是什么?【答案】分母中含未知数的方程叫做分式方程.2.解方程:11x-=231x-.【答案】解:方程两边同乘(x+1)(x-1),得x+1=3.解得x=2.检验:当x=2时,(x+1)(x-1)≠0.所以,原分式方程的解为x=2.3.列一元一次方程解应用题的一般步骤是什么?【答案】(1)审:弄清题意,分清已知量和未知量,并找出相等关系;(2)设:设未知数,并用式子表示出其他相关量;(3)列:根据相等关系列出方程;(4)解:通过解方程,求出未知数的值;(5)验:检验所得的未知数的值是否符合题意;(6)答:根据题意写出答案.【设计意图】带领学生复习解分式方程和列一元一次方程解应用题的一般步骤,巩固基础,为本节课学习列分式方程解决实际问题做好准备.新知探究一、探究学习【问题】两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?【分析】本题是一道工程问题,题中涉及的数量关系为:工作总量=工作效率×工作时间,相等关系为:甲队完成的工程量+乙队完成的工程量=总工程量.【追问】怎样设未知数列方程?【师生活动】教师提示:对于这类工程问题,通常设总工程量为1,从题中已知条件可知甲队单独施工1个月完成总工程量的13,如果能知道乙队单独施工1个月所完成的工程量,就可以比较两队的施工速度.学生根据提示进行作答.【答案】设乙队单独施工1个月能完成总工程的1.根据相等关系列出方程:13×32+12x=1.【追问】请完成本题的解答.【答案】解:设乙队的工作效率为1x.记总工程量为1,根据题意,得12+12x=1.两边同乘2x,得x+1=2x.解得x=1.检验:当x=1时,2x≠0.所以原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,对比甲队1个月完成任务的13,可知乙队的施工速度快.【归纳】解决工程问题“两手都要抓”解决工程问题时,一要抓住“工作总量=工作效率×工作时间”这一等量关系;二要抓住“所有队工作量之和=总工作量”这一关系列方程求解.【设计意图】通过这个问题,让学生了解列分式方程解决工程问题的基本思路.让学生经历分析相等关系列方程的过程,培养学生分析问题和解决实际问题的能力,学会用数学的眼光观察现实世界.【思考】根据上面题目,类比列一元一次方程解应用题的一般步骤,你能总结出列分式方程解应用题的一般步骤吗?【师生活动】小组交流讨论,提炼解题步骤.【新知】列分式方程解应用题的一般步骤:(1)审:弄清题意,找出数量关系和相等关系;(2)设:设出未知数;(3)列:根据相等关系列出方程;(4)解:解方程;(5)验:①检验求得的解是否为分式方程的解;②检验求得的解是否符合题意;(6)答:根据题意写出答案.【设计意图】通过对解题思路的回顾和分析,让学生初步掌握列分式方程解应用题的一般步骤.【问题】某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?【分析】本题是一道行程问题,题中涉及的数量关系为:路程=速度×时间,相等关系为:提速前所用的时间=提速后所用的时间.【追问】问题中的已知量是什么?未知量是什么?【师生活动】教师提示:表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).学生根据提示进行作答.【答案】已知量:列车平均提速v km/h,列车提速前行驶s km,提速后比提速前多行驶50 km.未知量:提速前列车的平均速度.【追问】怎样设未知数列方程?【师生活动】教师提示:将所求的未知量设为未知数,抓住题目中“用相同的时间”这个条件,列出方程. 学生根据提示进行作答:根据相等关系列出方程:s x =50s x v++. 【追问】请完成本题的解答.【答案】解:设提速前列车的平均速度为x km/h . 根据题意,得s x =50s x v++. 两边同乘x (x +v ),得s (x +v )=x (s +50). 解得x =50sv . 检验:由v ,s 都是正数,得x =50sv时x (x +v )≠0. 所以原分式方程的解为x =50sv . 答:提速前列车的平均速度为50svkm/h . 【设计意图】通过这个问题,让学生了解列分式方程解决行程问题的基本思路.让学生经历分析相等关系列方程的过程,培养学生分析问题和解决实际问题的能力,学会用数学的眼光观察现实世界.二、典例精讲【例1】甲、乙两人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间和乙做60个所用的时间相等,求甲、乙每小时各做零件多少个.【分析】本题是一道工程问题,工程问题常根据“工作总量=工作效率×工作时间”设未知数.本题中工作效率和工作时间均为未知量,可任选一个设为未知数. 【师生活动】学生根据分析独立完成,教师巡查,给予辅导. 【答案】解:设乙每小时做x 个零件.根据题意,得906x=60x.两边同乘x(x+6),得90x=60(x+6).解得x=12,x+6=18.检验:当x=12时,x(x+6)≠0.所以x=12是原分式方程的解,且符合题意.答:乙每小时做12个零件,甲每小时做18个零件.【例2】小明和小红从同一小区门口同时出发,沿同一路线去离该小区1 800 m的少年宫参加活动,两人都步行,已知小明的速度是小红速度的1.2倍,结果小明比小红早6 min 到达,求小红的速度.【分析】本题是一道行程问题,行程问题常根据“路程=速度×时间”设未知数,本题中速度和时间均为未知量,可任选一个设为未知数.【师生活动】学生根据分析独立完成,教师巡查,及时发现问题,并进行指导.【答案】解:设小红的速度是x m/min.根据题意,得1 800x-1 8001.2x=6.两边同乘1.2x,得2160-1800=7.2x.解得x=50,1.2x=60.检验:当x=50时,1.2x≠0.所以x=50是原分式方程的解,且符合题意.答:小红的速度是50 m/min.【归纳】行程问题中常用的等量关系行程问题属于典型应用题,其中路程、时间和速度三个量之间的关系是路程=速度×时间.解这类应用题,首先分析出问题中的已知量,确定待求量,然后根据第三个量找出反映全部题意的等量关系,从而列出方程.【设计意图】通过例1和例2,帮助学生巩固列分式方程解应用题的一般步骤,培养学生的抽象能力.课堂小结板书设计一、列分式方程解应用题的一般步骤二、列分式方程解决工程问题三、列分式方程解决行程问题课后任务完成教材第154页练习1~2题.。

《分式方程》(第2课时)教案doc初中数学

《分式方程》(第2课时)教案doc初中数学

《分式方程》(第2课时)教案doc初中数学[教学目标]1.明白分式方程的意义,会解可化为一元一次方程的分式方程.2,了解分式方程产生增根的缘故,会判定所求得的根是否是分式方程的增根.3.会列出方程解决简单的实际咨询题,并能依照实际咨询题的意义检验所得结果是否合理.此外,通过经历〝实际咨询题一建立数学模型(方程)一讲明、应用与拓展〞的过程,体验解决咨询题的差不多策略,进展应用意识和解决咨询题的技能.[教学过程(第二课时)]1.情境创设创设咨询题情境:给出分式方程无解的例题,让学生感受,既便遵循解分式方程的规范操作过程,也可能显现所求得的解并不适合原分式方程的现象,激发学生探究原委的欲望.2.探究活动以课本上的咨询题〝什么缘故所求得的根不适合原分式方程?〞,引导学生探究解分式方程产生增根的现象,并讨论显现增根的缘故及检验方法.例如可按以下咨询题串展开探究活动:(1)例1与例2的求解步骤有差异吗?(2)你能讲出什么缘故用同样的方法求解,例1有解,而例2却无解吗?(3)你认为在解分式方程的过程中,那一步变形可能引起增根?(4)你能用较便利的方法检验解分式方程产生的增根吗?探究时,要把握探究活动的节奏和层次:由(1)、(2)明确由于所求的根恰使原分式方程中的分母为0,从而造成原分式方程失去意义,但此分式方程解法又是正确无误的,因此确信原分式方程无解.在给出增根的定义后,再用咨询题(3)进一步引导学生探究产生增根的缘故,感受解分式方程时验根的必要性.为使学生领会〝方程两边同乘值为0的代数式,便会产生增根〞的道理,教师能够依照学生的具体情形,用浅显的例子来讲明.例如,在方程x-6=0的两边同乘x,那么得x(x—6)=0.假设x≠0,那么方程的解仍旧是x=6;假设x=0,那么方程x(x—6)=0的解增加为两个:x=6和x=0,扩大了方程的解的范畴,产生了增根.最后用咨询题(4)引导学生探究验根的便利方法.3.例题教学通过以上探究活动,学生对解分式方程的步骤和规范表述应该有进一步的认识.例3给出了分式方程有解与无解的两种常见情形及简洁而规范的书写格式,要求学生通过练习与作业认真落实.。

八年级数学上册 15.3 分式方程 第2课时 分式方程的实际应用教学设计 (新版)新人教版

八年级数学上册 15.3 分式方程 第2课时 分式方程的实际应用教学设计 (新版)新人教版

八年级数学上册 15.3 分式方程第2课时分式方程的实际应用教学设计(新版)新人教版一. 教材分析本节课是人教版八年级数学上册第15.3节分式方程的实际应用。

分式方程是初中数学中的重要内容,是解决实际问题的基础。

本节课通过实际应用引出分式方程的概念,让学生在解决实际问题的过程中,体会分式方程的作用,培养学生的数学应用意识。

二. 学情分析八年级的学生已经学习了分式的基本概念和性质,对分式有一定的理解。

但解决实际问题的能力还不够强,需要通过实际应用来提高。

学生在学习过程中,需要教师的引导和启发,才能将理论知识与实际问题相结合。

三. 教学目标1.理解分式方程的概念,掌握分式方程的解法。

2.能够将实际问题转化为分式方程,并解决问题。

3.培养学生的数学应用意识,提高解决实际问题的能力。

四. 教学重难点1.分式方程的概念和解法。

2.如何将实际问题转化为分式方程。

五. 教学方法采用问题驱动法,引导学生从实际问题中发现问题,提出问题,通过合作交流,解决问题。

教师在这个过程中,起到引导和启发的角色。

六. 教学准备1.准备相关的实际问题,用于导入和巩固环节。

2.准备分式方程的解法,用于讲解和操练环节。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出分式方程的概念。

例如:一个长方形的长是宽的2倍,长方形的面积是36平方厘米,求长方形的宽。

让学生尝试解决这个问题,引出分式方程的概念。

2.呈现(15分钟)讲解分式方程的解法,并通过例题进行演示。

让学生跟随教师一起解题,巩固分式方程的解法。

3.操练(15分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程解法的掌握程度。

教师在这个过程中,给予学生个别化的指导。

4.巩固(10分钟)通过一些实际问题,让学生运用分式方程解决问题。

例如:一个水池,注水速度是每分钟1.2立方米,排水速度是每分钟0.8立方米,问多少时间才能注满水池?让学生运用分式方程解决这个问题。

5.拓展(10分钟)让学生尝试解决一些更复杂的实际问题,提高学生解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1、解分式方程 1 3 x2 x
综合学生口述,老师写出步骤。 一、问题 6:解分式方程的步骤有哪些? 学生回答并补充完整 。
(四) 小 试 牛 刀 , 强 化 步 骤
(五) 强化基 础,感 悟升华
学生自己解决方程 3 4 体会步骤。 x 1 x
找一中等学生到黑板上解决此题,若出现问题请同学在不改变原题的情况下改正错 误。(去括号时可能会将常数项落乘)

1400 1400 9 x 2.8x
老师巡回指导,并选取有代表性的做法展示,并请解答者讲解做法。
(预设做法:1、把第二个分式先约分,变成两个同分母的分式相减再计算
2、把第一个分式分子分母同时乘以 2.8,变成两个同分母的分式相减再计算
3、根据等式的基本性质,左右两边同时乘以分母的最简公分母,直接去分母)
(七) 灵 活 应 用
例 2、解方程 480 600 45 x 2x
学生自己解决此题,并板演。
(八) 本节课你学到了什么?还有什么疑问? 小结
当 堂
解方程: x 5 4 2x 3 3 2x

测:
选做: 20 30 3 x 2.5x
作业: 课本 P128 知识技能 1、
指导并肯定学生的想法。
ห้องสมุดไป่ตู้
问题 4:什么是最简公分母?如何去分母?(学生举例回答,老师举例找最简公分
母,强调去分母时应注意的问题。)
通过这 三个例 题有易 到难,通 过类比 的方法, 很自然 的过渡 到分时 方程的 解法,学 生易理 解。
(三) 例 题 示 范 , 规 范 步 骤
问题 5、观察例 1 你认为如何解决这个问题?
解决?(口答并说明理由)
1400 14 .x

(预设回答:根据等式的基本性质、乘除法互为逆运算、类比上题去分母)
1400 5

问题 3:对于 2.8x
小组合作,看哪个小组能用用最快的速度解决这个问
题并说明理由。
(预设做法:直接去分母、先约分再去分母)
新 肯定学生的做法。
合作探究:小组合作求出下列分式方程的解
分式方程教学设计第二课时
学习 目标
1.知识技能:学生掌握解分式方程的基本方法和步骤; 2.过程方法:小组合作,经历和体会解分式方程的必要步骤
3.情感态度价值观:培养学生自觉反思求解过程和自觉检验的良好习惯,培养
严谨的治学态度;使学生进一步了解数学思想中的“转化”思想。
重点 难点 学习过 程
掌握分式方程的解法. 了解增根产生的原因及分式验根的必要性。
通过议一议,了解分式方程会产生增根,体会分式方程检验的必要性。 掌握验根的方法。
(六) 挑 战 自 我
通过解方程 y 2 2 1 进一步完善步骤。 y3 3 y
请一名同学黑板演示步骤。 (可能出现的问题:1、最简公分母的找法,落乘问题,正负号问题,检验问题)
学生总结本题应注意的问题。
学习内容
(一) 复 习 回 顾
问题 1:如何解一元一次方程?应该注意哪些问题?(去分母落乘问题、常数项落
乘问题、正负号问题学生补充完整)
请你完成一下题目:
2x 1 x 1
3
4
(二)
目的:便于通过类比的方式学习解分式的基本方法和基本步骤。 问题 2:观察一下是一元一次方程吗?它和一元一次方程有什么异同?应该怎样
相关文档
最新文档