关于三角函数的练习题

合集下载

三角函数全章练习

三角函数全章练习

三角函数全章训练一、单选题(共14题;共0分)1.下列函数中,最小正周期为,且图象关于直线x=对称的函数是( )A.B.C.D.2.设,则是( )A.周期为的奇函数B.周期为的偶函数C.周期为的奇函数D.周期为的偶函数3.函数的最小正周期为( )A.B.C.D.4.函数是()A.最小正周期为的奇函数B.最小正周期为的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数5.设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cos x的图像关于直线x=对称.则下列判断正确的是()A.p为真B.为假C.p且q为假D.p或q为真6.已知函数f(x)=sin (x∈R),下面结论错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数7.函数的最小正周期是()A.B.C.2πD.4π8.同时具有性质“(1)最小正周期是;(2)图像关于直线对称;(3)在上是增函数”的一个函数是()A.B.C.D.9.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π10.每一个音都是纯音合成的,纯音的数字模型是函数y=Asinωt.音调、响度、音长、音色等音的四要素都与正弦函数及其参数(振幅、频率)有关.我们听到声音是由许多音的结合,称为复合音.若一个复合音的函数是y=sin4x+sin6x,则该复合音的周期为()A.B.πC.D.11.已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A.﹣B.﹣C.D.12.已知简谐运动的图像经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为()A.T=6,φ=B.T=6,φ=C.T=6π,φ=D.T=6π,φ=13.已知函数f(x)=cos(ωx+θ)(ω>0,0<θ<π)的最小正周期为π,且f(﹣x)+f(x)=0,若tanα=2,则f(α)等于()A.B.C.D.14.为了使函数y=sinωx(ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值是().A.98πB.πC.πD.100π二、解答题(共6题;共0分)15.已知函数f(x)=cos(2x﹣)﹣cos2x.(Ⅰ)求f()的值;(Ⅱ)求函数f(x)的最小正周期和单调递增区间.16.已知函数(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调递减区间.17.已知:f(x)=2cos2x+2 sinxcosx+a(1)若x∈R,求f(x)的最小正周期和增区间;(2)若f(x)在[﹣,]上最大值与最小值之和为3,求a的值.18.已知函数f(x)=sin2xcos2x+sin22x﹣.(1)求函数f(x)的最小正周期及对称中心;(2)在△ABC中,角B为钝角,角A,B,C的对边分别为a、b、c,f()= ,且sinC=sinA,S△ABC=4,求c的值.19.已知函数f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)在上的值域.20.已知函数(x∈R).(1)求函数f(x)的最小正周期(2)若f(x)有最大值3,求实数a的值;(3)求函数f(x)单调递增区间.答案部分第 1 题:【答案】B【考点】三角函数的周期性及其求法,正弦函数的对称性【解析】【解答】首先选项C中函数的周期为4,故排除C;将分别代入A,B,D,得函数值分别为,而函数在对称轴处取最值,故选B.第 2 题:【答案】B【考点】三角函数的周期性及其求法【解析】【解答】根据题意,由于,则可以根据周期公式w=2,则其周期为T=,且是偶函数,因此答案为B.【分析】主要是考查了诱导公式化简函数式,同时研究其性质的运用,属于基础题。

三角函数计算题100道

三角函数计算题100道

三角函数计算题100道为了简洁起见,我将为您提供100道三角函数计算题的答案,并附上简要的解释。

1. sin(0) = 0正弦函数在角度为0度时的值等于0。

2. cos(0) = 1余弦函数在角度为0度时的值等于13. tan(45) = 1正切函数在角度为45度时的值等于14. csc(30) = 2余切函数在角度为30度时的值等于25. sec(60) = 2正割函数在角度为60度时的值等于26. cot(60) = 1/√3余割函数在角度为60度时的值等于1/√3,其中√3表示根号下37. sin(90) = 1正弦函数在角度为90度时的值等于18. cos(90) = 0余弦函数在角度为90度时的值等于0。

9. tan(0) = 0正切函数在角度为0度时的值等于0。

10. csc(0) = 未定义余切函数在角度为0度时的值未定义。

11. sec(30) = 2/√3正割函数在角度为30度时的值等于2/√3 12. cot(45) = 1余割函数在角度为45度时的值等于1 13. sin(60) = √3/2正弦函数在角度为60度时的值等于√3/2 14. cos(45) = √2/2余弦函数在角度为45度时的值等于√2/2 15. tan(30) = √3/3正切函数在角度为30度时的值等于√3/3 16. csc(45) = √2余切函数在角度为45度时的值等于√2 17. sec(60) = 2正割函数在角度为60度时的值等于2 18. cot(90) = 0余割函数在角度为90度时的值等于0。

19. sin(180) = 0正弦函数在角度为180度时的值等于0。

20. cos(180) = -1余弦函数在角度为180度时的值等于-1 21. tan(120) = √3正切函数在角度为120度时的值等于√3 22. csc(150) = -2余切函数在角度为150度时的值等于-2 23. sec(240) = -2正割函数在角度为240度时的值等于-2 24. cot(270) = 0余割函数在角度为270度时的值等于0。

三角函数的应用专项训练

三角函数的应用专项训练

三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。

高中三角函数经典例题

高中三角函数经典例题

高中数学三角函数经典例题(解析在后面)一、单选题(共20题;共40分)1.已知函数f(x)=cosx ,下列结论不正确的是( ) A. 函数y=f(x)的最小正周期为2π B. 函数y=f(x)在区间(0,π)内单调递减 C. 函数y=f(x)的图象关于y 轴对称D. 把函数y=f(x)的图象向左平移 π2 个单位长度可得到y=sinx 的图象2.如图,A 、B 两点为山脚下两处水平地面上的观测点,在A 、B 两处观察点观察山顶点P 的仰角分别为 α ,β。

若tanα = 13 ,β=45°,且观察点A 、B 之间的距离比山的高度多100米。

则山的高度为( )A. 100米B. 110米C. 120米D. 130米 3.已知 sinα=√55,则 cos2α= ( )A. −35B. 35 C. −3√55 D. 3√554.将函数 f(x)=sin2x 的图象向右平移 π6 个单位长度得到 g(x) 图象,则函数的解析式是( )A. g(x)=sin (2x +π3) B. g(x)=sin (2x +π6) C. g(x)=sin (2x −π3) D. g(x)=sin (2x −π6)5.若 α,β 均为第二象限角,满足 sinα=35 , cosβ=−513,则 cos(α+β)= ( )A. −3365B. −1665C. 6365D. 33656.已知 tanα=1 ,则1+2cos 2αsin2α= ( )A. 2B. -2C. 3D. -3 7.要得到 y =sin x2 的图象,只要将函数 y =sin(12x +π4) 的图象( )A. 向左平移 π4 单位B. 向右平移 π4 单位 C. 向左平移 π2 单位 D. 向右平移 π2 单位8.要得到函数 y =2sin(2x +π6) 的图像,只需将函数 y =2sin2x 的图像( ) A. 向左平移 π6 个单位 B. 向右平移 π6 个单位 C. 向左平移 π12 个单位 D. 向右平移 π12 个单位9.函数 f(x)=Asin(ωx+φ) (ω>0,|φ|<π2) 的部分图象如图所示,则 f(π)= ( )A. 4B. 2√3C. 2D. √3 10.已知角 α 的顶点与坐标原点重合,始边与 x 轴的非法半轴重合,终边经过点 P(1,−2) ,则 sin 2α= ( )A. −2√55B. −4√55C. 45 D. −4511.数 f(x)=sin(4x +ϕ)(0<ϕ<π2) ,若将 f(x) 的图象向左平移 π12 个单位后所得函数的图象关于 y 轴对称,则 φ= ( )A. π12 B. π6 C. π4 D. π3 12.sin140°cos10°+cos40°sin350°= ( ) A. 12 B. −12 C. √32D. −√3213.已知 α,β∈(0,π2) , cosα=17 , cos(α+β)=−1114 ,则 β= ( ) A. π6 B. 5π12C. π4 D. π314.要得到函数 y =2√3cos 2x +sin2x −√3 的图象,只需将函数 y =2sin2x 的图象( )A. 向左平移 π3 个单位 B. 向右平移 π3 个单位 C. 向左平移 π6 个单位 D. 向右平移 π6 个单位 15.若 sin(π6−α)=13,则 cos(2π3+2α)= ( )A. 13B. −13C. 79D. −7916.函数 y =sin(2x +φ)(0<φ<π2) 图象的一条对称轴在 (π6,π3) 内,则满足此条件的一个 φ 值为( )A. π12 B. π6 C. π3 D. 5π617.关于 x 的三角方程 sinx =13 在 [0,2π) 的解集为( ) A. {arcsin 13} B. {π−arcsin 13}C. {arcsin 13,π−arcsin 13} D. {arcsin 13,−arcsin 13}18.已知 α 满足 tan(α+π4)=13 ,则 tanα= ( ) A. −12B. 12C. 2D. −219.已知 α、β 均为锐角,满足 sinα=√55  , cosβ=3√1010,则 α+β= ( )A. π6B. π4C. π3D. 3π420.计算 sin95°cos50°−cos95°sin50° 的结果为( ) A. −√22B. 12C. √22D. √32二、填空题(共20题;共21分)21.函数f(x)=Asin( ωx+ φ)的部分图象如图,其中A>0,ω>0,0< φ< π2.则ω=________ ; tan φ= ________ .22.若角α满足sinα+2cosα=0,则tan2α=________;23.计算sin47°cos17°−cos47°sin17°的结果为________.24.角α的终边经过点P(−3,4),则cos(π2−α)=________.25.函数y=sin(x+φ),φ∈[0,π]为偶函数,则φ=________.26.若扇形圆心角为120∘,扇形面积为43π,则扇形半径为________.27.已知f(x)=2sin(ωx−π6)(ω>0)和g(x)=2cos(2x+φ)+1的图象的对称轴完全相同,则x∈[0,π]时,方程f(x)=1的解是________.28.已知sin(π−α)=35,α∈(π2,π),则sin2α=________.29.已知函数y=sinx的定义域是[a,b],值域是[−1,12],则b−a的最大值是________30.如果tanα=2,则tan(α+π4)=________31.若函数f(x)=sin(x+φ),φ∈(0,π)是偶函数,则φ等于________32.函数f(x)=2−sinxcosx的值域是________33.函数y=arccos(x−1)的定义域是________34.求f(x)=sinx−cos2x+2,x∈[−π6,2π3]的值域________.35.已知函数y=2sin(2x+φ)(0<φ<π2)的一条对称轴为x=π6,则φ的值为________.36.在ΔABC中,tanA+tanB+√3=√3tanA⋅tanB,则C等于________.37.方程cosx=sinπ6的解为x=________.38.弧长等于直径的圆弧所对的圆心角的大小为________弧度.(只写正值)39.若sinα−cosα=12,则sin2α=________.40.若tanθ=−3,则cos2θ=________.三、解答题(共10题;共85分)41.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且∠AOP= π4,点P沿单位圆按逆时针方向旋转角θ后到点Q(a,b)(1)当θ= π6时,求ab的值(2)设θ∈[ π4,π2],求b-a的取值范围42.在ΔABC中,内角A,B,C所对的边分别为a,b,c,且b2=a2+c2−ac. (1)求角B的大小;(2)求sinA+sinC的取值范围.43.已知函数f(x)=√3sin2x+cos2x.(1)求y=f(x)的单调递增区间;(2)当x∈[−π6,π3]时,求f(x)的最大值和最小值.44.已知f(x)=acos2x+√3asin2x+2a−5(a∈R,a>0).]上的最大值为3时,求a的值;(1)当函数f(x)在[0,π2(2)在(1)的条件下,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图像与直线y=−1有且仅有两个不同的交点,试确定b的值.并求函数y=f(x)在(0,b]上的单调递减区间.) ,b⃗⃗=(√3 sinx , cos2x) ,x∈R,设函数f(x)=a⃗⋅b⃗⃗.45.向量a⃗=(cosx ,−12(Ⅰ)求f(x)的表达式并化简;(Ⅱ)写出f(x)的最小正周期并在右边直角坐标中画出函数f(x)在区间[0,π]内的草图;(Ⅲ)若方程f(x)−m=0在[0,π]上有两个根α、β,求m的取值范围及α+β的值.46.已知在ΔABC中,内角A,B,C的对边分别为a,b,c,A为锐角,且满足3b=5asinB.的值;(1)求sin2A+cos2B+C2,求b,c.(2)若a=√2, ΔABC的面积为3247.如图所示,在平面直角坐标系中,角α与β( 0<β<α<π)的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边分别与单位圆交于P、Q两点,点P的横坐标为−4.5(I )求sin2α+cos2α1+cos 2α;(Ⅱ)若 OP ⃗⃗⃗⃗⃗⃗⋅OQ⃗⃗⃗⃗⃗⃗⃗=√33,求 sinβ . 48.已知函数 f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2) 的部分图象如图所示:(I )求 f(x) 的解析式及对称中心坐标;(Ⅱ)将 f(x) 的图象向右平移 π6 个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数 g(x) 的图象,求函数 y =g(x) 在 x ∈[0,7π6]上的单调区间及最值. 49.(1)请直接运用任意角的三角比定义证明: cos(α−π)=−cosα ; (2)求证: 2cos 2(π4−α)=1+sin2α . 50.设函数 f(x)=1sinx .(1)请指出函数 y =f(x) 的定义域、周期性和奇偶性;(不必证明)(2)请以正弦函数 y =sinx 的性质为依据,并运用函数的单调性定义证明: y =f(x))上单调递减.在区间(0,π2答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:∵函数f (x )=cosx 其最小正周期为2π,故选项A 正确;函数f (x )=cosx 在(0,π)上为减函数,故选项B 正确;函数f (x )=cosx 为偶函数,关于y 轴对称,故选项C 正确;把函数f (x )=cosx 的图象向左平移 π2个单位长度可得cos (x +π2)=−sinx , 故选项D 不正确。

三角函数练习题及答案

三角函数练习题及答案

三角函数练习题及答案一、填空题1.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,512BAC π∠=,BD AB ⊥,BC 是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线CP PQ -(新建道路PQ ,对道路CP 进行翻新),其中P 为BC 上异于B C ,的一点,PQ 与AB 平行,设012PAB θθ5π⎛⎫∠=<<⎪⎝⎭,新建道路PQ 的单位成本是翻新道路CP 的单位成本的2倍.要使观光专线CP PQ -的修建总成本最低,则θ的值为____________.2.已知()()()cos sin 3cos 0f x x x x ωωωω=+>,如果存在实数0x ,使得对任意的实数x ,都有()()()002016f x f x f x π≤≤+成立,则ω的最小值为___________.3.已知函数()2sin()f x x ωφ=+(0>ω,||φπ<)的部分图象如图所示,()f x 的图象与y 轴的交点的坐标是(0,1),且关于点(,0)6π-对称,若()f x 在区间14(,)333ππ上单调,则ω的最大值是___________.4.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.5.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan 3θ-=________.6.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 7.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且222a c b ac +-=,则sin cos A C 的最大值为______.10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B ) D .f (sin A )≥f (cos B ) 12.若方程x 2 +2x +m 2 +3m = m cos(x +1) + 7有且仅有1个实数根,则实数m 的值为( ) A .2B .-2C .4D .-413.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.已知O 是三角形ABC 的外心,若()22AC ABAB AO AC AO m AO AB AC⋅+⋅=,且sin sin B C +=,则实数m 的最大值为( )A .3B .35C .75D .3215.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C D 16.设函数()211f x x =-,()122x f e x --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( ) A .123I I I << B .321I I I << C .132I I I <<D .213I I I <<17.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5418.已知双曲线22221(,0)x y a b a b-=>的两条渐近线分别与抛物线24y x =交于第一、四象限的A ,B 两点,设抛物线焦点为F ,若7cos 9AFB ∠=﹣,则双曲线的离心率为( )AB .3CD .19.()sin()(0)f x x ωφφ=+>的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,若tan 2APB ∠=-,则ω的值为( )A .4π B .3π C .2π D .π20.已知1sin ,sin ,sin ,222a x x b x ωωω⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,其中0>ω,若函数1()2f x a b =⋅-在区间(,2)ππ内有零点,则实数ω的取值可能是( )A .18B .14C .12D .34三、解答题21.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 22.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值.23.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.24.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.25.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式; (3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 26.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac的值.27.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.28.已知函数())2cos cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.29.设向量a =(2sin 2x cos 2xx ),b =(cos x ,sin x ),x ∈[-6π,3π],函数f (x )=2a •b .(1)若|a b |,求x 的值;(2)若f (x )-m m 的取值范围.30.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图象相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设π(0,)2α∈,则()22f α=,求α的值【参考答案】一、填空题1.6π2.140323.114.③④5.2rr h-+67. 3 21,32⎡⎢⎣⎦8.9[,4]4-9.12+10.⎡⎢⎣⎦二、单选题 11.D 12.A 13.A 14.D 15.C 16.D 17.B 18.B 19.C 20.D 三、解答题21.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为: 1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x x BCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-, 因为15y ≤≤,所以有55562564y y y y+-≥⋅=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力.22.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4. 【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大. 23.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=,022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.24.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可;(2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭. 因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,故()22sin 33x f x π⎛⎫=+ ⎪⎝⎭.(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤. 因为()33f x m -≤-≤,所以()3m f x m ≤+,所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-. 【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.25.(1)4-(2)22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,) 【解析】 【分析】(1)直接代入计算得解;(2)先求出1sin(2)[,1]42x π-∈-,再对t 分三种情况讨论,结合二次函数求出()g t 的表达式;(3)令2()()9h t g t k t =-+,即2()(6)t 10h t k =-++有一个实数根,利用一次函数性质分析得解. 【详解】(1)当1t =时,2()sin 22sin 2444f x x t x ππ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭,所以48f π⎛⎫=- ⎪⎝⎭.(2)因为[,]242x ∈ππ,所以32[,]464x πππ-∈-,所以1sin(2)[,1]42x π-∈- 2()[sin(2)]614f x x t t π=---+([,]242x ∈ππ)当12t <-时,则当1sin(2)42x π-=-时,2min 5[()]54f x t t =-+当112t -≤≤时,则当sin(2)4x t π-=时,min [()]61f x t =-+ 当1t >时,则当sin(2)14x π-=时,2min [()]82f x t t =-+故22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩ (3)当112t -≤≤时,()61g t t =-+,令2()()9h t g t k t =-+即2()(6)t 10h t k =-++ 欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题. 26.(Ⅰ)证明见解析;(Ⅱ)2【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.27.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.28.(I )1-;(II ;(III )10,3⎛⎤ ⎥⎝⎦【解析】 【分析】将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果. 【详解】()2cos 2cos 12cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭(I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1-(II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.29.(1)π4x =;(2)2⎤⎦.【解析】 【分析】(1)根据|a|=b |,利用化简函数化简解得x 的值; (2根据f (x )=2a •b .结合向量的坐标运算,根据x ∈[6π-,3π],求解范围,)﹣f (x )﹣m ≤m 的取值范围. 【详解】解:(1)由|ab |, 可得222a b =; 即4sin 2x =2(cos 2x +sin 2x ) 即sin 2x =12; ∴sin x= ∵x ∈[-6π,3π], ∴x =4π (2)由函数f (x )=2a •b =2sin2x2x=sin2x +1122-cos2x )=sin2x x (2x -3π)∵x ∈[-6π,3π], ∴2x -3π∈[-23π,3π],2≤2sin (2x -3π)要使f (x )-m则2m m ⎧-≤⎪⎨≥⎪⎩2m ≤故得m 的取值范围是2]. 【点睛】本题考查三角函数的化简能力和向量的运算,考查转化思想以及计算能力.30.(1)()2sin(2) 1.6f x x π=-+;(2)3π.【解析】 【详解】(1)由三角函数性质得,最大值为A+1=3,∴A=2, 周期2222πππωω⨯==⇒=,∴f (x )=2sin (2x-6π)+1 (2)π(0,)2α∈,f (2α)=2∴2sin (22α⨯-6π)+1=2,得sin (α-6π)=12,α=3π。

三角函数测试题(带答案)

三角函数测试题(带答案)

一、选择题1 .若点(a,9)在函数3xy =的图象上,则tan=6a π的值为 ( )A .0B .33C .1D .32 .若角α的终边经过点M (5,2--),则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3 .若角α的终边经过点()3,4λλ-,且0λ≠,则sin cos sin cos αααα+-等于( )A .17-B .17 C .-7D .74 .已知α是第四象限角,5tan()12πα-=,则sin α=( ).15 B .15-C .513D .513-5 .623sin π等于( )A .23-B .21-C .21 D .23 6 .记k =︒-)80cos(,那么=︒100tan( )A .kk 21-B .-kk 21- C .21kk - D .-21kk -7 .已知),0(,137cos sin πααα∈=+,则αtan 等于 ( )A .512B .512-C .125D .125-8 .已知α是第四象限角,5tan()12πα-=,则sin α=( )A .15B .15-C .513D .513-9 .已知1sin 2x >,且[]0,2x π∈,则x 的取值范围是( )A .5,66ππ⎡⎤⎢⎥⎣⎦ B .5,66ππ⎛⎫⎪⎝⎭C .2,33ππ⎡⎤⎢⎥⎣⎦ C .2,33ππ⎛⎫⎪⎝⎭10.已知函数)0)(6sin(2)(>+=ωπωx x f 的最小正周期为π4,则该函数的图象 ( )A .关于点⎪⎭⎫⎝⎛0,3π对称 B .关于点⎪⎭⎫⎝⎛0,35π对称 C .关于直线3π=x 对称D .关于直线35π=x 对称 11.函数()sin()4f x x π=-的一个单调增区间为( )A .37(,)44ππB .3(,)44ππ-C .(,)22ππ- D .3(,)44ππ-12.函数x cos 4x sin 3y 2--=的最小值为( )A .-2B .-1C .-6D .-3二、填空题13.已知扇形的周长为8cm ,则该扇形面积的最大值为________cm 2。

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B. C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f ()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D 错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若ta nθ=﹣,则cos2θ=()A.﹣ B.﹣ C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x 的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x ﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s >0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度 D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为()A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。

三角函数练习题(含答案)

三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=45,则AC=( ) A 、3 B 、4 C 、5 D 、6 3、若∠A 是锐角,且sinA=13,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A 、47B 、 13C 、 12D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:√2C 、1:1:√3D 、1:1:√226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D点测得楼顶的仰角为300,向高楼前进60米到C点,又测得仰角为450,则该高楼的高度大约为()A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)填空题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B 点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于三角函数的练习题一.选择题(共12小题)1.(2015•四川模拟)若函数f(x)=﹣sin2ωx﹣6sinωxcosωx+3cos2ωx(ω>0)的最小正周期为2π,若对任意x∈R .C2.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则())单调递增,其图象关于直线对称)单调递增,其图象关于直线对称)单调递减,其图象关于直线对称)单调递减,其图象关于直线对称3.(2014•郴州二模)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+).C D.4.(2014•太原二模)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与.5.(2014•抚顺二模)已知sin(π﹣2x)﹣1=cos2x(0<x<π),则tan2x的值是()C.227.(2014•邯郸二模)函数f(x)=1﹣2sin2(x﹣)是()的偶函数最小正周期为8.(2014•浙江模拟)定义式子运算为=a 1a 4﹣a 2a 3将函数f (x )=的图象向左平移n (n >0). CD .9.(2011•安徽)已知函数f (x )=sin (2x+φ),其中φ为实数,若f (x )≤|f ()|对x ∈R 恒成立,且f ()>,]+],10.(2013•惠州模拟)如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧的长为l ,弦AP 的长为d ,则函数d=f (l )的图象大致为( ).CD .11.(2011•长春模拟)已知函数f (x )=sinx ,对于满足0<x 1<x 2<π的任意x 1,x 2,给出下列结论: ①(x 2﹣x 1)[f (x 2)﹣f (x 1)]>0; ②x 2f (x 1)>x 1f (x 2);③f (x 2)﹣f (x 1)<x 2﹣x 1; ④.12.(2011•中山市三模)方程=k (k >0)有且仅有两个不同的实数解θ,φ(θ>φ),则以下有关两根关系二.解答题(共12小题)13.(2015•泸州模拟)已知函数f (x )=sin (ωx+φ)(ω>0,|φ|<)图象的相邻两对称轴间的距离为,若将函数f (x )的图象向左平移个单位后图象关于y 轴对称.(Ⅰ)求使f(x)≥成立的x的取值范围;(Ⅱ)设g(x)=﹣cosωx,其中g′(x)是g(x)的导函数,若g(x)=,且,求cos2x的值.14.(2014•北京)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.15.(2014•重庆)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.16.(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣cos t﹣sin t,t∈[0,24).(Ⅰ)求实验室这一天上午8时的温度;(Ⅱ)求实验室这一天的最大温差.17.(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18.(2014•广东)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).19.(2014•淮安模拟)某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设∠BAC=θ(弧度),将绿化带总长度表示为θ的函数S(θ);(2)试确定θ的值,使得绿化带总长度最大.20.(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式(2)是否存在x0∈(),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.21.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.22.求tan9°+cot117°﹣tan243°﹣cot351°的值.23.定义双曲正弦函数y=sin hx=(e x﹣e﹣x),双曲余弦函数y=cos hx=(e x+e﹣x).(1)各写出四条双曲正弦函数和双曲余弦函数的性质.(定义域除外)(2)给出双曲正切函数、双曲余切函数、双曲正割函数和双曲余割函数的定义式,探究并证明六者间的平方关系.(3)模仿三角函数中两角的和与差关系,探究并证明双曲正弦函数、双曲余弦函数和双曲正切函数的“两角”和与差关系.24.已知对任意x∈R,acosx+bcos2x+1≥0,恒成立(其中b>0),求a+b的最大值.关于三角函数的练习题参考答案与试题解析一.选择题(共12小题)1.(2015•四川模拟)若函数f(x)=﹣sin2ωx﹣6sinωxcosωx+3cos2ωx(ω>0)的最小正周期为2π,若对任意x∈R .C×=2cos2x+1=x]=,T=,则3sinx+1=﹣2.(2014•包头一模)设函数,则f(x)=sin(2x+)+cos(2x+),则())单调递增,其图象关于直线对称)单调递增,其图象关于直线对称)单调递减,其图象关于直线对称)单调递减,其图象关于直线对称)2x+))单调性,即可得到答案.)2x+)2x+=x=)单调递减,所以3.(2014•郴州二模)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+).C D.x+=6k+ x+,向右平移)]x+﹣(.4.(2014•太原二模)设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移个单位长度后,所得的图象与.个单位长度后,所得的图象与原图象重合,说明函数平移整数个周期,容易得到结果.个单位长度后,所以5.(2014•抚顺二模)已知sin(π﹣2x)﹣1=cos2x(0<x<π),则tan2x的值是()C.sin,的值是﹣.22,它的周期是7.(2014•邯郸二模)函数f(x)=1﹣2sin2(x﹣)是()的偶函数最小正周期为化简函数解:函数8.(2014•浙江模拟)定义式子运算为=a1a4﹣a2a3将函数f(x)=的图象向左平移n(n>0).C D.)x+n+)为偶函数x+n+)x+n+n+)n+n+n+)n++k的最小值等于9.(2011•安徽)已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>,]+],(的值,结合)等于函数的最大值或最小值×+,,,满足条件∈,∈10.(2013•惠州模拟)如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为().C D.d=2sin,根据正弦函数的图象知,11.(2011•长春模拟)已知函数f(x)=sinx,对于满足0<x1<x2<π的任意x1,x2,给出下列结论:①(x2﹣x1)[f(x2)﹣f(x1)]>0;②x2f(x1)>x1f(x2);③f(x2)﹣f(x1)<x2﹣x1;④.、由于,将视为曲线12.(2011•中山市三模)方程=k(k>0)有且仅有两个不同的实数解θ,φ(θ>φ),则以下有关两根关系二.解答题(共12小题)13.(2015•泸州模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)图象的相邻两对称轴间的距离为,若将函数f(x)的图象向左平移个单位后图象关于y轴对称.(Ⅰ)求使f(x)≥成立的x的取值范围;(Ⅱ)设g(x)=﹣cosωx,其中g′(x)是g(x)的导函数,若g(x)=,且,求cos2x的值.≥的解析式,再根据求得)﹣](Ⅰ)∵函数图象的相邻两对称轴间的距离)的图象向左平移个单位后得到的函数为轴对称,∴,∴,即得:的的取值范围是∴得,∴,∴14.(2014•北京)函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.﹣,﹣]2x+2x+==,﹣]∈,=0时,=﹣15.(2014•重庆)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.对称,结合﹣.再根据的范围求得)的值,再根据+﹣+=对称,可得×++≤φ可得﹣(=<<﹣=﹣<,)=,))]﹣cos+cos﹣sin.16.(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣cos t﹣sin t,t∈[0,24).(Ⅰ)求实验室这一天上午8时的温度;(Ⅱ)求实验室这一天的最大温差.(tcos t sin t﹣cos﹣sin)﹣=10cos sin(t<+,故当+t=+t=,即17.(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣,t∈[0,24)(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?(t+(t+)<﹣≤t+=10t+≤t+<,故当t+=t+=时,函数取得最小值为(t+)t+)>t+)<﹣,即≤t+<18.(2014•广东)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).()=,﹣x+).+)=A=A=sin x+sin)sin+=2sin cos==).﹣﹣==19.(2014•淮安模拟)某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)(1)设∠BAC=θ(弧度),将绿化带总长度表示为θ的函数S(θ);(2)试确定θ的值,使得绿化带总长度最大.,∴,=)上单调递增,在(,=20.(2013•福建)已知函数f(x)=sin(wx+φ)(w>0,0<φ<π)的周期为π,图象的一个对称中心为(,0),将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度后得到函数g(x)的图象.(1)求函数f(x)与g(x)的解析式(2)是否存在x0∈(),使得f(x0),g(x0),f(x0)g(x0)按照某种顺序成等差数列?若存在,请确定x0的个数,若不存在,说明理由;(3)求实数a与正整数n,使得F(x)=f(x)+ag(x)在(0,nπ)内恰有2013个零点.,利用三角函数的图象变换可求得,)时,<,<在(,)在(,)内单()>﹣=2)×+=的图象向右平移个单位长度后得到函数)的图象,,)时,<,<,)内是否有解.,),))在(,(<)>)在(,,)满足题意.,﹣,x=,)(,(21.(2011•福建)设函数f(θ)=,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(Ⅰ)若点P的坐标为,求f(θ)的值;(Ⅱ)若点P(x,y)为平面区域Ω:上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.,我们将点的坐标)画出满足约束条件=2≤θ≤,即22.求tan9°+cot117°﹣tan243°﹣cot351°的值.23.定义双曲正弦函数y=sin hx=(e x﹣e﹣x),双曲余弦函数y=cos hx=(e x+e﹣x).(1)各写出四条双曲正弦函数和双曲余弦函数的性质.(定义域除外)(2)给出双曲正切函数、双曲余切函数、双曲正割函数和双曲余割函数的定义式,探究并证明六者间的平方关系.(3)模仿三角函数中两角的和与差关系,探究并证明双曲正弦函数、双曲余弦函数和双曲正切函数的“两角”和与差关系.sin hx=cos hx=(sin hx=(;;sec hx=csc hx=;.24.已知对任意x∈R,acosx+bcos2x+1≥0,恒成立(其中b>0),求a+b的最大值.[t=|⇒﹣||,则,则a+b,时,t=∈||,+≤+。

相关文档
最新文档