七年级数学第七章三角形复习训练题
经典初中数学三角形专题训练及例题解析

经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
(完整版)七年级数学三角形测试题(附答案)

第七章 三角形班级: 姓名: 座号: 评分:一. 选择题。
(每题3分,共24分)1. 若三角形两边长分别是4、5,则周长c 的范围是( )A. 19cB. 914cC. 1018cD. 无法确定2. 一个三角形的三个内角中( )A. 至少有一个等于90°B. 至少有一个大于90°C. 不可能有两个大于89°D. 不可能都小于60°3. 从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( )A. n 个B. (n-1)个C. (n-2)个D. (n-3)个4. n 边形所有对角线的条数有( )A. ()12n n -条 B. ()22n n -条 C. ()32n n -条 D. ()42n n -条 5. 装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。
若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )A. 1种B. 2种C. 3种D. 4种6. 下列图形中有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形7. 如图1,点O 是△ABC 内一点,∠A=80°,∠1=15°, ∠2=40°,则∠BOC 等于( )A. 95°B. 120°C. 135°D. 无法确定 8. 若一个三角形的三边长是三个连续的自然数,其周 长m 满足1022m ,则这样的三角形有( ) A. 2个 B. 3个 C. 4个 D. 5个二. 填空题。
(每空2分,共38分)1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
2011年春季期七年级数学三角形复习训练题

A BEC D 2011年春季期七年级数学三角形复习训练题一、填空题1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13∠B ,则∠A= ,∠B= ,这个三角形是 。
5、三角形有两条边的长度分别是5和7,则第三条边a 的取值范围是___________。
6、△ABC 中,∠A =50°,∠B =60°,则∠C = 。
7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。
8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_____________________. 9、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . 10、在 ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
11、一个多边形的内角和是1980°,则它的边数是____,共有条对角线____,它的外角和是____。
12、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
二、选择题1、小芳画一个有两边长分别为5和6的等腰三角形,则它的周长是( )A 、16B 、17C 、11D 、16或172、如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )A ∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDEB ∠BED =∠ABE -∠CDEC ∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDED ∠BED =∠CDE -∠ABE3、 以长为3cm ,5cm ,7cm ,10cm 的四根木棍中的三根木棍为边,可以构成三角形的个数是( )A .1个B .2个C .3个D .4个4、已知一多边形的每一个内角都等于150°,则这个多边形是正( )DA BECP(1⑵ ⑶ (A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形 5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A.正方形与正三角形 B.正五边形与正三角形 C.正六边形与正三角形 D.正八边形与正方形6、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高, 且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°7、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( ) A 、500 B 、100 0 C 、180 0 D 、 200 08、在∆ABC 中,三个内角满足∠B -∠A=∠C -∠B ,则∠B 等于( ) A 、70° B 、60° C 、90° D 、120° 9、在锐角三角形中,最大内角的取值范围是( )A 、0°<<90°B 、60°<<180°C 、60°<<90°D 、60°≤<90° 10、下面说法正确的是个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
最新版初中七年级数学题库 第七章三角形A1

第七章三角形A1卷•基础知识点点通班级姓名得分一、选择题(3分×8=24分)1.一个三角形的三个内角中()A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角 D、至少有两个锐角2.下列长度的三条线段能组成三角形的是()A、 3,4,8B、 5,6,11C、 1,2,3D、 5,6,103.关于三角形的边的叙述正确的是()A、三边互不相等B、至少有两边相等C、任意两边之和一定大于第三边D、最多有两边相等4.图中有三角形的个数为()A、 4个B、 6个C、 8个D、 10个5.如图在△ABC中,∠ACB=900,CD是边AB上的高。
那么图中与∠A相等的角是()A、∠BB、∠ACDC、∠BCDD、∠BDC6.下列图形中具有稳定性有()A、 2个 B、 3个 C、 4个 D、 5个7.一个多边形的内角和等于它的外角和,这个多边形是()A 、三角形 B、四边形 C、五边形 D、六边形8.一个多边形内角和是10800,则这个多边形的边数为()A、 6B、 7C、 8D、 9二、填空题(4分×9=36分)9.一个三角形有条边,个内角,个顶点,个外角第(4)题EDCBA第(5)题DCBA(1)(2)(3)(4)(5)(6)10.如图,图中有 个三角形,把它们用符号分别表示为 11.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是12.如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空:⑴BE= =21 ; ⑵∠BAD= =21⑶∠AFB= =900; 13.在△ABC 中,若∠A=800,∠C=200,则∠B= 0, 若∠A=800,∠B=∠C ,则∠C= 014.已知△ABC 的三个内角的度数之比∠A :∠B :∠C=1:3:5,则∠B= 0,∠C=15.如图,在△ABC 中,∠BAC=600,∠B=450,AD 是△ABC 的一条角平分线,则∠DAC= 0,∠ADB=16.十边形的外角和是 0;如果十边形的各个内角都相等,那么它的一个内角是17.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y 三、解下列各题18.对下面每个三角形,过顶点A 画出中线,角平分线和高(4分×3=12分)19.求出下列图中x 的值:(4分×3=12分) 第(10)题E D CBA第(12)题B第(15)题D CA800yx4321第(17)题E D CBA(1)C B A C B A(2)C B A (3)x 0x 04x ︒3x ︒3x ︒2x ︒20.(8分)一个多边形的外角和是内角和的72,求这个多边形的边数21.在△ABC 中,∠A=21∠C=21∠ABC , BD 是角平分线,求∠A 及∠BDC 的度数(8分)附加题(10分×2=20分)22.如图,已知∠1=∠2,∠3=∠4,∠A=1000,求x 的值。
人教版初中数学三角形经典测试题及答案

人教版初中数学三角形经典测试题及答案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March人教版初中数学三角形经典测试题及答案一、选择题1.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-= ∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.2.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒,∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180 ;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.3.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.4.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.5.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE =D .1902B BAC ∠+∠=︒ 【答案】A【解析】【分析】 由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB =AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F =∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B =90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A .【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.6.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形 【答案】C【解析】【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理.7.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12BC , ∴AE=BE=12BC , ∴AE=CE ,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S △ABC =12AB•AC ,故②错误; ∵BE=EC ,∴E 为BC 中点,O 为AC 中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.8.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE 22EF,EF2AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=22EF=22×22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .310C .326+D .12【答案】B【解析】【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(36)3310++= .故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.12.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB 长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【答案】B【解析】【分析】先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB =∴AC =AB ,∴OC 2,∴点C 2,0),∵34<< ,∴122<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.13.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠=【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形;B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.14.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.15.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.16.如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要利用“SSS”证明△ABC≌△FDE,还可以添加的一个条件是()A.AD=FB B.DE=BD C.BF=DB D.以上都不对【答案】A【解析】∵AC=FE,BC=DE,∴要利用“SSS”证明△ABC≌△FDE,需添加条件“AB=DF”或“AD=BF”.故选A.17.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和一条直角边对应相等的两个等腰直角三角形【答案】C【解析】A.根据全等三角形的判定,可知有一边相等的两个等边三角形全等,故选项A不符合;B.根据全等三角形的判定,可知有一腰和底边对应相等的两个等腰三角形全等,故选项B 不符合;C.根据全等三角形的判定,可知周长相等的两个三角形不一定全等,故选项C符合;D.根据全等三角形的判定,可知斜边和直角边对应相等的两个等腰直角三角形全等,故选项B不符合.故本题应选C.18.△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则共有等腰三角形( )A.7个B.8个C.9个D.10个【答案】B【解析】∵等腰三角形有两个角相等,∴只要能判断出有两个角相等就行了,将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形,只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个. 故选:B.点睛:本题考查了等腰三角形的判定与性质、三角形内角和定理以及三角形外角的性质,此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.19.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A .30°B .45°C .36°D .72°【答案】A【解析】∵AB=AC ,BD=BC=AD ,∴∠ABC=∠C=∠BDC ,∠A=∠ABD ,又∵∠BDC=∠A+∠ABD ,∴∠BDC=∠C=∠ABC=2∠A ,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.20.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.。
七年级数学下册第七章《三角形复习课》

B
C
E
提高作业
如图所示, △ABC的高 、CE交于 点, 如图所示, 的高BD、 交于H点 的高 交于 的度数? ∠A=50°,求∠BHC的度数? °求 的度数
A
E B
H
D C
0 0 0
(1)
0
500
X0
∴ X = 180 − 50 − 90 = 40 0 0 0 0 (2).∵ X + X + 40 = 180
0 0 0
0
∴ 2 X = 1800 − 400 = 1400
(2)
400
X0 X0
∴ X = 700
(3).∵ ( X 0 + 700 ) = ( X 0 + 100 ) + X 0 (三角形的一个外角等于与它不相邻的两个内角和)
5.如右图,AD是BC边上的高,BE 如右图, 是 边上的高 边上的高, 如右图 的角平分线, 是 △ ABD的角平分线,∠1=40°, 的角平分线 ° ° 60°∠ ° ∠2=30°,则∠C= ____∠BED= 65° ° 。
B
A 1 2 E D C
6.直角三角形的两个锐角相等, 6.直角三角形的两个锐角相等,则每一个锐角等于 直角三角形的两个锐角相等 45 _____度 _____度。
225°,则与这个外角相邻的内角是 ° 则与这个外角相邻的内角是 则与这个外角相邻的内角是____
9.△ABC中 9.△ABC中,∠ABC的平分线BD和 ABC的平分线BD和 的平分线BD ABC的外角平分线CD交于 的外角平分线CD交于D △ABC的外角平分线CD交于D, 求证: 求证:∠A=2∠BDC
ቤተ መጻሕፍቲ ባይዱ
13、有一六边形,截去一三角形,内角和会发生 、有一六边形,截去一三角形, 怎样变化?请画图说明。 怎样变化?请画图说明。
初一数学第七章 三角形有关的练习题(含答案)

与三角形有关的线段习题精选习题一一、选择题:1.已知三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5.其中可构成三角形的有( )A.1个 B.2个 C.3个 D.4个2.如果三角形的两边长分别为3和5,则周长L的取值范围是( )A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<163.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取 ( )A.10cm的木棒 B.20cm的木棒C.50cm的木棒 D.60cm的木棒4.已知等腰三角形的两边长分别为3和6,则它的周长为( )A.9 B.12 C.15 D.12或155.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为( )A. 2cm B. 3cm C. 4cm D. 5cm6.已知三角形的周长为9,且三边长都是整数,则满足条件的三角形共有( )A.2个 B.3个 C.4个 D.5个二、填空题:1.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______;当周长为奇数时,第三边长为________;当周长是5的倍数时,第三边长为________.2.若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____.3.若等腰三角形的腰长为6,则它的底边长a的取值范围是________;若等腰三角形的底边长为4,则它的腰长b的取值范围是_______.4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成______个三角形.5.已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,△BCD的周长为15cm,则底边BC的长为__________.6.已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为_____.三、基础训练:1.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).2.已知等腰三角形的两边长分别为4,9,求它的周长.四、提高训练:设△ABC的三边a,b,c的长度都是自然数,且a≤b≤c,a+b+c=13,则以a,b,c为边的三角形共有几个?五、探索发现:若三角形的各边长均为正整数,且最长边为9,则这样的三角形的个数是多少?六、中考题与竞赛题:1.(2001.南京)有下列长度的三条线段,能组成三角形的是( )A. 1cm, 2cm, 3cm B. 1cm, 2cm, 4cm; C. 2cm, 3cm, 4cm D. 2cm, 3cm,6cm2.(2002.青海)两根木棒的长分别是8cm,10cm,要选择第三根木棒将它们钉成三角形,那么第三根木棒的长x的取值范围是________;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长为________.答案:一、1.B 2.D 3.B 4.C 5.B 6.B二、1.5<c<9 6或8 6 2.17 10或11 3.0<a<12 b>2 4.3 5. 5cm 6. 7cm三、1.解:在△APB中,AP+BP>AB,同理BP+PC>BC,PC+AP>AC,三式相加得2(AP+BP+PC)>AB+AC+BC,∴AP+BP+CP>(AB+AC+BC).2.22四、5个五、25个六、1. C 2. 2cm<x< 18cm 25cm.习题二一、选择题:1.如图1所示,在△ABC中,∠ACB=90°,把△ABC沿直线AC翻折180°,使点B落在点B′的位置,则线段AC具有性质( )A.是边BB′上的中线 B.是边BB′上的高C.是∠BAB′的角平分线 D.以上三种性质合一2.如图2所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线 B.BD是△ABC的中线C.AD=DC,BD=EC D.∠C的对边是DE3.如图3所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC= 4cm2,则S阴影等于( )A. 2cm2 B. 1cm 2 C.cm2 D.cm24.在△ABC,∠A=90°,角平分线AE、中线AD、高AH的大小关系为( )A.AH<AE<AD B.AH<AD<AE C.AH≤AD≤AE D.AH≤AE≤AD5.在△ABC中,D是BC上的点,且BD:DC=2:1,S△ACD=12,那么S△ABC等于( )A.30 B. 36 C.72 D.246.不是利用三角形稳定性的是( )A.自行车的三角形车架 B.三角形房架C.照相机的三角架 D.矩形门框的斜拉条二、填空题:1.直角三角形两锐角的平分线所夹的钝角为_______度.2.等腰三角形的高线、角平分线、中线的总条数为________.3.在△ABC中,∠B=80°,∠C=40°,AD,AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.4.三角形的三条中线交于一点,这一点在_______,三角形的三条角平分线交于一点,这一点在__________,三角形的三条高线所在直线交于一点,这一点在_____.三、基础训练:1.如图所示,在△ABC中,∠C-∠B=90°,AE是∠BAC的平分线,求∠AEC的度数.2.在△ABC中,AB=AC,AD是中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.四、提高训练:在△ABC中,∠A=50°,高BE,CF所在的直线交于点O,求∠BOC的度数.五、探索发现:如图所示的是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数为s.按此规律推断s与n有什么关系,并求出当n=13时,s的值.六、中考题与竞赛题:(2000.杭州)AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.答案:一、1.D 2.D 3.B 4.D 5.B 6.C二、1.135 2.3条或7条 3.20°4.三角形内部三角形内部三角形内部、边上或外部三、1.∠AEC=45° 2.AD= 13cm四、∠BOC=50°或130°五、s=3n-3,当n=13时,s=36.六、AD=AE.。
第七章综合测试卷备选试题七年级数学

第七章综合测试题、选择题1.有4根木条,长度分别为 24cm , 20cm , 16cm , 8cm ,选择其中的三根作为边组成三角 形,选择的方法共有( )A. 1种B. 2种C. 3种D. 4种2.在三角形ABC 中,已知两边长分别为 a=4,b=6,则第三边c 的范围是( )A. c>2B. c<6C. c<10D. 2<c<103.三角形的两边长分别为 5和7,则这个三角形的周长 I 的范围是 (A . I>12B . I>14C . 12VIV24D . 14<l<244.已知三角形 ABC 的三边长为a,b,c ,化简丨a+b-c 丨-丨b-c-a 丨的结果是 (A. 2aB. -2bC.2a+2bD. 2b-2c5. —个三角形三边的长都是整数, 并且唯一的最长边长是6,则这样的三角形共有 (A. 5个B. 6个C. 7个D. 8个6.下列说法错误的是(A.三角形的三条中线都在三角形的内部B.三角形的三条角平分线都在三角形内部C. 若三角形有两条高不在三角形的内部,则这个三角形是钝角三角形D. 三角形的三边长度一定,那么这个三角形的形状不变 7.如图,BD 是厶ABC 的高,EF 平行 AC 交 BD 于G ,下列说法不正确的是()A. BG 是厶EBF 的高B. CD 是厶BGC 的高C. DG 是厶BGC 的高D. AD 是厶ABG 的高 8.下列不是利用三角形稳定性的是A.自行车的三角形车架B.三角形的房架C.四边形活动挂架 D 。
长方形门框的斜拉条9.在△ ABC 中,如果/ A- / B = 90°,那么△ ABC 是 ()A.直角三角形B.锐角三角形C.钝角三角形D.锐角三角形或钝角三角形10.在△ ABC 中,/ A = 2/B = 75°,则/ C = ()A. 30B. 67 30'C. 105D.13511.一个多边形每一个外角都是72°,则这个多边形的边数是 ()A. 5B. 6C. 7D. 8 12.一个多边形的各内角都相等,且内角与) ) ) )( )外角的差是100°,那么这个多边形是()A. 七边形B. 八边形C.九边形D.十边形13. 过多边形的一个顶点可以引9条对角线,那么这个多边形的内角和为()° ° _ ° °A. 1620B. 1800C. 1980D. 216014. 一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是()A. 5B. 6C. 7D. 815•商店出售下列形状的地板:⑴下方形;⑵正五边形;⑶长方形;⑷正六边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B E C D 七年级数学第七章三角形复习训练题
一、填空题
1. 锐角三角形的三条高都在 ,钝角三角形有 条高在三角形外,直角三角形有两条高恰是它的 。
2. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 。
3. 要使六边形木架不变形,至少要再钉上 根木条。
4. 在△ABC 中,若∠A=∠C=13
∠B ,则∠A= ,∠B= ,这个三角形是 。
5、三角形有两条边的长度分别是5和7,则第三条边a 的取值范围是___________。
6、△ABC 中,∠A =50°,∠B =60°,则∠C = 。
7、将一个三角形截去一个角后,所形成的一个新的多边形的内角和___________。
8、等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部
分的周长之差为2cm,则这个等腰三角形的腰长为_____________________.
9、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 .
10、在 ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
11、一个多边形的内角和是1980°,则它的边数是____,共有条对角线____,它的外角和是____。
12、观察下图,我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形,图⑶中共有14个正方形,按照这种规律继续下去,图⑹中共有_______个正方形。
二、选择题
1、小芳画一个有两边长分别为5和6的等腰三角形,则它的周长是( )
A 、16
B 、17
C 、11
D 、16或17
2、如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =
∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是
( )
A ∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDE
B ∠BED =∠ABE -∠CDE
C ∠BE
D =∠CD
E -∠ABE 或∠BED =∠ABE -∠CDE
D ∠BED =∠CD
E -∠ABE
3、 以长为3cm ,5cm ,7cm ,10cm 的四根木棍中的三根木棍为边,可以构成三角形的个数是( )
A .1个
B .2个
C .3个
D .4个
4、已知一多边形的每一个内角都等于150°,则这个多边形是正( )
(A) 十二边形 (B) 十边形 (C) 八边形 (D) 六边形 D
A
E
P
5、边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( )
A.正方形与正三角形
B.正五边形与正三角形
C.正六边形与正三角形
D.正八边形与正方形
6、如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,
且相交于一点P ,若∠A=50°,则∠BPC 的度数是( )
A .150°
B .130°
C .120°
D .100°
7、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( )
A 、500
B 、100 0
C 、180 0
D 、 200 0
8、在∆ABC 中,三个内角满足∠B -∠A=∠C -∠B ,则∠B 等于( )
A 、70°
B 、60°
C 、90°
D 、120°
9、在锐角三角形中,最大内角的取值范围是( )
A 、0°<<90°
B 、60°<<180°
C 、60°<<90°
D 、60°≤<90°
10、下面说法正确的是个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直
角三角形;④如果∠A=∠B=2
1∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
A 、3个
B 、4个
C 、5个
D 、5个
11、在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( )
(A )x 2190+ (B )x 2
190- (C )x 290+ (D )x +90 三、解答题
1、在五边形ABCDE 中,∠A=2
1∠D ,∠C+∠E=2∠B ,∠A-∠B=45°,求∠A 、 ∠B 的度数。
2、阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形。
图(一)给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形。
请你按照上述方法将图(二)中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n 边形,并推导出n 边形内角和的计算公式。
(1⑵ ⑶
(1)
2、探究规律:如图,已知直线m ∥n ,A 、B 为直线n 上的两点,C 、P 为直线m 上的两点。
(1)请写出图中面积相等的各对三角形:______________________________。
(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么无论P 点移动到任何位置总有: 与△ABC 的面积相等;
理由是:
第3题图 第2题图 3、如图,在△ABC 中,AD ⊥BC,CE 是△ABC 的角平分线,AD 、CE 交于F 点.当 ∠BAC=80°,∠B=40°时,求∠ACB 、∠AEC 、∠AFE 的度数.
4、如图,在直角三角形ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,
BC=12cm ,AC=5cm ,求:(1)△ABC 的面积; (2)CD 的长;
(3)作出△ABC 的边AC 上的中线BE ,并求出△ABE 的面积;
(4)作出△BCD 的边BC 边上的高DF ,当BD=11cm 时,试求出DF 的长。
A B
n m
O
B A
P C
5、在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB 上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.。