《向量法解决立体几何问题》教学设计

合集下载

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思

人教B版选修2《空间向量在立体几何中的应用》教案及教学反思1. 教学目的本节课是人教B版选修2课程的一部分,主要教授空间向量在立体几何中的应用。

本课程将帮助学生:•深入理解空间向量的概念及其运算法则•掌握将空间向量应用于立体几何中的方法和技巧•发展自己的独立思考能力和解决问题的能力2. 教学内容2.1 知识点本节课的重点知识点为:•空间向量的定义•空间向量的基本运算法则•点、线、面等几何图形在空间向量中的表示方法•空间向量在几何问题中的应用2.2 教学步骤本节课教学步骤如下:第一步:导入教师简单介绍空间向量及其基本运算法则,引发学生对此概念的兴趣。

第二步:概念讲解教师详细讲解空间向量的概念,以及点、线、面等几何图形在空间向量中的表示方法。

为了增强学生的理解,教师可以使用相关的图形和实例进行讲解。

第三步:举例说明教师通过几个实例,向学生展示如何使用空间向量解决立体几何问题。

在示例中,教师应尽可能地让学生自己思考并尝试解决问题,同时指导学生正确的解决方法,让学生深入理解知识点。

第四步:练习安排学生进行一定数量和难度的练习,让学生掌握应用相关知识解决问题的方法和技巧。

第五步:讲解与总结最后,教师应总结本节课的主要内容,并对学生的问题进行讲解和解答。

3. 教学反思本节课的教学方法主要采用“以实例为主,以问题为导向”的方式,让学生能够在探究中理解和掌握知识点。

这种探究式学习的方法能够有效激发学生的主动学习意识和自主学习能力。

在实际教学中,教师应充分发挥学生的主观能动性,让他们能够独立思考和解决问题。

同时,教师还应充分利用技术手段,如音视频、实例演示等方式进行综合教学,探索出适合学生的多元化、个性化的教学方式。

在上述教学步骤中,教师尤其需要注意:•难度掌握:教师在设计实例和练习时,应根据学生的实际情况及能力水平,掌握好难度,以确保学生的接受能力和理解能力•差异处理:同学的学习能力和理解能力会存在差异,教师需要采用差异化教学方法,根据学生的特点进行教学•评估方法:教师应采用多种评估方法,对学生进行全面评价,如通过小组讨论、思维导图、课堂测验等方式,合理衡量学生的学习成果和进步情况总之,人教B版选修2《空间向量在立体几何中的应用》教学,应侧重于实践探究和知识应用,培养学生的独立思考和解决问题的能力,让学生能够掌握并应用相关知识,提高学生的立体几何解题能力,为日后的数学学习打下基础。

空间向量在立体几何中的应用教学设计

空间向量在立体几何中的应用教学设计

空间向量在立体几何中的应用教学设计一、教学目标1.知识目标:了解空间向量的概念和性质,掌握空间向量的基本运算法则。

2.能力目标:能够应用空间向量的知识解决立体几何中的问题,如线段长度、向量共线、线段垂直等。

3.情感目标:培养学生的观察力和分析问题的能力,增强解决问题的自信心。

二、教学重点与难点1.教学重点:空间向量的概念和运算法则。

2.教学难点:将空间向量的知识应用到立体几何问题中。

三、教学准备白板、黑板笔、投影仪、屏幕、计算器等。

四、教学过程Step 1 引入1.教师出示两个立方体模型并提问:你们能用线段表示两个立方体顶点之间的距离吗?2.引出空间向量的概念,并与平面向量进行比较,说明二者的区别。

Step 2 理论讲解1.教师通过投影仪将空间向量的定义、表示和性质呈现给学生,学生做好笔记。

2.教师讲解空间向量的基本运算法则,例如加法、数乘和点乘,并通过具体的例题演示计算过程。

Step 3 实例分析1. 教师出示一道题目:“已知直线l: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$,过直线l上一点A(2,3,4),作与直线垂直的平面,并找出平面与原点O(0,0,0)的距离。

”2.请学生先思考如何解决这个问题,然后汇报自己的解题思路。

3.教师引导学生运用空间向量的知识来解答问题,并逐步给予提示。

4.学生进行计算,分组讨论和交流思路。

Step 4 拓展应用1.教师设计一道拓展题:“已知线段AB与线段CD的中点E重合,向量BD的坐标为(1,2,3),向量CE的坐标为(4,5,6),求向量AD的坐标。

”2.学生尝试解答,提出自己的解题思路。

3.教师引导学生应用向量共线的性质来解答问题,并逐步给予提示。

4.学生进行计算,分组讨论和交流思路。

Step 5 总结与归纳1.教师引导学生回顾本节课的学习内容,总结空间向量的基本性质和运算法则。

2.学生通过小组合作的方式归纳学习过程中的思考和解题方法。

立体几何中的向量方法教案

立体几何中的向量方法教案

立体几何中的向量方法教案第一章:向量基础知识回顾1.1 向量的定义介绍向量的概念,向量的表示方法(箭头表示法和平面向量表示法)。

通过实例讲解向量的长度和方向。

1.2 向量的运算向量的加法、减法和数乘运算规则。

利用图形和实例演示向量加法、减法和数乘的运算过程。

1.3 向量的坐标表示二维和三维空间中的向量坐标表示方法。

利用坐标轴上的点表示向量的起点和终点,推导向量的坐标表示。

第二章:向量在立体几何中的应用2.1 向量在空间解析几何中的应用利用向量表示空间中的点、直线和平面。

讲解如何利用向量求解空间中的距离、角度和夹角。

2.2 向量与空间几何图形的关系向量与线段、射线、直线的关系。

利用向量研究空间中点、线、面的位置关系和相互转化。

2.3 向量与空间角的计算利用向量计算空间中的角度和夹角。

讲解向量点积和向量叉积的概念,并应用于空间角的计算。

第三章:向量在立体几何中的线性方程组3.1 向量线性方程组的定义和性质介绍向量线性方程组的概念和基本性质。

讲解向量线性方程组的解的存在性和唯一性。

3.2 向量线性方程组的求解方法利用高斯消元法求解向量线性方程组。

利用矩阵和行列式的方法求解向量线性方程组。

3.3 向量线性方程组在立体几何中的应用利用向量线性方程组求解空间中的点、直线和平面的位置关系。

讲解向量线性方程组在立体几何问题中的应用实例。

第四章:向量在立体几何中的几何意义4.1 向量的模和长度向量的模和长度的定义及性质。

利用向量的模和长度研究立体几何图形的大小和形状。

4.2 向量的方向和角度向量的方向和角度的定义及性质。

利用向量的方向和角度研究立体几何图形的位置关系和角度大小。

4.3 向量的夹角和向量积向量的夹角的定义及性质。

利用向量积研究立体几何图形之间的相互关系和角度大小。

第五章:向量在立体几何中的综合应用5.1 向量在立体几何中的举例应用利用向量解决立体几何中的距离和角度问题。

利用向量求解空间中的点、直线和平面的位置关系。

空间向量在立体几何中的应用教案(教师使用)

空间向量在立体几何中的应用教案(教师使用)

空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。

3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。

教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。

教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。

教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。

立体几何中的向量方法教案

立体几何中的向量方法教案

立体几何中的向量方法教案教案标题:立体几何中的向量方法教案教案目标:1. 了解立体几何中的向量概念和基本性质。

2. 掌握运用向量方法解决立体几何问题的技巧和方法。

3. 培养学生的空间思维和几何推理能力。

教学重点:1. 向量的定义和性质。

2. 向量在立体几何中的应用。

3. 向量运算在解决立体几何问题中的作用。

教学难点:1. 运用向量方法解决立体几何问题。

2. 空间几何推理能力的培养。

教学准备:1. 教师准备:教学投影仪、计算机、几何软件等。

2. 学生准备:教材、笔记本、几何工具等。

教学过程:一、导入(5分钟)1. 利用投影仪展示一些立体几何图形,引起学生的兴趣。

2. 提问:你们对立体几何中的向量有什么了解?二、知识讲解(15分钟)1. 向量的定义和性质:a. 向量的表示方法。

b. 向量的加法和减法。

c. 向量的数量积和向量积。

2. 向量在立体几何中的应用:a. 向量的方向和模长在立体几何中的意义。

b. 利用向量表示线段、向量共线和垂直关系。

c. 利用向量表示平面和平行关系。

三、示例分析(20分钟)1. 结合具体的立体几何问题,演示如何运用向量方法解决问题。

2. 引导学生参与讨论,分析解题思路和方法。

四、练习与巩固(15分钟)1. 分发练习题,让学生独立完成。

2. 针对难点问题进行讲解和解答。

五、拓展应用(10分钟)1. 提供一些立体几何的拓展问题,要求学生运用向量方法解决。

2. 引导学生思考如何将向量方法应用到实际问题中。

六、总结与反思(5分钟)1. 总结本节课所学的立体几何中的向量方法。

2. 学生分享对本节课的收获和感想。

教学延伸:1. 引导学生自主学习更多立体几何中的向量应用。

2. 布置作业,要求学生运用向量方法解决相关问题。

教学评价:1. 教师观察学生在课堂上的参与情况和问题解决能力。

2. 批改学生的练习题和作业,评价他们的掌握程度。

教学资源:1. 教材:立体几何教材。

2. 投影仪、计算机、几何软件等。

空间向量法解决立体几何问题

空间向量法解决立体几何问题

A
C B
Y
1 1 y 0 于是 2 n 1, 1, 1 2 X x y 0
学习小结: 本节课主要是认识了直线的方向向量及 平面的法向量的概念,这两个向量是运用向 量工具解决平行、垂直、夹角等立体几何问 题必要的条件.
用向量方法解决几何问题
因为方向向量与法向量可以确定 直线和平面的位置,所以我们可以利 用直线的方向向量与平面的法向量表 示空间直线、平面间的平行、垂直、 夹角、距离等位置关系.
一.引入两个重要的空间向量
1.直线的方向向量 把直线上任意两点的向量或与它平行的向 量都称为直线的方向向量.如图,在空间直角 坐标系中,由A(x1,y1,z1)与B(x2,y2,z2)确定的直 线AB的方向向量是 z
AB (x2 x1, y2 y1, z2 z1)
B A y
Z
A’ B’
O1 (0,0, a) E(a b, a,0) A1F (a, b, a) O1E (a b, a, a) x 1 1 A1F O1E A F O E 0
O C
F A
y
B
E
A1F O1 E
例2. 四棱锥P - ABCD中, 底面ABCD是正方形, PD 底面ABCD, PD DC , 点E是PC的中点, 作EF PB交PB于点F . (2) 求证 : PB 平面EFD.
证1:如图所示建立 空间直角坐标系,设DC=1. 1 1 PB (1, , 1) DE (0, , ) 1 2 2 1 1 故PB DE 0 0 2 2 所以PB DE
⑷解方程组,取其中的一个解,即得法向量.
例 2.在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) , C (0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)

立体几何中的向量方法的教学设计(五篇)

立体几何中的向量方法的教学设计(五篇)

立体几何中的向量方法的教学设计(五篇)第一篇:立体几何中的向量方法的教学设计《立体几何中的向量方法》的教学设计一、教材分析本节课是坐标法与向量有效结合的典型范例,有利于培养学生利用向量解决立体几何问题的能力。

二、教学目标通过类比平面内的点、线的位置可以由向量来确定,引导学生理解空间内的点、线、面的位置也可以由向量来表示,并进一步探究用空间向量的运算来表示空间线、面的位置关系。

从应用其证明空间线面的平行与垂直问题中体会直线的方向向量与平面的法向量在解决立体几何中线面平行与垂直问题时的作用。

从而树立学好用好向量法解决立体几何问题的兴趣和信心。

三、教学重点、难点由于建系求点坐标是向量方法中最大的障碍,所以把坐标法与向量法结合作为重点,而适当地建立空间直角坐标系及添加辅助线作为难点。

四、教学手段用几何画板直观展示图形给学生立体感,通过问题链让学生有效地进行数学思维。

五、教学流程1、新课导入:同学们,在前面的学习中,我们已经接触过一些用空间向量的运算方法,所以这节课我们将使用一些用空间向量知识证明点、线、面的位置关系。

为了运用向量来解决立体几何问题,首先要明确空间的点、线、面的位置是否可以用向量来确定?想一想平面内点、线的位置可以由向量来唯一确定吗?你能利用类比的方法,相应地得出空间点、线、面的位置也可以由向量来唯一确定的结论吗?2、经典例题讲解:<例一> 已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=θ,求证:CC1⊥BD.分析:题目是让我们求证CC1⊥BD,我们可以利用向量垂直的方法来试着证明CC1.BD =0 <例二> 棱长都等于2的正三棱柱ABC-A1B1C1,D,E分别是AC,CC1的中点,求证:A1E⊥平面DBC1。

分析:该题主要是考察学生是否可以根据已知题目给出的信息将建立空间直角坐标系,本题以D为坐标原点,DC所在的直线为x轴,连接BD以BD为y轴,Z轴则平行与CC1建立了D-XYZ的空间直角坐标系。

巧用向量法,妙解立体几何题

巧用向量法,妙解立体几何题

思路探寻立体几何问题的命题方式较多,常见的有证明线面平行、求二面角、求点到平面的距离等.由于立体几何问题对同学们的空间想象和运算能力有较高的要求,所以对大部分的同学来说,解答这类问题存在一定的难度.若根据题意和几何图形的特点构造空间向量,则可利用向量法,简便、快速地求得问题的答案.接下来,通过几个例题介绍一下如何巧妙运用向量法解答立体几何问题.一、运用向量法求点到平面的距离一般来说,求点到平面的距离,可以运用定义法、等体积法、向量法.运用向量法求点到平面的距离,要先求出平面的一个法向量n ;再求出一个已知点P 与平面内任意一点M 的方向向量MP ,可得点P 到平面的距离为d =| MP |∙|cos < n , MP >|=| n ∙ MP || n |,其中| MP |是向量 MP 的模,| n |是平面的法向量n 的模.例1.如图1所示的多面体是由底面为ABCD 的长方形被截面AEC 1F 所截而得到的,其中AB =4,BC =2,CC 1=3,BE =1.试求点C 到平面AEC 1F 的距离.解:以DA 、DC 、DF 为坐标轴建立如图1所示的空间直角坐标系,则A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3),CC 1=(0,0,3),设F 点的坐标为(0,0,z ),由于AEC 1F 为平行四边形,所以 AF =EC 1,又 AF =(-2,0,z ), EC 1=(-2,0,2),即z =2.设n 为平面AEC 1F 的一个法向量,因为 n 不垂直于平面ADF ,所以设 n =(x ,y ,1),于是{n ∙ AE =0, n ∙ AF =0,即{4y +1=0,-2x +2=0,解得ìíîx =1,y =-14,设 CC 1与n 的夹角为α,可得cos α=| CC 1∙ n || CC 1|∙| n |=31,则点C 到平面AEC 1F 的距离为d =|CC 1cos α|=3×.先根据图形的特点建立空间直角坐标系,得到 CC 1;然后求出平面AEC 1F 的法向量,即可利用公式d =| CC 1|∙|cos < n , CC 1>|=| n ∙CC 1|| n |求解.在求平面的法向量时,可采用待定系数法,先设出平面的法向量;然后根据法向量与平面内的两个直线垂直的关系,建立方程组,解该方程组即可求出待定系数、法向量的坐标.二、运用向量法证明线面平行由线面平行的判定定理可知,要证明线面平行,只要证明直线与平面内的两条相交直线平行即可.但有时候很难在平面内找到两条相交的直线与已知直线平行,此时,可建立合适的空间直角坐标系,求得平面外一条直线的方向向量 l 和平面的法向量n ,只要证明 n ∙l =0,就说明直线l 与平面平行.例2.如图2,在直三棱锥ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于点D ,求证:PB 1//平面BDA 1.图2图3证明:如图3所示,以A 1为原点,以 A 1B 1, A 1C 1,A 1A为x 轴,y 轴,z 轴建立空间直角坐标系,则P (0,2,0),B 1(1,0,0),B (1,0,1),D (0,1,0.5),所以 PB 1=()1,-2,0, BD =æèöø-1,1,-12, BA 1=(-1,0,-1),设平面BDA 1的法向量为n =(x ,y ,z ),由ìíî BD ∙n =0,BA 1∙ n =0,得{-x +y -0.5z =0,-x -z =0,不妨令z =2,则x =-2,y =-1,可得n =(-2,-1,2),则 PB 1∙ n =1×()-2+()-2×()-1+0×2=0,得 PB 1⊥ n ,所以PB 1//平面BDA 1.先建立空间直角坐标系,求得 PB 1、 BD 、BA 1,根据BD 、 BA 1垂直平面BDA 1的法向量,建立方程组,求得法向量n ,并证明 PB 1∙ n =0,即可证明平面BDA 1的法向量n 与PB 1的方向向量 PB 1垂直,这就说明PB 1//平面BDA 1.求解空间几何中的二面角、线面角等问题,也可以采用向量法.运用向量法求解立体几何问题,一要寻找题目或图形中的垂直关系,有时可以作一个平面的垂线,以建立方便求点的坐标的空间直角坐标系;二要熟记并灵活运用一些空间向量的运算法则、公式、定义等.(作者单位:江西省南昌市第十九中学)肖雪芝图147Copyright ©博看网. All Rights Reserved.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
2
2
2
2
85
A C
V
例 4,如图 4,O-ABC 中,OA=8,AB=6,AC=4,BC=5,∠OAC=45º, ∠OAB=60º,求 OA 与 BC 所成的角。 [分析] AO ⋅ AC = 8 ⋅ 4 ⋅ cos 45° = 16 2 ,
B (4)
A
C (1) B
AO ⋅ AB = 8 ⋅ 6 ⋅ cos 60° = 24 ,
2
2
2 2 2
2
2
2
D1 A1 D B1 C
C1
m 2 + n 2 + d 2 − 2mn cos θ
[思考]若 C、D 不在 A、B 同一侧,则 CD 等于多少?)
A (3) B
例 6,如图 6,平行六面体 ABCD-A1B1C1D1 底面是菱形,∠C1CB=∠ C1CD=∠BCD=θ(θ为锐角),(1)求证:C1C⊥BD。 (2)当
课题:向量法解决立体几何问题(1)
执笔人:郭炜 2010。12.25 单位:江西省宜春市万载中学(336100) 课 题 :空间向量的运算及其应用(1) 教学目标:理解“数量积”在“异面垂直”“求角求距离”等 、 方面的应用 教学重点:数量积的应用 教学难点:向量的正确分解;夹角公式的应用 教学方法:讲解法、启发引导法 教学过程:一、知识复习:数量积的概念及其性质 二、典型例题分析 例 1,如科(1)V—ABC 中,VA⊥BC,VB⊥AC,求证:VC⊥AB。 [分析]易知 VA ⋅ BC = VA(VC − VB) = VA ⋅ VC − VA ⋅ VB =0① 同理 VB ⋅ VC − VB ⋅ VA = 0 ② ①-②得
CD 的值为多少时,A1C⊥面 C1BD,请予证明。 CC1
C1 B
B1 D1 A
A1
证明(1)∵ CC1 ⋅ CB =| CC 1 | ⋅ | CB | cos θ ,
CC1 ⋅ CD =| CC 1 | ⋅ | CD | cos θ ,
又∵| CB |=| CD |,∴ CC 1 ⋅ CB = CC1 ⋅ CD
2
B
n D b
= CA + AB + BD + 2CA ⋅ AB + 2 AB ⋅ BD + 2CA ⋅ BD
∵AB 是 a,b 的公垂线,∴ AB ⊥ CA, AB ⊥ BD 易知 AC与BD 的夹角为θ,∴ CA ⋅ BD = − AC ⋅ BD =m.ncosθ ∴ CD =m +d +n +0+0+2(- m.ncosθ) ∴ CD =
个人备课笔录
[分析]如图 3, AC1 = AB + BC + CC1 = AB + AD + AA1
∴ AC1 = AB + AD + AA1 + 2 AB ⋅ AD + 2 AB ⋅ AA1 + 2 AD ⋅ AA1
=16+9+25+0+2·4·5cos60º+2·3·5cos60º =85 即 | AC1 |=
∴ AO ⋅ BC = AO ⋅ ( AC − AB) = 16 2 − 24 ,
cos < AO; BC >= AO ⋅ BC | AO | ⋅ | BC | = 16 2 − 24 1 = (2 2 − 3) < 0 8⋅5 5
A m C a d
VA ⋅ VC − VB ⋅ VC = 0 即 (VA − VB) ⋅ VC = BA ⋅ VC = 0
例 3,平行六面体 ABCD-A1B1C1D1 中,AB=4,AD=3,AA1=5, ∠BAD=90º,∠BAA1=∠DAA1=60º,求 AC1 的长。
例 5,如图 5,异面直线 a,b 所成角为θ,AB 是公垂线段,AB=d, C,D 分别在 a,b 上,且在 AB 同一侧,若 AC=m,BD=n,求 CD 的长。 [分析] CD = (CA + AB + BD ) 2
即 | a | − | c | + | a − c | cos θ + | b | ⋅ | c | cosθ = 0
2 2 2 2
即 (| a | − | c |) ⋅ (| a | + | c | + | b | cos θ ) = 0
∵| a | + | c | + | b | cos θ > 0 ∴| aቤተ መጻሕፍቲ ባይዱ|=| c |
∴| CD |=| CC1 |,∴
CD = 1 时符合题意。 CC1
三、课堂训练:(学生试着再做一遍以上例题) 四、小结:(空间向量的数量积的运算性质) 五、作业:(“新思维”第 82 页) 六、预习:(空间向量的坐标运算)。
∴VC⊥AB 例 2,如图 2,V—ABC 是正四面体,E、F 分别为 VA、BC 的中点, 求证:EF 是 VA 与 BC 的公垂线。 V
∴OA 与 BC 所成角为 arccos E A F B (2) C
3−2 2 5
1 1 [分析]易知 EF = EV + VF = − VA + (VB + VC) 2 2 1 2 设棱长都为 a,则 VA ⋅ VB = VA ⋅ VC = a ⋅ a ⋅ cos 60° = a 2 1 2 1 ∴ EF ⋅ VA = − VA + (VB + VC) ⋅ VA 2 2 1 1 1 1 = − a 2 + ( a 2 + a 2 ) =0 2 2 2 2 ∴ EF ⊥ VA,同理EF ⊥ BC ,即得证
C
D (6)
∴ CC1 (CB − CD) = CC1 ⋅ DB = 0,即CC1 ⊥ BD
(2)设 CD = a, CB = b, CC 1 = c 则 CA1 = a + b + c, C1 D = a − c
∵ A1C ⊥ 面C1 BD,∴ CA1 ⊥ C1 D
( a + b + c ) ⋅ ( a − c ) = a − c + b( a − c ) = 0
相关文档
最新文档