专题:运用向量法证明立体几何问题

合集下载

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||M P ⋅ n n .(2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||M P ⋅ n n .(3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d就是MP 在向量n 方向射影的绝对值,即d =||||M P n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

浅谈用向量法证明立体几何中的几个定理

浅谈用向量法证明立体几何中的几个定理

浅谈用向量法证明立体几何中的几个定理15号海南华侨中学(570206)王亚顺摘要:向量是既有代数运算又有几何特征的工具,在高中数学的解题中起着很重要的作用。

在立体几何中像直线与平面平行的判定,平面与平面平行的判定,直线与平面垂直的判定等定理都没有给出证明,而用向量法很容易证明这些定理。

关键词:向量法直线平面平行垂直立体几何在高中阶段我们学习了平面向量与空间向量的基本知识,而向量本身既可以进行代数运算又含有几何特征,这是很典型的知识,促使其在代数或几何方面都可以得到很好的应用,因此,在解题方面我们运用向量知识及本身含有的运算去解决问题的方法,我们称为向量法。

即向量法既能解决代数问题也能解决几何问题。

立体几何是我们高中学习的一个难点,关键在于其抽象性及理解定理的基础上灵活运用,抽象性在此就不多言了,我们来谈下定理的问题。

在高中人教A版的第二章《点、直线、平面之间的位置关系》中,对于直线与平面平行的判定,平面与平面平行的判定,直线与平面垂直的判定等定理都没有给出证明,课本中只是探究说明,让学生体会而得到。

如果能给出证明,就能够很好地体现定理的严密性,在此可以用向量法来证明。

下面我们就用向量法证明这些定理,先介绍一些向量知识及相关定理。

定义1 两个向量α 与β 的长度与他们之间的夹角的余弦的乘积称为α 与β 的数量积。

记为cos αβαβθ∙= 。

特别地,若非零向量α 与β 垂直,即βα ⊥,则0αβ∙= 【1】 定义2 空间任意两个向量α 与β 的向量积是一个向量,记为αβ⨯ (或,αβ⎡⎤⎣⎦ )。

它的模为sin αβαβθ⨯= ,其中θ为向量α 与β 之间的夹角,它的方向与α 和β 都垂直,并且按向量α 、β 、αβ⨯ 这个顺序构成右手坐标系【2】。

如图1图1定理1 两个向量α 与β 共线的充分必要条件是0αβ⨯=。

【3】 定义3 给定空间的三个向量α 、β 、γ ,如果先做前两个向量α 与β 的向量积αβ⨯ ,再做所得向量与第三个向量γ 的数量积,最后得到的这个数叫做三个向量的混合积。

高三立体几何大题专题(用空间向量解决立体几何类问题)

高三立体几何大题专题(用空间向量解决立体几何类问题)

1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。

称为基向量。

2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。

则轴。

则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。

)称为空间直角坐标。

注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。

建立即可。

3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。

121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。

例谈用向量法解立体几何问题

例谈用向量法解立体几何问题

新 能力 的 培 养 . 现 了 教育 改 革 的 精 神 . 体
( ) 法 在处 理 二 面 角 问 题 时 , 能 会 遇 到 二 面角 的具 2此 可
2 结 论 : 线 和 平 面所 成 的 角 与 斜 线 的 方 向 向量 和 已 . 斜
关 系. 、 、 ③PQ R为正六边形时 , A C A B 径 r = 的三边 的长度之间存在 — — 关 系. 、 、 ④PQ R为以
角就 等 于 两 法 向量 的 夹 角 , 如果 是 “ 同进 同 出 ” 那 么所 求 的 , 二面 角 的平 面 角 就 等 于两 法 向量 的夹 角 的 补 角 。掌握 了这
2结 论 : 成 二 面 角 的 两 个 平 面 的法 向 量 的 夹 角 或 夹 . 构 角 的 补角 等 于 这 个 二 面角 的平 面 角 . 点 , 么用 法 向量 求 二 面 角 就可 以做 到 随心 所 欲. 那
问存 在
— —
; 么 我 们 可 以想 象 在 三 维 空 间 里 , 面 体 那 四
- BC的 侧 棱 s 、 、 C两 两 互 相 垂 直 。A 口 S = 、 C A船 S S = 、B b S = 其 边 长 为 直 径 的 半 圆 时 . B 的 三 边 的 长 度 之 间 存 在 S A AA C 关 系
二 、 用 向量 求 线 面角 的大 小 利
注 意 :1用 向量 法 处 理 二 面 角 的 问题 时 , 传 统 二 面 () 将
角 问题 时 的三 步 曲 : 找— — 证— — 求 ”直 接 简 化 成 了 一步 “ 曲 :计 算 ” “ .这 在 一定 程度 上 降 低 了 学 生 的空 间 想 象 能 力 .
例谈用 向量法解立 体几何 问题

法向量解立体几何专题训练

法向量解立体几何专题训练

法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ=''''AA BB AA BB ⋅⋅, 不需要用法向量;2、设平面α的法向量为n =x, y, 1,则直线AB 和平面α所成的角θ的正弦值为sin θ=cos2π-θ = |cos<AB , n >| = AB AB n n•• 3、 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角;这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角; 二、运用法向量求空间距离 1、求两条异面直线间的距离设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点 A 、B,则异面直线a 、b 的距离d =AB ·cos ∠BAA '=||||AB n n • 2、求点到面的距离求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B,则A 点到平面α的距离为d =||||AB n n •,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设(1,,0)n y =三、证明线面、面面的平行、垂直关系设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则1a//a n α⇔⊥ 1a a//n α⊥⇔12////n n αβ⇔ 12n n αβ⊥⇔⊥四、应用举例:例1:如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. 1 求二面角C —DE —C 1的正切值; 2 求直线EC 1与FD 1所成的余弦值.解:I 以A 为原点,1,,AB AD AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则D0,3,0、D 10,3,2、E3,0,0、F4,1,0、C 14,3,2 于是,11(3,3,0),(1,3,2),(4,2,2)DE EC FD =-==- 设法向量(,,2)n x y =与平面C 1DE 垂直,则有13301320n DE x y x y x y z n EC ⊥-=⇒⇒==-++=⊥⎫⎫⎪⎬⎬⎭⎪⎭11111(1,1,2),(0,0,2),cos 3||||1tan 2n AA CDE n AA C DE C n AAn AA θθθ∴=--=∴--•-===⨯∴=向量与平面垂直与所成的角为二面角的平面角 II 设EC 1与FD 1所成角为β,则1111cos 14||||1EC FD EC FD β•===⨯例2:高考辽宁卷17如图,已知四棱锥P-ABCD,底面ABCD 是菱形,∠DAB=600,PD⊥平面ABCD,PD=AD,点E 为AB 中点,点F 为PD 中点;1证明平面PED ⊥平面PAB ; 2求二面角P-AB-F 的平面角的余弦值 证明:1∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP,设AD=AB=1,则PF=FD=12∴P0,0,1,E2,0,0,B2,12,0∴PB=32,12,-1,PE=2,0,-1,平面PED的一个法向量为DC=0,1,0 ,设平面PAB的法向量为n=x, y, 1由11(,,1),1)01022(,,1)1)010x y x y xn PBn PE yx y x⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩∴n∵DC·n=0 即DC⊥n∴平面PED⊥平面PAB2解:由1知:平面PAB的法向量为n0, 1, 设平面FAB的法向量为n1=x, y, -1, 由1知:F0,0,12,FB,12,-12,FE,0,-12,由111111(,,1)(,)00222222110(,,1))0022x y x y xn FBn FE yx y x⎧⎧-•-=-+=⎪⎧=⊥⎪⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=-•-=+=⎩⎪⎩∴n1∴二面角P-AB-F的平面角的余弦值cosθ= |cos<n, n1>| =11n5714nnn•=•例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.Ⅰ求直线AP与平面BCC1B1所成的角的大小结果用反三角函数值表示;Ⅱ设O点在平面D1AP上的射影是H,求证:D1H⊥AP;Ⅲ求点P到平面ABD1的距离.解: Ⅰ如图建立坐标系D-ACD1, ∵棱长为4 ∴A4,0,0,B4,4,0,P0,4,1∴AP = -4, 4, 1 , 显然DC=0,4,0为平面BCC1B1的一个法向量,∴直线AP与平面BCC1B1所成的角θ的正弦值sinθ= |cos<AP,DC >|=22216433334414=++• ∵θ为锐角,∴直线AP 与平面BCC 1B 1所成的角θ为arcsin 43333Ⅲ 设平面ABD 1的法向量为n =x, y, 1,∵AB =0,4,0,1AD =-4,0,4由n ⊥AB ,n ⊥1AD 得0440y x =⎧⎨-+=⎩ ∴ n =1, 0,1,∴点P 到平面ABD 1的距离 d =322AP n n•=例4:在长、宽、高分别为2,2,3的长方体ABCD-A 1B 1C 1D 1中,O 是底面中心,求A 1O 与B 1C 的距离;解:如图,建立坐标系D-ACD 1,则O1,1,0,A 12,2,3,C0,2,0∴1(1,1,3)AO =-- 1(2,0,3)B C =-- 11(0,2,0)A B = 设A 1O 与B 1C 的公共法向量为(,,1)n x y =,则113(,,1)(1,1,3)0302(,,1)(2,0,3)023032x n AO x y x y x y x n B C y ⎧=-⎧⎪⊥•--=-+-=⎧⎧⎪⎪⇒⇒⇒⎨⎨⎨⎨•--=--=⊥⎩⎩⎪⎪⎩=⎪⎩ ∴ 33(,,1)22n =-∴ A 1O 与B 1C 的距离为d =()1122330,2,0,,122||332211||11331222A B n n ⎛⎫•-⎪•⎝⎭===⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭例5:在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是B 1C 1、C 1D 1的中点,求A 1到面BDFEABCDA 1B 1D 1C 1O的距离;解:如图,建立坐标系D-ACD 1,则B1,1,0,A 11,0,1,E12,1,1 ∴(1,1,0)BD =-- 1(,0,1)2BE =- 1(0,1,1)A B =-设面BDFE 的法向量为(,,1)n x y =,则(,,1)(1,1,0)002112(,,1)(,0,1)01022x y x y n BD x y x y x n BE •--=--=⎧⎧⎧⊥=⎧⎪⎪⎪⇒⇒⇒⎨⎨⎨⎨=-•-=-+=⊥⎩⎪⎪⎪⎩⎩⎩ ∴ (2,2,1)n =-∴ A 1到面BDFE 的距离为d =()()()1220,1,12,2,1|||3|13||221A B n n -•-•-===+-+新课标高二数学空间向量与立体几何测试题1一、选择题1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA=90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离图图FEA BCDA 1B 1D 1C 1AA 1DCB B 1C 1图A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离A .a 42B .a 82C .a 423D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC,AB =BC =21PA,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC,则直线OD 与平面PBC 所成角的正弦值A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D,E分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面ABD 所成角的余弦值A .32 B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是CB 延长线上一点,且BC BD =,则二面角B AD B --1的大小A .3π B .6πC .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E,F 分别为棱AB,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积VA .66B .3316 C .316D .16二、填空题11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 .13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面DBEF 的距离 .14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线AE 与平面ABC 1D 1所成角的正弦值 . 三、解答题 15.已知棱长为1的正方体ABCD -A 1B 1C 1D 1,求平面A 1BC 1与平面ABCD 所成的二面角的大小16.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .17.在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD=90°,AD ∥BC,AB=BC=a,AD=2a,且PA ⊥底面ABCD,PD 与底面成30°角. 1若AE ⊥PD,E 为垂足,求证:BE ⊥PD ; 2求异面直线AE 与CD 所成角的余弦值.18.已知棱长为1的正方体AC 1,E 、F 分别是B 1C 1、C 1D 的中点. 1求证:E 、F 、D 、B 共面;2求点A 1到平面的BDEF 的距离; 3求直线A 1D 与平面BDEF 所成的角.19.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:ⅠD1E与平面BC1D所成角的大小;Ⅱ二面角D-BC1-C的大小;Ⅲ异面直线B1D1与BC1之间的距离.高二数学空间向量与立体几何专题训练2一、选择题1.向量a=2x,1,3,b=1,-2y,9,若a与b共线,则A.x=1,y=1 B.x=错误!,y=-错误!C.x=错误!,y=-错误! D.x=-错误!,y=错误! 2.已知a=-3,2,5,b=1,x,-1,且a·b=2,则x的值是A.6 B.5 C.4 D.33.设l1的方向向量为a=1,2,-2,l2的方向向量为b=-2,3,m,若l1⊥l2,则实数m的值为A.3 B.2 C.14.若a,b均为非零向量,则a·b=|a||b|是a与b共线的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件5.在△ABC中,错误!=c,错误!=b.若点D满足错误!=2错误!,则错误!=b+错误!c 错误!c-错误!b 错误!b-错误!c 错误!b+错误!c6.已知a,b,c是空间的一个基底,设p=a+b,q=a-b,则下列向量中可以与p,q一起构成空间的另一个基底的是A.a B.b C.c D.以上都不对7.已知△ABC的三个顶点A3,3,2,B4,-3,7,C0,5,1,则BC边上的中线长为A.2 B.3 C.错误!错误!8.与向量a=2,3,6共线的单位向量是A.错误!,错误!,错误! B.-错误!,-错误!,-错误!C.错误!,-错误!,-错误!和-错误!,错误!,错误! D.错误!,错误!,错误!和-错误!,-错误!,-错误!9.已知向量a=2,4,x,b=2,y,2,若|a|=6且a⊥b,则x+y为A.-3或1 B.3或-1 C.-3 D.110.已知a=x,2,0,b=3,2-x,x2,且a与b的夹角为钝角,则实数x的取值范围是A.x>4 B.x<-4 C.0<x<4 D.-4<x<0.11.已知空间四个点A1,1,1,B-4,0,2,C-3,-1,0,D-1,0,4,则直线AD与平面ABC所成的角为A.30° B.45° C.60° D.90°12.已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α和平面β所成的角都是25°的直线的条数为A.2 B.3 C.4 D.5二、填空题13.已知{i,j,k}为单位正交基底,且a=-i+j+3k,b=2i-3j-2k,则向量a+b与向量a-2b的坐标分别是________;________.14.在△ABC中,已知错误!=2,4,0,错误!=-1,3,0,则∠ABC=________.15.正方体ABCD-A1B1C1D1中,面ABD1与面B1BD1所夹角的大小为________.16.在下列命题中:①若a,b共线,则a,b所在的直线平行;②若a,b所在的直线是异面直线,则a,b一定不共面;③若a,b,c三向量两两共面,则a,b,c三向量一定也共面;④已知三向量a,b,c,则空间任意一个向量p总可以唯一表示为p=xa+yb+zc,其中不正确的命题为________.三、解答题17.如图所示,PD垂直于正方形ABCD所在的平面,AB=2,PC与平面ABCD所成角是45°,F 是AD的中点,M是PC的中点.求证:DM∥平面PFB.18.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB=4,点E在C1C上,且C1E=3EC.1证明A1C⊥平面BED;2求二面角A1-DE-B的余弦值.19.正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点.1证明:平面AED⊥平面A1FD1;2在AE上求一点M,使得A1M⊥平面DAE.高考真题能力提升1.如图,平面PAC⊥平面ABC,ABC∆是以AC为斜边的等腰直角三角形,,,E F O分别为PA,PB,AC的中点,16AC=,10PA PC==.I设G是OC的中点,证明://FG平面BOE;II证明:在ABO∆内存在一点M,使FM⊥平面BOE,并求点M到OA,OB的距离.2.如图,在三棱锥P ABC -中,PA ⊥底面,,60,90ABC PA AB ABC BCA ︒︒=∠=∠=, 点D ,E 分别在棱,PB PC 上,且//DE BCⅠ求证:BC ⊥平面PAC ;Ⅱ当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; Ⅲ是否存在点E 使得二面角A DE P --为直二面角 并说明理由.3.如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.Ⅰ求证:平面AEC PDB ⊥平面;Ⅱ当2PD AB =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.4.在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . 1求证:平面ABM ⊥平面PCD ; 2求直线CD 与平面ACM 所成的角的大小; 3求点N 到平面ACM 的距离.yz DMCB PA NONMA BDCO5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点Ⅰ证明:直线MN OCD 平面‖;Ⅱ求异面直线AB 与MD 所成角的大小; Ⅲ求点B 到平面OCD 的距离;6. 如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点; Ⅰ求证:AB 1⊥面A 1BD ;Ⅱ求二面角A -A 1D -B 的大小; Ⅲ求点C 到平面A 1BD 的距离;7.如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直,AD =8,BC 是⊙O 的直径,AB =AC =6,OE Ⅰ求二面角B —AD —F 的大小;Ⅱ求直线BD 与EF 所成的角.8.如图,在长方体ABCD —A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动.1证明:D 1E ⊥A 1D ;2当E 为AB 的中点时,求点E 到面ACD 1的距离;3AE 等于何值时,二面角D 1—EC —D 的大小为4π.9. 如图,边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC =22, M 为BC 的中点Ⅰ证明:AM ⊥PM ;Ⅱ求二面角P -AM -D 的大小; Ⅲ求点D 到平面AMP 的距离;10.如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,2AD DE AB ==,F 为CD 的中点. 1 求证://AF 平面BCE ; 2 求证:平面BCE ⊥平面CDE ; 3 求直线BF 和平面BCE 所成角的正弦值.1A C M PD C B A A BCD EF11. 如图,已知等腰直角三角形RBC ,其中∠RBC =90º,2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . 1求证:BC ⊥PB ;2求二面角P CD A --的平面角的余弦值.12. 如图,正三棱柱ABC -111C B A 的底面边长是2,D 是侧棱C 1C 的中点,直线AD 与侧面C C BB 11所成的角为45°.1 求二面角A-BD-C 的大小; 2求点C 到平面ABD 的距离.13. 如图,P 、O 分别是正四棱柱1111ABCD A B C D -上、下底面的中心,E 是AB 的中点,1AB kAA =. Ⅰ求证:1A E ∥平面PBC ;Ⅱ当k =,求直线PA 与平面PBC 所成角的大小;Ⅲ 当k 取何值时,O 在平面PBC 内的射影恰好为PBC ∆ABCD1A 1B 1C A 1C14. 如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上.Ⅰ问点E 在何处时,//PA EBD 平面,并加以证明; Ⅱ当//PA EBD 平面时,求点A 到平面EBD 的距离; Ⅲ求二面角C PA B --的大小.15.如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 Ⅰ求异面直线A 1M 和C 1D 1所成的角的正切值; Ⅱ证明:平面ABM ⊥平面A 1B 1M 116.已知三棱锥P -ABC 中,PA ⊥ABC,AB ⊥AC,PA=AC=½AB,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. Ⅰ证明:CM ⊥SN ;Ⅱ求SN 与平面CMN 所成角的大小.EPDCBA17.如图,四棱锥S-ABCD 中,SD ⊥底面ABCD,AB ⊥⊥Ⅰ证明:SE=2EB ; Ⅱ求二面角A-DE-C 的大小 .18.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =,90BFC ∠=︒,BF FC =,H 为BC 的中点;ABCDEFHⅠ求证:FH ∥平面EDB ;Ⅱ求证:AC ⊥平面EDB ; Ⅲ求二面角B DE C --的大小;19.如图,在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== 1求证1;AC BC ⊥2在AB 上是否存在点D 使得1?AC CD ⊥ 3在AB 上是否存在点D 使得11//A C CDB 平面A1C BCD1A 1B20、如图,在四棱锥P —ABCD 中,PD ⊥底面ABCD,底面ABCD 为正方形,PD=DC,E 、F 分别是AB 、PB 的中点. Ⅰ求证:EF ⊥CD ;Ⅱ在平面PAD 内求一点G,使GF ⊥平面PCB,并证明你的结论; Ⅲ求DB 与平面DEF 所成角的大小.21、如图, 在直三棱柱ABC -A 1B 1C 1中,∠ACB=90°,CB=1,CA=3, AA 1=6,M 为侧棱CC 1上一点, 1AM BA ⊥. 1求证: AM ⊥平面1A BC ; 2求二面角B -AM -C 的大小; 3求点C 到平面ABM 的距离.ABCABCM22、如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2.I证明:AB1⊥BC1;II求点B到平面AB1C1的距离.III求二面角C1—AB1—A1的大小。

向量法解立体几何及经典例题(上课用)

向量法解立体几何及经典例题(上课用)

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。

设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。

专题复习:用空间向量解立体几何问题

专题复习:用空间向量解立体几何问题

专题复习:用空间向量解立体几何问题空间角1.异面直线所成的角点A ,B ∈直线a,C ,D ∈直线b 。

构成向量CD AB ,。

><⋅>=<CD AB CDAB CD AB CD AB ,,,cos 所对应的锐角或直角即为直线a(AB)与b(CD)所成的角。

2.线面所成的角AP 与平面α的法向量n 所成的角所对应的锐角的余角或直角即为直线AP 与平面α所成的角θ,所以AP 与n 的角的余弦值的绝对值为直线AP 与平面α所成的角的正弦值。

><=∴n AP ,cos arcsin θ3.二面角的求法二面角βα--l ,平面α的法向量m ,平面β的法向量n 。

θ>=<n m ,,则二面角βα--l 的平面角为θ或πθ-。

OAαPnl lαβnm所以,nm n m n m ⋅>=<,cos ,若将法向量的起点放在两个半平面上(不要选择起点在棱上),当两个法向量的方向都向二面角内或外时,则><n m ,为二面角的平面角的补角;当两个法向量的方向一个向二面角内,另一个向外时,则><n m ,为二面角的平面角。

空间距离1.点到面的距离点P 到面α的距离d 可以看成AP 在平面α的法向量n 的方向上的射影的长度。

2. 异面直线间的距离异面直线a,b 之间的距离可以看成),(b F a E EF ∈∈在a,b 的公垂向量n 的方向上的射影的长度。

3.线面距离 直线a 与平面α平行时,直线上任意一点A 到平面α的距离就是直线a 与平面α之间的距离。

其求法与点到面的距离求法相同。

4. 平面与平面间的距离平面α与平面β平行时,其中一个平面α上任意一点到平面β的距离就是平面α与平面β间的距离。

其求法与点到面的距离求法相同。

例题:例1.(07,重庆理19)如题(19)图,在直三棱柱111ABC A B C -中,12AA =,1AB =,90ABC = ∠;点D E ,分别在1BB ,1A D 上,且11B E A D ⊥,四棱锥1C ABDA -与直三棱柱的体积之比为3:5(Ⅰ)求异面直线DE 与11B C 的距离;(Ⅱ)若2BC =,求二面角111A DC B --的平面角的正切值答案:(Ⅰ)22929 (Ⅱ)3322.(07,天津理19)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC 的中点EPABC DE 1B1C1Allαβmnn nEF d ⋅=EbaF nnn AP d ⋅=OAαPn(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小答案:(Ⅲ)14arcsin43.(07,四川理19)如图,PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60° (Ⅰ)求证:平面PAC ⊥平面ABC ; (Ⅱ)求二面角B AC M --的大小; (Ⅲ)求三棱锥MAC P -的体积答案:(Ⅱ) 21arccos7(Ⅲ)3124.(07,陕西理19)如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC平面⊥PA ABCD,32,2,4===AB AD PA ,BC =6(Ⅰ)求证:BD ;PAC BD 平面⊥(Ⅱ)求二面角D BD P --的大小 答案:(Ⅱ) 393arccos315.(07,山东理19)如图,在直四棱柱1111ABCD A BC D -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ;(Ⅱ)求二面角11A BD C --的余弦值答案:(Ⅱ)二面角11A BD C --的余弦为336.(07,全国Ⅱ理19)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点 (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小答案:(2)3arccos 37.(07,全国Ⅰ理19)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 已知45ABC =∠,2AB =,22BC =,3SA SB ==BCSABCDEFSBCDA1A1D 1C1BEA B CD EP(Ⅱ)求直线SD 与平面SAB 所成角的大小答案:(Ⅱ)22arcsin118.(07,辽宁理18)如图,在直三棱柱111ABC A B C -中,90ACB ∠= ,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30(I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离答案:(Ⅱ)4a 作业:1.(07,江西理20)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC 已知11111A B BC ==,11190A B C ∠=,14AA =,12BB =,13CC =(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小;(3)求此几何体的体积 答案:(2)30(3)322. (07,湖南理18)如图1,E F ,分别是矩形ABCD 的边AB CD ,的中点,G 是EF 上的一点,将GAB △,GCD △分别沿AB CD ,翻折成1G AB △,2G CD △,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD < 连结2BG ,如图2A BCD EF GFE G 2G 1D CBA图1图2(I )证明:平面1G AB ⊥平面12G ADG ;(II )当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角ABCA 1B 1C 1OABC DA 1B 1C 1E M答案:(Ⅱ) 122arcsin253.(07,湖北理18)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围答案:(Ⅱ) π04⎛⎫ ⎪⎝⎭,(07,福建理18)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小;(Ⅲ)求点C 到平面1A BD 的距离 答案:(Ⅱ) 10arcsin4 (Ⅲ)22ABCDA 1B 1C 1ABCDV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:运用向量法证明立体几何问题
一、知识点:
1、若向量m
与直线l 平行,则向量叫做直线l 的方向向量。

2、若⊥α,则叫做平面α的法向量。

(1)要证m 为平面α的法向量,只须让m 与平面α内的两条相交直线垂直。

(2)若χ轴与平面的法向量,可设为=(1,0,0)
(3)若
y 轴为平面的法向量,可设为=(0,1,0)
(4)若Z 轴为平面的法向量,可设为m =(0,0,1) 3、证明线面平行与线面垂直
若为平面α的法向量,n 为直线l 的方向向量,则
(1)l ⊥α⇔m ∥n ⇔m =λn
(2)l ∥α
⇔m ⊥n ⇔m ·n
=0
4、运用向量求角
(1)若两条异面直线l 1,l 2所成的角为
θ,为l
1
的方向向量,
n
为l 2
的方向向量,则
cos (090)m n m n
θθ=<≤
, (2)若两个平面12αα,所成的二面角的平面角为
θ,为1α的法向
量,为2α的法向量,则
cos (090)m n m n
θθ=<≤
, 当二面角为锐时为θ;当二面角为钝角时为
π-θ。

(3)直线l 与平面α所成的角为θ,n 为直线l 的方向向量,m 为平面α
的法向量,则
sin (090)m n m n
θθ=<≤
, 5、点P 到平面α的距离为d,若为平面α的法向量,A 为平面α内任
一点,则PA m d m
= 例1.如图在四棱锥P-ABCD 中,底面AB 、CD 是正方形且边长为1,侧棱PD
⊥底面ABCD ,PD=DC ,点E 是PC 的中点,且F 的坐标是(31,31,3
2
)。

(1)求证:PA ∥平面EDB (2)求证:PB ⊥平面EFD
解:如图建立空间直角坐标系D xyz -。

设底面正方形的边长为1,则PD=1 D (0,0,0),P (0,0,1),A (1,0,0),
B (1,1,0),
C (0,1,0),E (0,21,2
1

(1)设(x,y,z)m =
为平面EDB 的法向量
则00m DB m DE ⎧=⎪⎨=⎪⎩ , 而(1,1,0)11(0,,)22
DB DE ⎧=⎪⎨=⎪⎩
∴011022
x y y z +=⎧⎪
⎨+=⎪⎩ , 即 x y z y =-⎧⎨=-⎩
故m =(1,-1,1)(取Y=-1)
又∵PA =(1,0,-1)
∴1010PA m =+-=
故PA ⊥m ,即PA ∥平面EDB
(2)设(x,y,z)n =
为平面EFD 的法向量
则00
n DF n DE ⎧=⎪⎨=⎪⎩ 而112
(,,)33311(0,,)22
DF DE ⎧=⎪⎪⎨⎪=⎪⎩
故1
12033311022
x y z y z ⎧++=⎪⎪⎨⎪+=⎪⎩ 即x z y z =-⎧⎨=-⎩
故n
=(1,1,-1)
而PB
=(1,1,-1) ∴PB ∥n
即PB ⊥平面EFD
例2,在直三棱柱中,AA 1=AB=BC=3,AC=2,D 是AC 的中点, (1)求证: B 1C ∥ 平面A 1BD (2)求点B 1到平面A 1BD 的距离 (3)求二面角11A DB B --的余弦值 解:如图建立空间直角系D xyz -,
由AA 1=AB=BC=3,AC=2知
D (0,0,0),B (0,
0),C (1,0,0) A 1(-1,0,3),B 1(0,
3)
(1)设(x,y,z)m =
为面A 1
BD 的法向量
则100m DB m DA ⎧=⎪⎨=⎪⎩
而1(1,0,3)
DB DA ⎧=⎪⎨=-⎪⎩
故0
30y x z =⎧⎨-+=⎩
即03y x z =⎧⎨=⎩
故m =(3,0,1)
又∵1C B
=(1,
-3) ∴13030B C m =+-=
故⊥1C B
∴1C B
∥平面A 1
BD
(2)由(1)知面A 1BD 的法向量=(3,0,1)
又∵1B B
=(0,0,-3)
∴1B 到面A 1BD 的距离为 1m B B d m
=
=3
10= (3)由图可知χ轴为面B 1
BD 的法向量,可设为n
=(1,0,0)
由(1)知面A 1
BD 的法向量m
=(3,0,1)
设锐二面角A 1-DB-B 1的平面角为θ
则m n Cos m n
θ
=
例3:如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=2,AA 1=4,E 为BC 的中点,F
为CC 1的中点。

(1)求EF 与平面ABCD 所成的角的余弦值 (2)求二面角F-DE-C 的余弦值
解:如图示建立空间直角坐标系D xyz -。

∵AB=2,AA 1=4
∴D (0,0,0),A (2,0,0),B (2,2,0), C (0,2,0),E (1,2,0),F (0,2,2)
(1)Z 轴为面ABCD 的法向量,可设为m
=(0,0,1)
又∵EF
=(-1,0,2)
设EF 与面ABCD 所成的角为θ
则m EF Sin m EF
θ==
故Cos θ== (2)Z 轴为面CDE 的法向量,设为n =(0,0,1)
设(x,y,z)m =
为面DEF 的法向量
则则00m DE m DF ⎧=⎪⎨=⎪⎩ 而(1,2,0)(0,2,2)
DE DF ⎧=⎪⎨=⎪⎩ 故20
0x y y z +=⎧⎨+=⎩
即2x y y z =-⎧⎨=-⎩
故m
=(2,-1,1)
设锐二面角F-DE-C 的平面角为θ

cos 6m n m n
==。

相关文档
最新文档