10 压电、热释电与铁电材料
铁电材料的应用及其性质

铁电材料的应用及其性质铁电材料是一种拥有电极化性能的材料,可以在外加电场的作用下产生极化效应,其具有许多重要的物理特性和应用价值。
铁电材料被广泛应用于电容器、传感器、压电材料、振动器、光伏器件、非易失性存储器等领域。
本文将深入探讨铁电材料的性质及应用。
一、铁电材料的性质1.电极化性能:铁电材料表现出极化现象,它们能够在电场的作用下,在晶体中产生电偶极矩,同时使晶体的电荷分布发生改变。
铁电材料的电极化是由于离子偏移所导致的,离子的偏移可导致电流产生。
经过组合后,可以得到电信号的输出。
2.压电性能:铁电材料具有压电性能,亦即当外力作用于铁电材料时,晶体结构会产生变化,而反过来当外加电场作用于铁电晶体时,也能感受到压力的变化。
其作用的原理是,当材料受到外力的作用时,内部离子的晶格结构也会产生变形,从而产生相应的电信号。
压电传感器就是利用这种原理来实现高精度测量。
3.热释电性能:一些铁电材料还表现出热释电性能。
当这类材料被局部加热时,就会产生电荷,从而产生电信号。
这种特性可用于温度变化传感器,甚至是毒气检测器中。
4.非线性光学性能:铁电材料在非线性光学方面有很出色的表现,可以利用其将光束加工成符号、滤色器和测量仪器的功能。
二、铁电材料的应用1.电容器:由于铁电材料的电极化和解极化响应速度快,它们可用于电容器中,主要用于储存电料以及印刷电路板制作等领域。
2.传感器:由于铁电材料的压电特性,它们可以被用于制作各种类型的传感器,如液体容器液位感应器、汽车摩擦感应器等等。
3.振动器:由于铁电材料的压电特性和极化性能,它们可用于制造各种类型的振动器,如石英晶体振荡器等。
4.光伏器件:铁电材料在光伏器件中的应用越来越广泛。
铁电效应能够使太阳能电池在太阳光照射下提高光电转换效率,而且在成本上也具有一定优势。
5.非易失性存储器:铁电材料的极化状态可以长时间维持,因此它们可以被用于非易失性存储器中。
这种材料可以将电信号转化成二进制代码,从而实现信息存储和检索。
材料的压电性能和铁电性能比较

K2
通过逆压电效应得 转的 换机 所械压电效应转得换的所电能 转换时输入的总机械能
压电陶瓷振子(具有一定形状、大小和被覆工作电极的压电陶瓷 体)的机械能与其形状和振动模式有关,不同的振动模式将有相 应的机电耦合系数。
如对薄圆片径向伸缩模式的耦合系数为Kp(平面耦合系数); 薄形长片长度伸缩模式的耦合系数为K31(横向耦合系数); 圆柱体轴向伸缩模式的耦合系数为K33(纵向耦合系数)等。
3高灵敏度、高可靠性的传感器 压电力敏、声敏、热敏、光敏、湿敏和气敏等传感器
材料的压电性能和铁电性能比较
第二节 热释电与铁电性能
一 自发极化及其微观机制 1自发极化 极化状态是在外电场为零时自发产生的 晶胞中正负电荷中心不重合,晶胞的固有偶极矩会沿 同一方向排列整齐,使晶体处于高度极化状态 具有自发极化的晶体必然是个带电体,其电场强度取 决于自发极化强度 2局部电场形成的基本原理 偶极子起源于电荷为q的一种A离子在晶格中的位移, 则极化起因于晶格中所有的A离子作相同的位移,对于 任何一个单个的A离子,即使无外场作用,也有来自周 围极化P所产生的局部电场 3热释电效应和压电效应 束缚在表面的自由电荷层有一部分可恢复自由释放出 来,使晶体呈现出带电状态或在闭合电路中产生电流
材料的压电性能和铁电性能比较
4、频率常数N
对某一压电振子,其谐振频率和振子振动方向长度的 乘积为一个常数,即频率常数。
其中:
N=fr×l
fr为压电振子的谐振频率;
l为压电振子振动方向的长度。
薄圆片径向振动
Np=fr×D
薄板厚度伸缩振动 Nt=fr×t
细长棒K33振动
N33=fr×l
薄板切变K15振动
2 介质损耗 表征介电发热导致的能量损耗 3 弹性系数 压电体是一个弹性体,服从虎克定律 4 压电常数 机械能转变为电能或电能转变为机械能的转换系数 5 机械品质因数 表征谐振时因克服内摩擦而消耗的能量 6 机电耦合系数 表征机械能与电能相互转换能力
电介质材料(压电和铁电材料)

压电陶瓷材料Байду номын сангаас
锆钛酸铅系(PZT)陶瓷, 其化学式为Pb(Zrx, Ti1-x)O3, 是钙 钛矿结构的二元系固溶体,晶胞中B位置可以是Zr4+, 也可以 是Ti4+。居里点随锆钛比变化。根据器件的要求,可以选择 不同的锆钛比。 然而,锆钛酸铅系陶瓷在制备和使用过程中,都会给环 境和人类健康带来很大的损害。近年来,随着环境保护和人 类社会可持续发展的需求,研发新型环境友好的压电陶瓷已 成为世界各国致力研发的热点材料之一。2001年欧州议会通 过了关于"电器和电子设备中限制有害物质"的法令,并定于 2008年实施。其中在被限制使用的物质中就包括含铅的压电 器件。为此,欧洲共同体立项151万欧元进行关于无铅压电 陶瓷的研究与开发。美国和日本以及我国电子信息产业部也 相继通过了类似的法令,并逐年提高对研制无铅压电陶瓷项 目的支持力度。对新型无铅压电陶瓷的研究和开发也同样受 到了国内科技界与企业界的普遍关注。
小资料:最新的无铅压电材料 任晓兵博士在其论文中提出一种不同于上述机制的全 新原理,该原理利用铁电体在90度畴翻转时产生巨大变形 这一特性,并利用时效点缺陷的对称性性质而产生可回复 的应变(该性质亦为任晓兵博士所发现,X. Ren and K., Otsuka, 《Nature》, 1997)。任晓兵博士认为,存在点缺陷 的情况下,电畴在电场作用下发生翻转,当电场解除时, 在点缺陷的影响下,畴将回到原来的取向。在200V/mm的 电压下可产生0.75%的巨大可逆变形,是相同电压下PZT形 变量的37.5倍。 值得注意的是,产生这一巨大电致应变的材料为钛酸 钡基材料,这为开发对环境无害的高性能电致应变材料提 供了重要新途径。此项成果发表后,立即引起国际学术界 和工业界的强烈反响。
试说明压电体、热释电体、铁电体各自在晶体结构上的特点。

试说明压电体、热释电体、铁电体各自在晶体结构上的特点。
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!压电体、热释电体和铁电体是三类具有特殊电学性质的晶体材料。
铁电体的三个基本特征

铁电体的三个基本特征
铁电体是一种特殊的晶体材料,具有三个基本特征:铁电性、压电性和热释电性。
铁电性是铁电体最为显著的特征之一。
铁电体在外加电场的作用下,会出现极化现象,即在晶体内部会出现正负电荷分离的现象,形成电偶极矩。
这种极化是可逆的,即当外加电场消失时,电偶极矩也会消失。
铁电体还具有压电性。
当外力作用于铁电体时,晶体会发生形变,产生电荷分离,形成电偶极矩,从而产生电势差。
这种现象被称为压电效应。
压电效应是铁电体在传感器、振动器等领域中的重要应用。
铁电体还具有热释电性。
当铁电体受到温度变化时,晶体内部的电偶极矩也会发生变化,从而产生电势差。
这种现象被称为热释电效应。
热释电效应是铁电体在红外线探测器、温度传感器等领域中的重要应用。
铁电体具有铁电性、压电性和热释电性三个基本特征。
这些特征使得铁电体在电子器件、传感器、振动器等领域中有着广泛的应用前景。
铁电体、热释电体、压电体和介电体及其之间的关系

铁电体、热释电体、压电体和介电体及其之间的关系
铁电体、热释电体、压电体和介电体都是电子材料种类之一,它们在电子领域和工业
领域中有着广泛的应用,是电子材料中的重要种类。
下面我们来了解一下这些电子材料之
间的关系。
铁电体:铁电体是具有铁电性的晶体材料,铁电性是材料自身结构的一个特性,即当
材料暴露在电场中时,会发生电偶极矩的取向变化。
这个特性使得铁电体在电子产品中有
非常广泛的应用,比如它可以用作电容器、震荡器、传感器、存储器等,这些器件在电子
产品中起到重要的作用。
热释电体:热释电体是一种能够将温度变化转化为电能的材料,也叫做热电材料。
热
释电体使用的原理是通过热电效应将热能转化为电能,这个效应是指材料在温度差异作用
下会产生电势差。
热释电体具有良好的稳定性和性能,可以应用于如温度测量、温差发电、制冷等领域。
介电体:介电体是一种在电场作用下不会导电的材料,介电体在电子器件中有广泛的
应用,比如用作电容器、滤波器、隔离器、保险丝等。
由于介电体具有较高的绝缘性能,
它可以防止电信号的干扰和噪声,可以使电子器件的性能更加稳定。
尽管以上这些电子材料在应用领域不同,但它们之间有着一些共同的特性,比如它们
都是晶体材料,都可以产生电势差并转化为电能,它们都可以在电子领域中应用,有着一
定的互相联系。
当然,它们也存在一些区别,这主要体现在各自使用效应的不同点上。
压电热释电铁电材料的应用

压电热释电铁电材料的应用引言:压电热释电铁电材料是一类独特的功能材料,具有压电、热释电和铁电效应。
这些特殊的性质使得压电热释电铁电材料在很多领域中有着广泛的应用。
本文将介绍压电热释电铁电材料的概念及其应用。
一、压电效应的应用:压电效应是指在外加电场的作用下,压电材料会发生形变。
压电效应在各个领域中有着广泛的应用。
例如,在声学领域,压电传感器利用压电效应将压力信号转化为电信号,用于测量、控制和监测声波。
在医疗领域,压电效应被应用于超声波技术中,用于诊断和治疗。
此外,压电效应还被应用于振动传感器、加速度计、压力传感器等领域。
二、热释电效应的应用:热释电效应是指在温度变化的作用下,热释电材料会发生电信号的变化。
热释电效应在能量转换和传感器方面有着重要的应用。
例如,热释电发电机利用热释电效应将热能转化为电能,实现能量的回收和利用。
此外,热释电效应还被应用于温度传感器、红外传感器等领域。
三、铁电效应的应用:铁电效应是指在外加电场的作用下,铁电材料会发生极性反转。
铁电效应在信息存储和传输方面有着广泛的应用。
例如,铁电存储器利用铁电效应来实现信息的存储和读取。
铁电材料还被应用于传感器、电容器等领域。
四、压电热释电铁电材料的综合应用:压电热释电铁电材料的综合应用在科学研究和工程实践中起到了重要的作用。
例如,在机械工程领域,压电热释电铁电材料被应用于振动能量收集器,将机械振动能量转化为电能,实现自供电。
在电子工程领域,压电热释电铁电材料被应用于传感器、开关等元件,实现电信号的控制和传输。
此外,压电热释电铁电材料还在声学、光学、生物医学等领域有着广泛的应用。
结论:压电热释电铁电材料的应用涵盖了许多领域,包括声学、医疗、能源、传感器等。
这些材料的特殊性质使得它们在能量转换、信息存储和传感器方面具有独特的优势。
随着科学技术的不断进步,压电热释电铁电材料的应用前景将更加广阔,为人类创造更多的价值。
压电、热释电与铁电材料

钙钛矿化合物大多数具有铁电性(如 PbTiO3、KNbO3 和KTaO3等),可能与结构 上的这些特点有关。 钙钛矿结构的铁电晶体其顺电—铁电相 变都是属于位移相变,而是BaTiO3位移型 铁电体的典型代表。
在BaTiO3晶体中,氧形成氧八面体,氧离子 半径较小,氧的离子半径RO=1.32Å。四价 金属离子Ti4+位于氧八面体中心, RTi=0.64Å。二价金属离子Ba2+位于氧八面 体之间的间隙里,离子半径较大, RBa=1.43Å。
铁电的理论解释
钛酸钡的Slater理论 KDP 的Slater理论
Slater-Devonshire theory for BaTiO3
BaTiO3的稳定态是钙钛矿结构,120C以下 显示出铁电性。钙钛矿结构的化学分子式为 ABO3,其中A代表二价或一价金属,B四价或 五价金属;其结构特点是具有氧八面体结构, 在氧八面体中央为半径较小的金属离子,而 氧又被挤在半径较大的金属离子中间。
BaTiO3铁电相变的微观理论首先是从离子位 移模型出发而发展起来的。对BaTiO3晶体的 x射线衍射和中子衍射实验表明,当BaTiO3 的结构从立方相转变到四方相时,Ti、O等 离子都产生偏离原来平衡位置的位移。
若取立方相的平衡位置作参考, 钡离子位置作坐标原点,用 δZTi表示Ti沿c轴位移; δZOIδZOII分别表示在(001) 面上的氧离子OI和(010)、 (100)面上的氧离子OII沿轴c 方向的位移,则在四方相原胞 中各离子的位置坐标为: Ba(0,0,0);Ti(0.5,0.5,0.5+δ ZTi), OI(0.5,0.5, δZOI); OII(0.5,0,0.5+δZOII) 和 (0,0.5,0.5+δZOII)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀分散的压电陶瓷颗粒与聚 合物基体构成。与1-3型压电 复合材料比较,他的制备方 法简单,易于加工,易与水 或生物组织实现阻抗匹配, 宜批量生产
压电 材料 在信 息技 术中 的应 用
热释电探测器对热释电材料的要求
三个优值:
电流相应优值
Fi=p/c’
电压相应优值
压电聚合物
聚偏氟乙烯(PVDF) 奇数尼龙
压电复合材料
定义:压电复合材料是由两相或多相材料复合而成的
压电材料,常见的是由压电陶瓷和聚合物组成的两相 材料。
结构表征:主要参数有联结型、对称性、各相的体积
占有率及其形状和尺寸等
1-3型压电复合材料:压电陶
瓷相一维自我连通,聚合物 相三维自我连通。
铁电电子发射与铁电冷阴极材料 阴极材料是指在激励源作用下能发射 强电子束的特种功 能材料。 根据激励源不同,这些阴极材料又可以分为:
① ②
③
光阴极 热阴极 场阴极 自发极化 电荷屏蔽 快极化反转 屏蔽电荷发射
快极化反转致电子发射包括:
① ② ③ ④
铁电制冷材料
铁电制冷利用的是电介质材料的电生热效应——在绝热条件
材料 制备是在闭环系统中完成得,易于分离、循环、
回收
可以制成任意形状、任意尺寸的薄膜 淀积速率率相对较高 工艺技术具有通用性
展望
铁电物理学仍是一个十分活跃的研究领域 铁电薄膜异质结构将取得重大突破 环境协调性铁电材料研究取得重要突破 弛豫性铁电陶瓷和铁电单晶的研究将有重要进展 人工调制铁电材料的发展将进一步拓展铁电材料的应
重要的铁电薄膜材料
铁电薄膜材料4种:
含氧八面体 含氢键 含氟八面体 含其他离子基团
铁 电 薄 膜 与 集 成 铁 电 学
铁电薄膜存储器 —FRAM与DRAM
铁电随机存储器(FRAM) 动态随机存储器(DRAM)
其他铁电薄膜
薄膜型热释电红外探测器
压电马达与集成铁电微电子机械系统
下,对电介质材料施加外场时温度发生改变的现象。
铁电聚合物和铁电液晶
液晶按结构可以分为:
① ② ③
丝状相 螺旋状相 层状相
铁电薄膜
铁电薄膜——具有铁电性,且厚度在数十纳米至数微
米的薄膜材料,叫铁电薄膜 铁电薄膜的制备:
溅射法
溶胶—凝胶法 化学气相沉积法
脉冲激光沉积法
铁电薄膜的应用
铁电薄膜集成光波导器件 铁电薄膜微波器件
光学超晶格与声学超晶格
环境协调性压电铁电材料
铁电体及相关材料应不含或尽可能少含可能对生态环
境造成损害的物质 铁电体及相关材料的制备技术应当是对生态环境损害 尽可能小的环境协调技术 由铁电体及相关材料做成的制品应当是依据环境协调 性原则设计的,这些制品的加工工艺也应是环境协调性 的; 应当用环境协调性评价技术对铁电体及相关材料、有 关制品以及这些制品的加工工艺等进行评价,并使评 价的结果满足国际化标准组织(ISO)14000系列文件 要求
引言
电介质的基本特征是,在外电场的作用下,电介质中
要出现电极化,即将原来不带电的电介质置于外场之 中,在其内部和表面上将会干生出一定的电荷 还有一类电介质,即使没有外界电场作用下,内部也 会出现极化,这种极化称为自发极化 具有特殊极性方向的电介质叫极性电介质 极性电介质因温度均匀变化而发生电极化改变的现象 称为电介质热释电性。 铁电材料是自发极化可以随外加电场的反向而反向的 热释电材料,也就是说凡是铁电材料必定具有热释电 性质但是热释电材料则不一定是铁电材料。
环境协调性压电陶瓷
BiTiO3基压电铁电陶瓷 BNT基压电铁电陶瓷 NaNbO3基压电铁电陶瓷
压电铁电材料的环境协调性制备技术
总的要求: 资源能源消耗少和制备加工过程对生态环境污染小 无机非金属材料软溶液制备技术SSP
使用SSP技术的优点
陶瓷薄膜的沉积、成型、剪切、取向等可进一步完成 能源、资源消耗小
Fv=p/c’ε
探测优值
Fd=p/c’ 热释电材料
最重要的应 用是制作室 温红外探测 器与阵列
铁电材料与应用
调制用非线性铁电晶体 电光晶体 光折变晶体
① ② ③ ④
铁电型晶体 非铁电型电光晶体 化合物半导体 有机光折变材料
弛豫性铁电体 基本介电特征: 弥散相变 频率色散
电介质分类及其相互关系
介电晶体(32) 压电晶体(20)
热释电晶体(10)
铁电晶体
压电材料
压电晶体
含氧八面体的铁电晶体 含氢键的铁电晶体 含层状结构的钛酸铋晶体
压电陶瓷
掺杂对陶瓷性能的影响 受主杂质的介电常数降低、频率常量升高、机械品质因数 增大、老化率增大。 施主杂质的介电常数升高、机电耦合因数增大、机械品质 因数降低、老化率减少。 变价杂质的介电常数降低、频率常量增大、机械品质因数 升高温度系数变小、老化率减小 *材料对外场的顺度大,性能“软”,反之则“硬”
用范围
铁电液晶和铁电聚合物研究将可能开发出更多的铁电
体,并发展更多的应用。