NMR(核磁共振)

合集下载

核磁共振氢谱(NMR)

核磁共振氢谱(NMR)
氢谱可以用于鉴定生物体内代谢产物的化学结构,有助于了解生物体的代谢过程 和生理状态。
代谢物变化分析
通过比较不同生理状态下的氢谱数据,可以分析代谢产物的变化,从而研究疾病 、营养状况等对生物体的影响。
药物代谢动力学研究
药物代谢过程研究
氢谱可以用于研究药物在体内的代谢过 程,了解药物在体内的转化和排泄机制 。
反应机理研究
总结词
核磁共振氢谱在反应机理研究中具有重要应用,通过监测反 应过程中谱峰的变化,可以揭示反应的中间产物和反应路径 。
详细描述
核磁共振氢谱可以实时监测反应过程中氢原子所处的化学环 境变化,从而揭示反应的中间产物和反应路径。通过分析谱 峰的变化,可以推断出反应过程中各组分的生成和消耗情况 ,有助于深入理解反应机理。
催化剂活性位点研究
总结词
核磁共振氢谱在催化剂活性位点研究中具有独特的应用价值,通过分析催化剂表面吸附物种的谱峰特 征,可以揭示催化剂的活性位点和反应机制。
详细描述
核磁共振氢谱可以用来研究催化剂表面吸附物种的结构和性质。通过分析谱峰的位置和裂分情况,可 以推断出吸附物种所处的化学环境和与催化剂表面的相互作用关系。这些信息有助于揭示催化剂的活 性位点和反应机制,对于优化催化剂性能和提高催化反应效率具有重要意义。
重要信息。
生物医学
用于研究生物大分子的 结构和功能,为疾病诊
断和治疗提供依据。
02
核磁共振氢谱的基本原理
原子核的自旋与磁矩
原子核自旋
原子核具有自旋角动量,使得原子核 具有一定的磁矩。
磁矩与磁场相互作用
能级跃迁
当外加射频场能量与能级分裂相匹配 时,原子核发生能级跃迁,释放出共 振信号。
原子核磁矩在外部磁场中受到洛伦兹 力,产生能级分裂。

NMR-核磁共振(含化学位移概念)

NMR-核磁共振(含化学位移概念)

NMRNMR(Nuclear Magnetic Resonance)为核磁共振。

是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。

核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。

国内叫NMR,国外叫MR,因为国外比较避讳Nuclear这个单词。

目录基本原理核磁共振应用核磁共振发展动向二维核磁共振波谱的基本原理划分区域基本原理自旋量子数I不为零的核与外磁场 H0相互作用,使核能级发生2I+1重分裂,此为蔡曼分裂。

核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。

50多年来,核磁共振已形成为一门有完整理论的新学科。

核磁共振应用核磁共振适合于液体、固体。

如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。

核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。

在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。

而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。

在中国,其应用主要在基础研究方面,企业和商业应用普及率不高,主要原因是产品开发不够、使用成本较高。

但在石油化工、医疗诊断方法应用较多。

核磁共振发展动向20世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。

现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断手段。

核磁共振(NMR)

核磁共振(NMR)

1,原子核的塞曼效应与核磁共振
• 原子核有角动量,因而有磁矩。如果原子核的自 旋量子数为I,相应的角动量为 PI ,则原子核的磁 矩为 e • (1) gN PI
2m p
• 设外磁场的方向沿Z轴,则磁场与原子核磁矩的相 互作用能为

E B g N N mB
2,NMR过程的经典描述:共振与弛豫
• 共振前后磁化强度的方向
2,NMR过程的经典描述:共振与弛豫
• 一旦射频信号消失,或者不再满足共振条件,则 射频信号就不再起作用,这时候,原子核系统吸 收的能量要放出来,具体过程是:磁化强度M逐 渐向Z轴靠拢并最后回到Z轴方向,而磁化强度在 XOY平面内的分量Mxy要逐渐趋于0。这里,磁化 强度的Z分量与XOY平面内的分量Mxy是独立变化 的,一般来说,分量Mxy在Z分量完全恢复到平衡 值以前先变为0。整个恢复平衡的过程叫弛豫过程。 从实验室坐标系来看,磁化强度恢复平衡的过程 是磁化强度绕Z轴进动的过程,具体图象如下:
2 2 2 B0
3 2 3 ( B0 Bm2 )
• 由此可以计算出磁场B0和Bm,并能检验扫描磁场 的对称性。要求在5个以上的扫描电压下,分别测 出对应的共振点的参数。
4,实验任务与测量方法
• 峰点共振
4,实验任务与测量方法
• 过零点共振
4,实验任务与测量方法
• 谷点共振
4,实验任务与测量方法
• 典型结果
4,实验任务与测量方法
• 装置框图
4,实验任务与测量方法
• • • • 4.2 P-NMR实验:测量横向弛豫时间T2。 共振条件: B0 方法:自旋回波法 采用双脉冲,先发90o脉冲,经过时间τ,再 发180o脉冲,则在2τ时刻,出现回波。详细 分析见讲义。

核磁共振光谱(NMR)

核磁共振光谱(NMR)
③ 苯环的磁的各向异性效应 苯环的电子云对称地分布于苯环平面的上下方,当外磁 场方向垂直于苯环平面时,在苯环上下方各形成一个类似面 包圈的 π 电子环流,此电子环流所产生的感应磁场也是各 向异性的。
4、氢键效应
分子形成氢键后,使质子周围电子云密度降低,产生
去屏蔽作用而使化学位移移向低场。
例如,一化合物其结构可能为(1)、(2)或(3),又 知 它 的 两 个 羟 基 氢 的 化 学 位 移 测 定 值 分 别 为 δ10.5 和 δ5.2 ,试问其结构为哪一种?
2、原子核的磁矩
原子核是带正电荷的粒子,当作自旋运动时,会产生 循环电流,也就会产生磁场,用磁矩μ来表示这种磁性质, 其大小与角动量 P 成正比。
P
称为磁旋比,是原子核的重要属性。
二、自旋核在磁场中的行为
无外磁场时,原子核的自旋取向是任意的,但有外磁场 存在时,原子核就会相对于外磁场发生自旋取向。按照量子 力学理论,核的自旋取向数为:
的绝对值为:
P h I (I 1)
2
式中,P 为核自旋角动量的最大可观察值,I 为核自旋量 子数,h 为普朗克常数。
核自旋量子数与原子量与原子序数有关,详见下表。
I = 0 的核没有自旋现象,不产生 NMR 信号;I>1/2 的核,有电四极矩,不适于 NMR 研究; I = 1/2 的核,其 电荷呈球形发布,是 NMR 中最主要的研究对象,尤以 1H1 和 13C6 核研究的最多。
OH COOC2H5
OH
HO
COOC2H5
COOC2H5
OH
(1)
OH
(2)
OH
(3)
磁的各向异性效应是通过空间传递的。在氢谱中,这种 效应很重要。
① 叁键的磁的各向异性效应

核磁共振波谱法(NMR)

核磁共振波谱法(NMR)

振实验时,所用的磁强强度越高,发生核磁共振所
需的射频频率也越高。
讨论:
(1)磁场固定时( B0一定),不同的核具有不同的共振频率, 共振频率取决于核本身,大的核,发生共振所需的照射频率也大; 反之,则小。 (2)同样的核(一定),外加磁场B0越大,共振频率越大。 (3)若共振频率一定, 越大, B0越小。 例:外磁场B0=4.69T(特斯拉,法定计量单位) 1H 和13C的共振 频率为
样品,溶剂CDCl3, CD2Cl2, THF, etc.
当B = B0 +δB,使ν恰好等于照射样品的固定无线电波
频率ν0,样品中的氢原子核发生自旋能级跃迁。 B0 为核磁共振仪电磁铁的磁场强度,δB为扫描线圈产
生的磁场增量,5-10mG· min-1。
要满足核磁共振条件,可通过二种方法来实现
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
2. I=1 或 I>0的原子核: I=1 : 2H,14N, I=3/2: 11B,35Cl,79Br,81Br I=5/2: 17O,127I
这类原子核的核电荷分布可看作一个椭圆体,电荷分布 不均匀,共振吸收复杂,研究应用较少;
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H 13C 19F 31P
60.000 15.086 56.444 24.288
MHZ MHZ MHZ MHZ
磁场强度 0.9400 特斯拉 1.4092 2.3500 4.7000 7.1000 11.7500

核磁共振(NMR)

核磁共振(NMR)

实验九 核磁共振(NMR )实验目的1、了解核磁共振基本原理和实验方法。

2、以含氢核的水作样品,观测影响核磁共振吸收信号大小及线宽的因素。

3、学会利用核磁共振测量磁场强度。

4、测量原子核的旋磁比γ和朗德因子。

核磁共振(Neclear Magnetic resonance 简称NMR )现象是1939年发现的。

到1946年应用了射频技术,简化了实验设备,使NMR 实验走向实用阶段。

近年来随着实验技术的发展,特别是计算机的应用,使NMR 实验方法更加完善。

因此它已成为物理、化学、生物、医学、材料科学等许多领域内进行研究的重要手段和方法。

NMR 技术以快速,准确和不破坏样品等显著的优点,通过对原子核磁性质的研究,获得物质结构方面的丰富信息。

在基本计量测试方面也是精确测量磁场标准方法之一,其精度可达0.001%以上。

因此NMR 实验已成为国内外高等院校近代物理实验基本内容之一。

实验原理一、NMR 现象的经典描述原子核具有固有磁矩u I ,其值为 1μ=I m e Np g p2式中g N 为原子核的朗德因子,p I 为核的自旋角动量,m P 的质子的质量。

当原子核处于稳恒磁场B 0中,则它受到由磁场产生的力矩作用,其值为L=M l ⨯B 0。

此力矩使原子核的角动量P l 发生变化,角动量的变化率就是力矩0p B L dtd I⨯==μ (12-1)由于力矩的方向垂直于B 0和P l ,它不改变角动量的大小,而使角动量的方向不断改变,即使P l 在图12-1所示的方向连续地旋进。

从图12-1(a )上面向下看,Pl 的端点作半径为P l sinaw 0的圆周运动,如图12-1(b )所示。

设其角速度为ω0,则线速度为P l sinaw 0,由此可求出P l 的时间变化率=0sin θωI dt dp p I= ,则根据(12-1)式有θμθωsin sin 00B p I I = 000B B II p γωμ==(12-2)式中 hNp NI g μμπγ21== 称为核的旋磁比,不同元素的核有不现的g N 值,故其γ值也不同,所以γ也是一个反映核的固有性质的物理理,其值可由实验测定。

核磁共振波谱法(NMR)

核磁共振波谱法(NMR)

1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:
射频 40 MHz 磁场强度 0.9400 特斯拉
60
1.4092
100
2.3500
200
4.7000
300
7.1000
500
11.7500
核磁共振仪
分类: 按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--, 800 MHz(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
奇数 奇数或偶数 1/ 2
自旋球体

1H, 13C, 15N, 19F, 31P
奇数 奇数或偶数 3/2, 5/2,--- 自旋惰球体

11B,17O,33S,35Cl,79Br,127I
偶数 奇数
1, 2, 3, --- 自旋惰球体

2H, 10B, 14N
1. I=0 的原子核O(16);C(12);S(32)等 ,无自旋, 无磁性,称为非磁性核,这类核不会发生核磁共振。不产生 共振吸收。
CD3COCD3 CDCl3 CD2Cl2 CD3CN C6D6 D2O (CD3CD2)2O (CD3)2O (CD3)2NCDO CD3SOCD3 CD3CD2OD CD3OD C4D8O C6D5CD3 C5D5N C6H12
核磁共振波谱主要参数
用于结构分析的主要参数有化学位移, 自旋偶合常数,信号强度(峰面积)。

NMR(核磁共振)解析

NMR(核磁共振)解析

(2)自旋—自旋驰豫(spin-spin relaxation):自旋— 自旋驰豫亦称横向驰豫,一些高能态的自旋核把能量转 移给同类的低能态核,同时一些低能态的核获得能量跃 迁到高能态,因而各种取向的核的总数并没有改变,全 体核的总能量也不改变。自旋—自旋驰豫时间用T2来表 示,对于固体样品或粘稠液体,核之间的相对位置较固 定,利于核间能量传递转移,T2约10−3s。而非粘稠液 体样品,T2约1s。
在化学领域中的应用
1结构的测定和确证,有时还可以测定构想和构型; 2化合物的纯度的检查,它的灵敏度很高,能够检测出用 层析和纸层析检查不出来的杂质; 3混合物的分析,如果主要信号不重叠,不需要分离就能 测定出混合物的比率; 4质子交换,单键的旋转和环的转化等。
5.2 核磁共振基本原理
5.2.1 原子核的磁矩 原子核是带正电荷的粒子,和电子一样有自旋现象, 因而具有自旋角动量以及相应的自旋量子数。由于原子 核是具有一定质量的带正电的粒子,故在自旋时会产生 核磁矩。核磁矩和角动量都是矢量,它们的方向相互平 行,且磁矩与角动量成正比,即 μ=γp ( 5.1 ) 式中:γ为旋磁比(magnetogyricratio),rad· T−1· s−1,即核磁 矩与核的自旋角动量的比值,不同的核具有不同旋磁比, 它是磁核的一个特征值;μ为磁矩,用核磁子表示,1核 磁子单位等于5.05×10−27J· T−1;
p为角动量,其值是量子化的,可用自旋量子数表示p 为角动量,其值是量子化的,可用自旋量子数表
h p I(I 1) 2
( 5.2 )
式中:h为普郎克常数(6.63×10−34J· s);−I为 自旋量子数,与原子的质量数及原子序数有关。式中: h为普郎克常数(6.63×10−34J· s);−I为自旋量子 数,与原子的质量数及原子序数有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
到低能态而不发射原来所吸收的能量的过程称为驰豫 (relaxation)过程
驰豫过程可分为两种:自旋—晶格驰豫和自旋— 自旋驰豫
(1)自旋—晶格驰豫(spin-lattice relaxation):自旋—晶格 驰豫也称为纵向驰豫,是处于高能态的核自旋体系与其周围的 环境之间的能量交换过程。当一些核由高能态回到低能态时, 其能量转移到周围的粒子中去,对固体样品,则传给晶格,如 果是液体样品,则传给周围的分子或溶剂。自旋—晶格驰豫的 结果使高能态的核数减少,低能态的核数增加,全体核的总能 量下降。
(2)自旋—自旋驰豫(spin-spin relaxation):自旋— 自旋驰豫亦称横向驰豫,一些高能态的自旋核把能量转
移给同类的低能态核,同时一些低能态的核获得能量跃
迁到高能态,因而各种取向的核的总数并没有改变,全 体核的总能量也不改变。自旋—自旋驰豫时间用T2来表 示,对于固体样品或粘稠液体,核之间的相对位置较固 定,利于核间能量传递转移,T2约10−3s。而非粘稠液 体样品,T2约1s。
(2)v不变,改变B0 方法是将样品用固定电磁辐射进行照射,并缓缓改变外 加磁场的强度,达到引起共振为止。这种方法叫扫场 (field sweep)。
通常,在实验条件下实现NMR多用2法。
核磁共振波谱仪主要由磁铁、射频振荡器、射频接收器等 组成
(1)磁铁
可以是永久磁铁,也可以是电磁铁,前者稳定性好。磁场 要求在足够大的范围内十分均匀。当磁场强度为1.409T时,其 不均匀性应小于六千万分之一。这个要求很高,即使细心加工 也极难达到。因此在磁铁上备有特殊的绕组,以抵消磁场的不 均匀性。磁铁上还备有扫描线圈,可以连续改变磁场强度的百 万分之十几。可在射频振荡器的频率固定时,改变磁场强度, 进行扫描。
e e N 1 / 2 E / kT hB0 / 2T 1.0000099
N 1/ 2
式中:N+ — 处于低能态核的数目; N—— 处于高能态核的数目; △E— 高低能态的能量差; K— 玻耳兹曼常数; T—热力学温度。
对于氢核,处于低能态的核比高能态的核稍多一点,约百万分
之十左右。也就是说,在1 000 000个氢核中,低能态的核仅 比高能态的核多十个左右,而NMR信号就是靠这极弱量过剩的 低能态氢核产生的。如果低能态的核吸收电磁波能量向高能态 跃迁的过程连续下去,那么这极微量过剩的低能态氢核就会减
p为角动量,其值是量子化的,可用自旋量子数表示p 为角动量,其值是量子化的,可用自旋量子数表
p h I(I 1) 2
( 5.2 )
式中:h为普郎克常数(6.63×10−34J·s);−I为 自旋量子数,与原子的质量数及原子序数有关。式中: h为普郎克常数(6.63×10−34J·s);−I为自旋量子 数,与原子的质量数及原子序数有关。
5.2.4 核跃迁与电磁辐射(核磁共振)
已知核从低能级自旋态向高能态跃迁时,需要一定能 量,通常,这个能量可由照射体系用的电磁辐射来供给。 如果用一频率为ν射的电磁波照射磁场中的1H核时,电 磁波的能量为
E射 = h v射
(5.6)
当电磁波的频率与该核的回旋频率ν回相等时,电磁波 的能量就会被吸收,核的自旋取向就会由低能态跃迁到 高能态,即发生核磁共振。此外E射=ΔE,所以发生核 磁共振的条件是:
原子核是带正电荷的粒子,和电子一样有自旋现象, 因而具有自旋角动量以及相应的自旋量子数。由于原子 核是具有一定质量的带正电的粒子,故在自旋时会产生 核磁矩。核磁矩和角动量都是矢量,它们的方向相互平 行,且磁矩与角动量成正比,即
μ=γp
( 5.1 )
式中:γ为旋磁比(magnetogyricratio),rad·T−1·s−1,即核磁 矩与核的自旋角动量的比值,不同的核具有不同旋磁比, 它是磁核的一个特征值;μ为磁矩,用核磁子表示,1核 磁子单位等于5.05×10−27J·T−1;
当I=0时,p=0,原子核没有磁矩,没有自旋现象;当I>0时,p≠ 0,原子核磁矩不为零,有自旋现象。 I=1/2的原子核在自旋过程中核外电子云呈均匀的球型分布,见 图5.1(b)核磁共振谱线较窄,最适宜核磁共振检测,是NMR主 要的研究对象。I>1/2的原子核,自旋过程中电荷在核表面非均 匀分布

5.2.3 核的回旋
当原子核的核磁矩处于外加磁场B0 中,由于核自 身的旋转,而外加磁场又力求它取向于磁场方向,在这 两种力的作用下,核会在自旋的同时绕外磁场的方向进 行回旋,这种运动称为Larmor进动。
原子核在磁场中的回旋, 这种现象与一个自旋的陀螺 与地球重力线做回旋的情况相似。
换句话说:由于磁场的作用,原子核一方面绕轴 自旋,另一方面自旋轴又围绕着磁场方向进动。其进动 频率,除与原子核本身特征有关外,还与外界的磁场强 度有关。进动时的频率、自旋质点的角速度与外加磁场 的关系可用Larmor方程表示:
5.2.2 自旋核在外加磁场中的取向数和能级
按照量子力学理论,自旋核在外加磁场中的自旋取向 数不是任意的,可按下式计算:
自旋取向数= 2I+1 以H核为例,因I =1/2,故在外加磁场中,自旋取向 数=2(1/2)+1=2,即有两个且自旋相反的两个取 向,其中一个取向磁矩与外加磁场B0一致;另一取向, 磁矩与外加磁场B0相反。两种取向与外加磁场间的夹 角经计算分别为54024'(θ1)及125036'(θ2)。见 图5.2
第五章 核磁共振波谱分析 (NMR)
1 概述
核磁共振波谱(Nuclear Magnetic Resonance spectroscopy, NMR)类似于红外或 紫外吸收光谱,是吸收光谱的另一种形式。
核磁共振波谱是测量原子核对射频辐射(4~ 600MHz)的吸收,这种吸收只有在高磁场中才能产生。 核磁共振是近几十年发展起来的新技术,它与元素分析、 紫外光谱、红外光谱、质谱等方法配合,已成为化合物 结构测定的有力工具。目前核磁共振波谱的应用已经渗 透到化学学科的各个领域,广泛应用于有机化学、药物 化学、生物化学、环境化学等与化学相关的各个学科。
在化学领域中的应用
1结构的测定和确证,有时还可以测定构想和构型; 2化合物的纯度的检查,它的灵敏度很高,能够检测出用
层析和纸层析检查不出来的杂质; 3混合物的分析,如果主要信号不重叠,不需要分离就能
测定出混合物的比率; 4质子交换,单键的旋转和环的转化等。
5.2 核磁共振基本原理
5.2.1 原子核的磁矩
由永久磁铁和电磁铁获得的磁场一般不能超过2.4T,这相 应于氢核的共振频率为100MHz。对于200MHz以上高频谱仪 采用超导磁体。由含铌合金丝缠绕的超导线圈完全浸泡在液氦 中间,对超导线圈缓慢地通入电流,当超导线圈中的电流达到 额定值(即产生额定的磁场强度时),使线圈的两接头闭合, 只要液氦始终浸泡线圈,含铌合金在此温度下的超导性则使电 流一直维持下去。使用超导磁体,可获得10~17.5T的磁场, 其相应的氢核共振频率为400~750 MHz。
5.3 核磁共振波谱仪与实验方法
5.3.1 仪器原理及组成 我们知道,实现NMR即满足核跃迁的条件 是:
△E(核跃迁能)= △E,(辐射能)

2μB0 = h vຫໍສະໝຸດ 实现核磁共振的方法,只有以下两种:
(1)B0不变,改变v 方法是将样品置于强度固定的外加磁场中,并逐步改变 照射用电磁辐射的频率,直至引起共振为止,这种方法 叫扫频(frequency sweep)。
少,吸收信号的强度也随之减弱。最后低能态与高能态的核数
趋于相等,使吸收信号完全消失,这时发生“饱和”现象。但
是,若较高能态的核能够及时回复到较低能态,就可以保持稳 定信号。由于核磁共振中氢核发生共振时吸收的能量△E是很 小的,因而跃迁到高能态的氢核不可能通过发射谱线的形式失
去能量返回到低能态(如发射光谱那样),这种由高能态回复
图5.2 H核在磁场中的行为
应当注意,每个自旋取向将分别代表原子核的某个特定的能量状态,
并可用磁量子数(m)来表示,它是不连续的量子化能级。m取值
可由 -I……0……+I决定。例如:I=1/2,则m= −1/2,0,+
1/2;I=1,则m = -1,0,+1。
在上图中,当自旋取向与外加磁场一致时(m =+1/2),氢核 处于一种低能级状态(E=-μB0);相反时(m=-1/2),氢核 处于一种高能级状态(E=+μB0)两种取向间的能级差,可用ΔE 来表示:
自旋量子数与原子的质量数及原子序数的关系见表:
质量数A 偶数 奇数
原子序数Z 偶数 奇或偶数
31P15 奇数 奇或偶数
偶数
奇数
自旋量子数 0 ½
INMR信号
原子核

12C6 16O832S16

1H1,13C6
19F9,15N7,
3/2,5/2 … 1,2,3

17O8,33S16

2H1,14N7
图5.1 原子核的自旋形状
有机化合物的基本元素13C、1H、15N、19F、31P 等都有核磁共振信号,且自旋量子数均为1/2,核磁共振 信号相对简单,已广泛用于有机化合物的结构测定
然而,核磁共振信号的强弱是与被测磁性核的天然 丰度和旋磁比的立方成正比的,如1H的天然丰度为 99.985%,19F和31P的丰度均为100%,因此,它们 的共振信号较强,容易测定,而13C的天然丰度只有 1.1%,很有用的15N和17O核的丰度也在1%以下,它 们的共振信号都很弱,必须在傅里叶变换核磁共振波谱仪 上经过多次扫描才能得到有用的信息。
ΔE = E2-E1 =+μB0-(-μB0) = 2μB0 式中:μ为氢核磁矩;B0为外加磁场强度
(5.3)
上式表明:氢核由低能级E1向高能级E2跃迁时需要的能量ΔE与外 加磁场强度B0及氢核磁矩μ成正比
图5.3 能级裂分与外加磁场强度的关系
相关文档
最新文档