第六章 实数单元 期末复习测试提优卷试卷

合集下载

七年级初一数学第二学期第六章 实数单元 期末复习提优专项训练试卷

七年级初一数学第二学期第六章 实数单元 期末复习提优专项训练试卷

七年级初一数学第二学期第六章实数单元期末复习提优专项训练试卷一、选择题1.已知253.6=15.906,25.36=5.036,那么253600的值为( ) A.159.06 B.50.36 C.1590.6 D.503.62.已知x、y为实数,且34x++(y﹣3)2=0.若axy﹣3x=y,则实数a的值是()A.14B.﹣14C.74D.﹣743.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则7×6!的值为()A.42!B.7!C.6!D.6×7!4.下列计算正确的是()A.42=±B.1193±=C.2(5)5-=D.382=±5.下列结论正确的是()A.无限小数都是无理数B.无理数都是无限小数C.带根号的数都是无理数D.实数包括正实数、负实数6.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD的边长是()A.2 B5C6D.3725)A.5B5C.52±D.58.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,则数2019对应的点为()A .点AB .点BC .点CD .这题我真的不会 9.已知280x y -++=,则x y +的值为( ) A .10 B .-10 C .-6 D .不能确定 10.若33=0x y +,则x 和y 的关系是( ).A .x =y =0B .x 和y 互为相反数C .x 和y 相等D .不能确定二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .13.若实数a 、b 满足240a b +-=,则a b=_____. 14.如果一个数的平方根和它的立方根相等,则这个数是______.15.31.35 1.105≈3135 5.130≈30.000135-≈________.16.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.17.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.18.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.19.若x 、y 分别是811-2x -y 的值为________.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3-=+-,求a ,b 的值. 解:因为253a 2b 3a 3-=+- 所以()253a 2b a 33-=-+ 所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 2y 1742--=-,求x y +的值.22.化简求值: ()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.23.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)5a 37的整数部分为b ,求a +b 5的值;24.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 25.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳26.计算(1)+|-5|364-1)2020(2231627332|(5)-+-【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据已知等式,利用算术平方根性质判断即可得到结果.【详解】 25.36, 253600425.361010025.36⨯=×100=503.6,故选:D .【点睛】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.2.A解析:A【分析】 ()23430x y +-=可得:34030x y +=⎧⎨-=⎩,据此求出x 、y 的值,然后把求出的x 、y 的值代入axy-3x=y ,求出实数a 的值即可.【详解】 ()23430x y +-=,∴34030xy+=⎧⎨-=⎩,解得433xy⎧=-⎪⎨⎪=⎩,∵axy-3x=y,∴a(﹣43)·3-3×(﹣43)=3,∴﹣4a+4=3,解得a=14.故选:A.【点睛】本题考查了算数平方根平方数的非负性,利用非负数性质求x、y的值是解决问题的关键.3.B解析:B【分析】直接根据题目所给新定义化简计算即可.【详解】根据题中的新定义得:原式=7×6×5×4×3×2×1=7!.故选:B.【点睛】本题考查的知识点是有理数的混合运算,读懂题意,理解题目所给定义的运算方法是解此题的关键.4.C解析:C【分析】A、根据算术平方根的定义即可判定;B、根据平方根的定义即可判定;C、根据平方根的性质计算即可判定;D、根据立方根的定义即可判定.【详解】A2=,故选项错误;B、13=±,故选项错误;C、2(=5,故选项正确;D2,故选项错误.故选:C.【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.5.B解析:B【分析】利用无理数,实数的性质判断即可.【详解】A、无限小数不一定是无理数,错误;B、无理数都是无限小数,正确;C、带根号的数不一定是无理数,错误;D、实数包括正实数,0,负实数,错误,故选:B.【点睛】考核知识点:实数.理解实数的分类是关键.6.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.9.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.10.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.13.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.14.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.15.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】n=中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.16.3【分析】利用平方根、立方根的定义求出x与y的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.17.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 18.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a、b的值,然后可得a+b的值.【详解】<∴45,∵a b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a、b的值.19.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x,y的值.20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】a==6<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)±3;(2)2a +b ﹣1.【解析】分析:(1)由于34a =3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =993; (2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0,则+|a ﹣b | =a +1+2(b ﹣1)+(a ﹣b )=a +1+2b ﹣2+a ﹣b=2a +b ﹣1. 点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.23.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a2,∵∴6b=,∴a b+264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14²= 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.24.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键.25.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.26.(1)0;(2)4.【分析】(1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|-+=43(25=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.。

第六章 实数单元 期末复习测试提优卷试题

第六章 实数单元 期末复习测试提优卷试题

第六章 实数单元 期末复习测试提优卷试题一、选择题1.下列说法中正确的是( ) A .若a a =,则0a > B .若22a b =,则a b = C .若a b >,则11a b> D .若01a <<,则32a a a <<2.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-3.在3.14,237,,π这几个数中,无理数有( ) A .1个 B .2个C .3个D .4个4.在实数227-π中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.下列各数中,属于无理数的是( )A .227B C D .0.10100100016.,则x 和y 的关系是( ). A .x =y =0 B .x 和y 互为相反数 C .x 和y 相等D .不能确定7.下列说法不正确的是( )A 3B .12-是14的平方根 C .带根号的数不一定是无理数 D .a 2的算术平方根是a8.下列实数中,..1π073,,,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 9.下列各数中,介于6和7之间的数是( )A B C D 10.比较552、443、334的大小( ) A .554433234<<B .334455432<<C .553344243<<D .443355342<<二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.若实数a 、b 满足240a b +-=,则ab=_____. 13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________. 15.一个数的立方等于它本身,这个数是__.16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.17.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.1946________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.三、解答题21.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;22.阅读下列解题过程:(12 ====;(2==请回答下列问题:(1)观察上面解题过程,的结果为__________________.(2)利用上面所提供的解法,请化简:......23.规定两数a,b之间的一种运算,记作(a,b):如果c a b=,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,14)=_______.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30) 24.操作与推理:我们知道,任何一个有理数都可以用数轴上一个点来表示,根据下列题意解决问题:(1)已知x=2,请画出数轴表示出x的点:(2)在数轴上,我们把表示数2的点定为基准点,记作点O,对于两个不同的点A和B,若点A、 B到点O的距离相等,则称点A与点B互为基准等距变换点.例如图2,点A表示数-1,点B表示数5,它们与基准点O的距离都是3个单位长度,我们称点A与点B互为基准等距变换点.①记已知点M表示数m,点N表示数n,点M与点N互为基准等距变换点.I.若m=3,则n= ;II.用含m的代数式表示n= ;②对点M进行如下操作:先把点M表示的数乘以23,再把所得数表示的点沿着数轴向右移动2个单位长度得到点N,若点M与点N互为基准等距变换点,求点M表示的数;③点P在点Q的左边,点P与点Q之间的距离为8个单位长度,对Q点做如下操作: Q1为Q的基准等距变换点,将数轴沿原点对折后Q1的落点为Q2这样为一次变换: Q3为Q2的基准等距变换点,将数轴沿原点对折后Q3的落点为Q4这样为二次变换: Q5为Q4的基准等距变换点......,依此顺序不断地重复变换,得到Q 5,Q 6,Q 7....Q n ,若P 与Q n .两点间的距离是4,直接写出n 的值.25.让我们规定一种运算a b ad cb c d=-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x=- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程).26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= . (2)计算:2320191333...3+++++ (3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可. 【详解】若a a =则0a ≥,故A 错误;若22a b =则a b =或=-a b ,故B 错误; 当0a b >>时11b a<,故C 错误; 若01a <<,则32a a a <<,正确, 故答案为:D . 【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.2.D解析:D 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】 解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意; C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】3.14,237,π中无理数有:,π,共计2个. 故选B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.B解析:B分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.详解:无理数有π共2个.故选B.点睛:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数.5.B解析:B【分析】无限不循环小数是无理数,根据定义解答即可.【详解】A、227是小数,不是无理数;B是无理数;C是整数,不是无理数;D、0.1010010001是有限小数,不是无理数,故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.6.B解析:B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.7.D解析:D【分析】根据平方根的定义,判断A与B的正误,根据无理数的定义判断C的正误,根据算术平方根的定义判断D的正误.±3,故A 正确;211()24-=,则12-是14的平方根,故B 正确;2=是有理数,则带根号的数不一定是无理数,故C 正确;∵a 2的算术平方根是|a|,∴当a≥0,算术平方根为a ,当a <0时,算术平方是﹣a , 故a 2的算术平方根是a 不正确.故D 不一定正确; 故选:D . 【点睛】本题主要考查了平方根,算术平方根,无理数的定义,熟记几个定义是解题的关键.8.B解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.由此分析判断即可. 【详解】解:∵=-24=,故是有理数;..0.23是无限循环小数,可以化为分数,属于有理数;17属于有理数;0是有理数;π2个.故选:B . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有如下三种形式:①含π的数,如π,2π等;②开方开不尽的数;③像0.1010010001…这样有一定规律的无限不循环小数.9.A解析:A 【分析】求出每个根式的范围,再判断即可. 【详解】解:A 、67,故本选项正确;B 、78,故本选项错误;C 、78,故本选项错误;D 、34,故本选项错误; 故选:A . 【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.10.C解析:C【分析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C.【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4【解析】解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为-4π,故答案为-4π.12.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{ 2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13 【解析】【分析】根据题中的运算规则得到M{3,2x +1,4x -1}=1+2x ,然后再根据min{2,-x +3,5x}的规则分情况讨论即可得.【详解】M{3,2x +1,4x -1}=321413x x +++-=2x+1,∵M{3,2x +1,4x -1}=min{2,-x +3,5x},∴有如下三种情况: ①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立,∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.; 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是, 所以第个数是,第n 个数是,故答案为-82,. 点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+ 【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n-,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)nn -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.16.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.17.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定. 【详解】 解:= ……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.18.3 【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2, ∴, ,故答案为:3. 【点睛】本题考查了平方根和立方根,熟解析:3 【分析】利用平方根、立方根的定义求出x 与y 的值. 【详解】解:根据题意的2a+1+3-4a=0, 解得a=2,∴25,8x y ==-,∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.6 【分析】求出在哪两个整数之间,从而判断的整数部分. 【详解】 ∵,,又∵36<46<49 ∴6<<7 ∴的整数部分为6 故答案为:6 【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6 【分析】的整数部分. 【详解】∵246=,2636=,2749= 又∵36<46<49∴6<76 故答案为:6 【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】 解:∵,,, ∴只解析:255 【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可. 【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255, 故答案为:255. 【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 22.(1-2)9 【分析】(1)利用已知数据变化规律直接得出答案; (2)利用分母有理化的规律将原式化简进而求出即可. 【详解】 解:(1==(2......==-1+10 =9 【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键. 23.(1)3,0,-2 (2) (4,30) 【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可; (2)应用规定和同底数幂相乘的性质逆用变形计算即可. 详解:(1)∵33=27 ∴(3,27)=3 ∵50=1 ∴(5,1)=1∵2-2=14 ∴(2,14)=-2(2)设(4,5)=x ,(4,6)=y 则x 45=,y 4=6 ∴x y x y 44430+=⋅= ∴(4,30)=x+y ∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.24.(1)见解析;(2)①I ,1;II 4-m ②112;③2或6. 【分析】(1)在数轴上描点; (2)由基准点的定义可知,22m n+=; (3)(3)设P 点表示的数是m ,则Q 点表示的数是m+8,由题可知Q 1与Q 是基准点,Q 2与Q 1关于原点对称,Q 3与Q 2是基准点,Q 4与Q 3关于原点对称,…由此规律可得到当n 为偶数,Q n 表示的数是m+8-2n ,P 与Q n 两点间的距离是4,则有|m-m-8+2n|=4即可求n ; 【详解】解:(1)如图所示,(2)①Ⅰ.∵2是基准点,m=3,3到2的距离是1,所以到2的距离是1的另外一个点是1, ∴n=1;故答案为1;Ⅱ.有定义可知:m+n=4, ∴n=4-m ; 故答案为:4-m②设点M 表示的数是m , 先乘以23,得到23m ,再沿着数轴向右移动2个单位长度得到点N 为23m+2, ∵点M 与点N 互为基准等距变换点, ∴23m+2+m=4, ∴m=112; ③设P 点表示的数是m ,则Q 点表示的数是m+8,如图,由题可知Q 1表示的数是4-(m+8),Q 2表示的数是-4+(m+8),Q 3表示的数是8-(m+8),Q 4表示的数是-8+(m+8),Q 5表示的数是12-(m+8),Q 6表示的数是-12+(m+8)… ∴当n 为偶数,Q n 表示的数是-2n+(m+8), ∵若P 与Q n 两点间的距离是4, ∴|m-[-2n+(m+8)]|=4, ∴n=2或n=6. 【点睛】本题考查新定义,数轴上数的特点;能够理解基准点的定义是解决问题的基础,从定义中探究出基准点的两个点是关于2对称的;(3)中找到Q 的变换规律是解题的关键. 25.(1)1;-7;-x ;(2)-7 【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论. 【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935xx x x x x x=⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3), =(6x 2-4x-2)-(6x 2-3x+6), =-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7.【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键. 26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可. 【详解】解:(1)根据2350511222...221+++++=- 得:2320191222...2+++++=202021- (2)设2320191333...3S =+++++, 则234202033333...3S =+++++, ∴2020331S S -=-,∴2020312S -=即:2020232019311333 (3)2-+++++=(3)设232001555...5S =+++++, 则23420155555...5S =+++++, ∴201551S S -=-, ∴201514S -=即:20123200511555 (5)4-+++++=同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++(201101201101101102103200515155555...5444---∴++++=-=【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

第六章 实数单元 期末复习测试提优卷

第六章 实数单元 期末复习测试提优卷

第六章 实数单元 期末复习测试提优卷一、选择题1.下列说法正确的个数有( )①过一点有且只有一条直线与已知直线平行;②垂线段最短;③坐标平面内的点与有序实数对是一一对应的;④算术平方根和立方根都等于它本身的数是0和1;1.A .1B .2C .3D .42.已知x 、y (y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( )A .14B .﹣14C .74D .﹣743.若a 2=(-5)2 ,b 3=(-5)3 ,则a+b 的值是( )A .0或-10或10B .0或-10C .-10D .04.0,0.121221222,132π,3这6个实数中有理数的个数是( ) A .2 B .3C .4D .5 5.若23(2)0m n -++=,则m+n 的值为( )A .-1B .1C .4D .76.在3.14,237,,π这几个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个7.下列各式中,正确的是( )A 34B 34;C 38D 34 8.在下列实数中,无理数是( )A .337B .πCD .139.估计2+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间10.下列运算正确的是( )A 2=±B 2=-C 2=-D .|2|2--= 二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.64的立方根是___________. 13.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.14.若已知x-1+(y+2)2=0,则(x+y)2019等于_____. 15.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.16.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.17.下列说法: ① ()210-10-=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________18.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.19.若x 、y 分别是811-的整数部分与小数部分,则2x -y 的值为________.20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 22.探究: ()()()211132432222122222222-=⨯-⨯=-==-== …… (1)请仔细观察,写出第5个等式;(2)请你找规律,写出第n 个等式;(3)计算:22018201920202222-2++⋅⋅⋅++.23.对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2x+5的平方根是它本身,求x+y 的立方根.24.计算(1)+|-5|1)2020(22|25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】根据平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根逐个判断即可.【详解】①过直线外一点有且只有一条直线与已知直线平行,故①错误;②垂线段最短,故②正确;③坐标平面内的点与有序实数对是一一对应的,故③正确;④算术平方根和立方根都等于它本身的数是0和1,故④正确;2,故⑤错误;即正确的个数是3个,故答案为:C.【点睛】本题考查了平行公理的推论,垂线的性质,估算无理数的大小,算术平方根和立方根等知识点,能熟记知识点的内容是解此题的关键.2.A解析:A【分析】()230y-=可得:34030xy+=⎧⎨-=⎩,据此求出x、y的值,然后把求出的x、y的值代入axy-3x=y,求出实数a的值即可.【详解】()230y-=,∴34030xy+=⎧⎨-=⎩,解得433xy⎧=-⎪⎨⎪=⎩,∵axy-3x=y,∴a(﹣43)·3-3×(﹣43)=3,∴﹣4a+4=3,解得a=14.故选:A.本题考查了算数平方根平方数的非负性,利用非负数性质求x 、y 的值是解决问题的关键.3.B解析:B【分析】直接利用平方根和立方根的计算得出答案.【详解】∵a 2=(-5)2 ,b 3=(-5)3,∴a=±5,b=-5, ∴a+b=0或-10,故选B.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的性质是关键.4.C解析:C【分析】根据有理数的定义:整数和分数统称为有理数即可判断.【详解】0是整数,是有理数,0.121221222是有限小数,是有理数,13是分数,是有理数,,是有理数,2π是含π的数,是无理数,3含开方开不尽的数,是无理数,综上所述:有理数有0,0.121221222,134个, 故选C.【点睛】本题考查了实数的定义,解答此题要明确有理数和无理数的概念和分类.有理数是指有限小数和无限循环小数,无理数是无限不循环小数. 5.B解析:B【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵23(2)0m n -++=∴m-3=0,n+2=0,解得:m=3,n=-2,∴m+n=1故选B.【点睛】此题考查非负数的性质:偶次方,非负数的性质:绝对值,解题关键在于掌握其性质.6.B解析:B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选B. 【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.A解析:A【解析】=±34 ,所以可知A 选项正确;故选A. 8.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.9.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D.【点睛】键.10.C解析:C【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;2=-,故选项C正确;2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.2【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键. 13.0【分析】由数轴可知,,则,即可化简算术平方根求值.【详解】解:由数轴可知,,则,,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算. 解析:0【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值.【详解】解:由数轴可知,0b c a <<<,则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c=-+++-=--++-=,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.14.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键.15.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 17.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】=,故①错误;①10②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误;④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数.18.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a、b的值,然后可得a+b的值.【详解】<∴45,∵a b,∴a=4,b=5,∴a+b=9,故答案为:9.本题主要考查了估算无理数的大小,关键是正确确定a、b的值.19.【分析】估算出的取值范围,进而可得x,y的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x=4,小数部分y=,∴2x-y=8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x,y的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x=4,小数部分y=448=∴2x-y=8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x,y的值.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯…1100102⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.22.(1)655552222122-=⨯-⨯=;(2)12222122n n n n n +--=⨯⨯=;(3)-2【分析】(1)直接根据规律即可得出答案;(2)根据前3个式子总结出来的规律即可求解;(3)利用规律进行计算即可.【详解】解(1)26﹣25=2×25﹣1×25=25 ,(2)2n +1﹣2n =2×2n ﹣1×2n =2n ,(3)21+22+…+22018+22019﹣22020=21+22+…+22018+(22019﹣22020)=21+22+…+22018﹣22019=21+22+…+22017+(22018﹣22019)=…=21﹣22=-2.【点睛】本题主要考查有理数的运算与规律探究,找到规律是解题的关键.23.(1)成立,例子见解析;(2)﹣2【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可.【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2=0,∴8﹣y+2y ﹣5=0,解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x =﹣5,∴x+y =﹣3﹣5=﹣8,∴x+y 的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.24.(1)0;(2)4.【分析】(1)实数的混合运算,先化简绝对值、求一个数的立方根,乘方,然后再做加减;(2)二实数的混合运算,先化简二次根式和求一个数的立方根及绝对值,然后去括号,最后做加减.【详解】解:(1)+|-5|1)2020=5-4-1=0(22|=43(25-+=435-=4【点睛】本题考查实数的混合运算,掌握运算法则和顺序正确计算是解题关键.25.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=, 解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m ,由题意知,n +m =nm , 解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数,∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②,①+②得,m +n +2mn =1,∴ m +n +2(m +n )=1,∴ m +n =13. 【点睛】 本题考查了新定义的运算,正确理解特征数的定义是解题的关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

人教版七年级初一数学下学期第六章 实数单元 期末复习测试提优卷试题

人教版七年级初一数学下学期第六章 实数单元 期末复习测试提优卷试题

人教版七年级初一数学下学期第六章实数单元期末复习测试提优卷试题一、选择题1.表面积为12dm2的正方体的棱长为()A.2dm B.22dm C.1dm D.2dm2.圆的面积增加为原来的m倍,则它的半径是原来的()A.m倍B.2m倍C.m倍D.2m倍3.下列说法错误的是()A.a2与(﹣a)2相等B.33()a-与33a互为相反数C.3a与3a-互为相反数D.|a|与|﹣a|互为相反数4.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和-1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,则数2019对应的点为()A.点A B.点B C.点C D.这题我真的不会5.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,计算n32+1得a3;……依此类推,则a2018的值为()A.26 B.65 C.122 D.1236.估计65的立方根大小在()A.8与9之间B.3与4之间C.4与5之间D.5与6之间7.在实数227-911π38中,无理数的个数是()A.1个B.2个C.3个D.4个8.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个9.在下列实数中,无理数是( )A.337B.πC25D.1310.有下列说法:(1164;(2)绝对值等于它本身的数是非负数;(3)某中学七年级有12个班,这里的12属于标号;(4)实数和数轴上的点一一对应;(5)一个有理数与一个无理数之积仍为无理数;(6)如果a ≈5.34,那么5.335≤a <5.345,其中说法正确的有( )个A .2B .3C .4D .5二、填空题11.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.12.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________.13.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.152(2)-的平方根是 _______ ;38a 的立方根是 __________. 16.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________.17.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____.19.31.35 1.105≈3135 5.130≈30.000135-≈________.20.已知正实数x 的平方根是m 和m b +.(1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b 是有理数,并且满足等式253a 2b 3a 3=+,求a ,b 的值. 解:因为253a 2b 3a 3-=+ 所以()253a 2b a 33=-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y是有理数,并且满足等式2x 2y 17--=-x y +的值.22.(概念学习) 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ;23.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 24.计算: (1)()2320181122⎛⎫-+- ⎪⎝⎭ (2325.z 是64的方根,求x y z -+的平方根26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S =6a 2,解答即可.【详解】解:根据正方体的表面积公式:S =6a 2,可得:6a 2=12,解得:a .dm .故选:A .【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论.【详解】∵(﹣a)2=a2,∴选项A说法正确;a=a,互为相反数,故选项B说法正确;互为相反数,故选项C说法正确;∵|a|=|﹣a|,∴选项D说法错误.故选:D.【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.4.A解析:A【分析】根据题意得出每3次翻转为一个循环,2019能被3整除说明跟翻转3次对应的点是一样的.【详解】翻转1次后,点B所对应的数为1,翻转2次后,点C所对应的数为2翻转3次后,点A所对应的数为3翻转4次后,点B所对应的数为4经过观察得出:每3次翻转为一个循环÷=∵20193673∴数2019对应的点跟3一样,为点A.故选:A.【点睛】本题是一道找规律的题目,关键是通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.B解析:B【分析】依照题意分别求出a l=26,n2=8,a2=65,n3=11,a3=122,n4=5,a4=26…然后依次循环,从而求出结果.【详解】解:∵n 1=5,a l =52+1=26,n 2=8,a 2=82+1=65,n 3=11,a 3=112+1=122,n 4=5,…,a 4=52+1=26…∵20183=6722÷∴20182=65=a a .故选:B .【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题. 6.C解析:C【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.7.B解析:B【解析】分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.详解:无理数有π共2个.故选B .点睛:本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有特定规律的数.8.B解析:B【详解】解:①实数和数轴上点一一对应,本小题错误;②π不带根号,但π是无理数,故本小题错误;③负数有立方根,故本小题错误;④17的平方根,本小题正确,正确的只有④一个,故选B .9.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.B解析:B【分析】根据算术平方根的定义、绝对值的性质、数轴的意义实数的运算及近似数的表示方法逐一判断即可得答案.【详解】,4的算术平方根是22,故(1)错误,绝对值等于它本身的数是非负数;故(2)正确,某中学七年级共有12个班级,是对于班级数记数的结果,所以这里的12属于记数,故(3)错误,实数和数轴上的点一一对应;故(4)正确,0与无理数的乘积为0,0是有理数,故(5)错误,如果a ≈5.34,那么5.335≤a <5.345,故(6)正确,综上所述:正确的结论有(2)(4)(6),共3个,故选:B .【点睛】本题考查算术平方根的定义、实数的运算、绝对值的性质及近似数的表示方法,熟练掌握相关性质及运算法则是解题关键.二、填空题11.±2【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.12.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.13.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.14.;【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律. 15.2a【分析】根据平方根的定义及立方根的定义解答.【详解】的平方根是,的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立解析:【分析】根据平方根的定义及立方根的定义解答.【详解】38a的立方根是2a,故答案为:,2a.【点睛】此题考查平方根及立方根的定义,利用定义求一个数的平方根及立方根.16.【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=1000000,就能确定是2位数.由解析:39【分析】首先根据一个数的立方的个位数就是这个数的个位数的立方的个位数确定个位数,然后一次确定十位数,即可求得立方根.【详解】由103=1000,1003=10000002位数.由59319的个位上的数是99,如果划去59319后面的三位319得到数59,而33=27、43=64339.故答案为:39【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.17.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环, 所以== 故答案为:. 【解析:-2 【分析】根据1与它前面的那个数的差的倒数,即111n na a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a . 【详解】 解:1a =132131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2- 故答案为:2-. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.18.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.19.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.20.-4(1)根据正实数平方根互为相反数即可求出m 的值; (2)根据题意可知,再代入求解即可. 【详解】解:(1)∵正实数的平方根是和, ∴, ∵, ∴, ∴; (2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +, ∴0m b m ++=, ∵8b =, ∴28m =-, ∴4m =-;(2)∵正实数x 的平方根是m 和m b +, ∴22,()m x m b x +==, ∴224x x +=, ∴22x =, ∵x 是正实数,∴x .故答案为:-4. 【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键.三、解答题21.x y 9+=或x y 1+=-. 【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可. 【详解】因为2x 2y 17--=-所以()2x 2y 17-=-所以2x 2y 17y 4-=⎧=⎨⎩,解得{x 5y 4==或{x 5y 4=-=, 所以x y 9+=或x y 1+=-. 【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序. 23.(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2. 【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a 为不同值时,p 的取值即可解答. 【详解】解:(1)5﹣2=125;(﹣2)﹣2=14; (2)如果2﹣p =18,那么p =3;如果a ﹣2=116,那么a =±4; (3)由于a 、p 为整数, 所以当a =9时,p =1; 当a =3时,p =2; 当a =﹣3时,p =2.故答案为(1)125;14;(2)3;±4.(3)当a =9时,p =1;当a =3时,p =2;当a =﹣3时,p =2. 【点睛】本题考查新定义,能够理解a 的负P 次幂等于a 的p 次幂的倒数这个规定定义是解题关键.24.(1)-34;(2)3 【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可. 【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答. 【详解】, ∴x+1=0,2-y=0, 解得x=-1,y=2, ∵z 是64的方根, ∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是 【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0. 26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可. 【详解】解:(1)根据2350511222...221+++++=- 得:2320191222...2+++++=202021- (2)设2320191333...3S =+++++, 则234202033333...3S =+++++, ∴2020331S S -=-,∴2020312S -=即:2020232019311333 (3)2-+++++=(3)设232001555...5S =+++++, 则23420155555...5S =+++++, ∴201551S S -=-,∴201514S -=即:20123200511555 (5)4-+++++=同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++(201101201101101102103200515155555...5444---∴++++=-=【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

第六章 实数单元测试提优卷试卷

第六章 实数单元测试提优卷试卷

第六章 实数单元测试提优卷试卷一、选择题1.表面积为12dm 2的正方体的棱长为( )A .2dmB .22dmC .1dmD .2dm2.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( )A .1B .﹣1C .5D .﹣5 3.已知280x y -++=,则x y +的值为( ) A .10B .-10C .-6D .不能确定 4.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 5.若a ,b 均为正整数,且7a >,32b <,则+a b 的最小值是( ) A .3 B .4C .5D .66.下列说法正确的是( ) A .14是0.5的平方根 B .正数有两个平方根,且这两个平方根之和等于0 C .27的平方根是7 D .负数有一个平方根7.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .1+3B .2+3C .23﹣1D .23+18.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13B .23C .231-D .2319.下列各式中,正确的是( )A 91634 B 91634; C 91638 D 91634 10.若x ,y 都表示有理数,那么下列各式一定为正数的是( ) A .212x + B .()2x y + C .22x y + D .5x +二、填空题11.数轴上表示12的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.12.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 14.若()221210a b c -+++-=,则a b c ++=__________.15.如果某数的一个平方根是﹣5,那么这个数是_____.16.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____. 17.比较大小:51-__________0.5.(填“>”“<”或“=”) 18.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.1946________.20.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,5=2,现对72进行如下操作:72[72]8[8]2[2]1→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____. 三、解答题 21.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… =1﹣111111122334910+-+-+-=1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ; (2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 22.观察下列各式:111122-⨯=-+; 11112323-⨯=-+; 11113434-⨯=-+; …(1)你发现的规律是_________________.(用含n 的式子表示;(2)用以上规律计算:1111223⎛⎫⎛⎫-⨯+-⨯+ ⎪ ⎪⎝⎭⎝⎭11113420172018⎛⎫⎛⎫-⨯+⋅⋅⋅+-⨯ ⎪ ⎪⎝⎭⎝⎭23.计算: (1)()()232018311216642⎛⎫-+-⨯+-⨯ ⎪⎝⎭ (2)535323-+-+-24.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正方体的表面积公式:S =6a 2,解答即可.【详解】解:根据正方体的表面积公式:S =6a 2,可得:6a 2=12,解得:a 2. 2dm .故选:A .【点睛】此题主要考查正方体的表面积公式的灵活运用,解题的关键是根据公式进行计算.2.B解析:B【分析】根据a★b=a2-ab可得(x+2)★(x-3)=(x+2)2-(x+2)(x-3),进而可得方程:(x+2)2-(x+2)(x-3)=5,再解方程即可.【详解】解:由题意得:(x+2)2-(x+2)(x-3)=5,x2+4x+4-(x2-x-6)=5,x2+4x+4-x2+x+6=5,5x=-5,解得:x=-1,故选:B.【点睛】此题主要考查了实数运算,以及解方程,关键是正确理解所给条件a★b=a2-ab所表示的意义.3.C解析:C【分析】根据算术平方根的非负性求出x,y,然后再求x+y即可;【详解】解:由题意得:x-2=0,y+8=0∴x=2,y=-8∴x+y=2+(-8)=-6故答案为C.【点睛】本题考查了算术平方根的非负性,掌握若干个非负数之和为0,则每个非负数都为0是解答本题的关键.4.A解析:A【分析】直接利用负整数指数幂的性质结合x的取值范围得出答案.【详解】∵-1<x<0,∴x-1<x<x2,故选A.【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x的取值范围分析是解题的关键.5.B解析:B【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】23.∵a a为正整数,∴a的最小值为3.12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.6.B解析:B【分析】根据0.5是0.25的一个平方根可对A进行判断;根据一个正数的平方根互为相反数可对B 进行判断;根据平方根的定义对C、D进行判断.【详解】A、0.5是0.25的一个平方根,所以A选项错误;B、正数有两个平方根,且这两个平方根之和等于0,所以B选项正确;C、72的平方根为±7,所以C选项错误;D、负数没有平方根.故选B.【点睛】本题考查了平方根:若一个数的平方定义a,则这个数叫a的平方根,记作a≥0);0的平方根为0.7.D解析:D【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x1-,解得.故选D.8.D解析:D【分析】根据线段中点的性质,可得答案.【详解】∵,A,∴C,故选:D.【点睛】此题考查实数与数轴,利用线段中点的性质得出AC 的长是解题关键.9.A解析:A【解析】=±34 ,所以可知A 选项正确;故选A. 10.A解析:A【分析】根据平方的非负性、绝对值的非负性以及实数的分类进行判断即可得解.【详解】解:A.∵20x ≥ ∴21122x +≥ ∴212x +一定是正数; B. ∵()20x y +≥∴()2x y +一定是非负数;C.∵20x ≥,20y ≥∴220≥+x y∴22x y +一定是非负数;D. ∵50x +≥ ∴5x +一定是非负数.故选:A【点睛】本题考查了平方的非负性、绝对值的非负性以及实数的分类,熟练掌握相关知识点是解决问题的关键.二、填空题11.【分析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值.【详解】解:设点C 表示的数是x ,∵数轴上1、的点分别表示A 、B ,且点A 是BC 的中点,根据中点坐标公式可得:,解得:,解析:2【分析】设点C表示的数是x,再根据中点坐标公式即可得出x的值.【详解】解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,根据中点坐标公式可得:=12,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.12.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用解析:1 2 -【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:2102010abc-=⎧⎪+=⎨⎪-=⎩,解得1221abc⎧=⎪⎪=-⎨⎪=⎪⎩,则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】 本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.15.25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.解析:25【分析】利用平方根定义即可求出这个数.【详解】设这个数是x (x ≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.17.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.18.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力.三、解答题21.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020.本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.22.(1)111111n n n n -⨯=-+++;(2)20172018- 【分析】 (1)由已知的等式得出第n 个式子为111111n n n n -⨯=-+++; (2)根据规律将原式中的积拆成和的形式,运算即可.【详解】 (1)∵第1个式子为111122-⨯=-+ 第2个式子为11112323-⨯=-+ 第3个式子为11113434-⨯=-+ ……∴第n 个式子为111111n n n n -⨯=-+++ 故答案为:111111n n n n -⨯=-+++ (2)由(1)知:原式1111111(1)()()()2233420172018=-++-++-++⋅⋅⋅+-+ 112018=-+20172018=- 【点睛】本题考查有理数的混合运算以及数字规律,分析题目,找出规律是解题关键.23.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭ ()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.24.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.25.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=, 解得,32b =, ∴3与32互为特征数, 故答案为:32 (2)设n 的特征数为m ,由题意知,n +m =nm , 解得,1n m n =-, ∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数,∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②,①+②得,m +n +2mn =1,∴ m +n +2(m +n )=1,∴ m +n =13. 【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.26.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a 、b 的值,根据两点间的距离,可得答案;(2)根据A 和B 所对应的数,可得AB 中点所表示的数,即为点P 所表示的数; (3)根据题意可以得到c 的值,然后利用分类讨论的方法即可求得点P 对应的数.【详解】解:(1)∵2110|2|02ab a ⎛⎫++-= ⎪⎝⎭, ∴11002ab +=,20a -=, 解得:a=2,b=-10,∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.。

人教版第六章 实数单元 期末复习提高题学能测试试卷

人教版第六章 实数单元 期末复习提高题学能测试试卷

人教版第六章 实数单元 期末复习提高题学能测试试卷一、选择题1.若()2320m n -++=,则m n +的值为( ) A .5- B .1-C .1D .52 ) A .12 B .14C .18D .12±3.2-是( ) A .负有理数B .正有理数C .自然数D .无理数4.2,估计它的值( ) A .小于1 B .大于1 C .等于1 D .小于0 5.下列选项中的计算,不正确的是( )A 2=±B 2=-C .3=±D 4=6.下列数中π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个 B .2个C .3个D .4个7.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .68.估计65的立方根大小在( ) A .8与9之间B .3与4之间C .4与5之间D .5与6之间9.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个10.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;3的立方根;④无理数是带根号的数;⑤2. A .2个 B .3个 C .4个 D .5个 二、填空题11.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.12.64的立方根是___________.13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.用⊕表示一种运算,它的含义是:1(1)(1)xA B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 15.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡⎤=⎣⎦→2⎡⎤⎣⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 16.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次: 10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________. 19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.已知a 、b 为两个连续的整数,且a 19b ,则a +b =_____.三、解答题21.观察下列各式:(x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果. 22.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2=__________. 23.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果: 211-6= × ; 211-10= × ; (2)用你发现的规律计算:22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果)24.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a ba b a ba b a b->>⎧⎪-==⎨⎪-<<⎩则则则;例如:比较192-与2的大小∵1922194--=-又∵161925<<则4195<<∴19221940--=->∴1922->请根据上述方法解答以下问题:比较223-与3-的大小.25.已知A、B在数轴上对应的数分别用a、b表示,且2110|2|02ab a⎛⎫++-=⎪⎝⎭,点P是数轴上的一个动点.(1)求出A、B之间的距离;(2)若P到点A和点B的距离相等,求出此时点P所对应的数;(3)数轴上一点C距A点36个单位长度,其对应的数c满足||ac ac=-.当P点满足2PB PC=时,求P点对应的数.26.给定一个十进制下的自然数x,对于x每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x的“模二数”,记为()2M x.如()()22735111, 561101M M==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M的值为______ ,()()22589653M M+的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M==,因为()()()222124630110,124630110M M M+=+=,所以()()()222124630124630M M M+=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由;②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m-3=0,n+2=0,解得m=3,n=-2,所以,m+n=3+(-2)=1.故选:C.【点睛】此题考查非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.2.A解析:A【分析】【详解】1,41.2故选:A.【点睛】此题主要考查了立方根的性质、算术平方根的性质和应用,要熟练掌握,解答此题的关键.3.A解析:A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类【详解】∵2-是整数,整数是有理数, ∴D 错误;∵2-小于0,正有理数大于0,自然数不小于0, ∴B 、C 错误;∴2-是负有理数,A 正确. 故选:A . 【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.4.A解析:A 【分析】首先根据479<<可以得出23<<2的范围即可.【详解】∵23<<,∴22232-<<-,∴021<<,2-的值大于0,小于1. 所以答案为A 选项. 【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.5.A解析:A 【分析】根据平方根与立方根的意义判断即可. 【详解】解:2=2=±错误,本选项符合题意;2=-,本选项不符合题意;C. 3=±,本选项不符合题意;D. 4=,本选项不符合题意. 故选:A. 【点睛】本题考查了平方根与立方根,正确理解平方根与立方根的意义是解题的关键.6.C解析:C【分析】根据无理数的概念解答即可. 【详解】解:在π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π 3.2121121112…(每两个2之间多一个1),共3个, 故选C. 【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.7.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….8.C解析:C 【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案.【详解】解:∵3464=,35125= ∴6465125<<∴45<.故选:C 【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.9.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.10.B解析:B【分析】根据平方根的定义判断①;根据实数的定义判断②;根据立方根的定义判断③;根据无理数的定义判断④;根据算术平方根的定义判断⑤.【详解】解:①一个数的平方根等于它本身,这个数是0,因为1的平方根是±1,故①错误;②实数包括无理数和有理数,故②正确;3的立方根,故③正确;④π是无理数,而π不带根号,所以无理数不一定是带根号的数,故④错误;⑤2,故⑤正确.故选:B.【点睛】本题考查了平方根、立方根、算术平方根及无理数、实数的定义,是基础知识,需熟练掌握.二、填空题11.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数. 故 解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数p . 故答案为:p . 【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.12.2 【分析】的值为8,根据立方根的定义即可求解. 【详解】解:,8的立方根是2, 故答案为:2. 【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.解析:2 【分析】8,根据立方根的定义即可求解.【详解】8=,8的立方根是2, 故答案为:2. 【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算. 【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为. 【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由 解得:x=8故答案为. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可. 【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=818181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.15.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1, 故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255; 故答案为255. 【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.16.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可. 【详解】 (⊕2)⊕3=⊕3=3, 故答案为3. 【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可. 【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:∴对255只需要进行3次操作后变成1,∴对256需要进行4次操作解析:255【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,3,1,⎡⎤===⎣⎦ ∴对255只需要进行3次操作后变成1,25616,4,2,1,⎡⎤====⎣⎦ ∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255; 故答案为:255. 【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.19.-11或-12 【分析】根据题意可知,,再根据新定义即可得出答案. 【详解】 解:由题意可得: ∴∴的值为-11或-12. 故答案为:-11或-12. 【点睛】本题考查的知识点是有理数比较大小解析:-11或-12 【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案. 【详解】解:由题意可得:65a -≤<- ∴12210a -≤<- ∴[]2a 的值为-11或-12. 故答案为:-11或-12. 【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.9 【分析】首先根据的值确定a 、b 的值,然后可得a+b 的值. 【详解】 ∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a、b的值,然后可得a+b的值.【详解】<∴45,∵a b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a、b的值.三、解答题21.(1)x7-1;(2)x n+1-1;(3)5131 2-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)5131 2-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)48;(2)28 【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. 【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<, 由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=, 故答案为:28. 【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度. 23.(1)5766⨯;9111010⨯(2)10092017(3)12n n+ 【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论. 试题解析: (1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()=1201822017⨯ =10092017; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.24.23>-【分析】根据例题得到2(3)5--=-5. 【详解】解:2(3)5--=- ∵<,∴45<<,∴2(3)50-=->, ∴23>-. 【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.25.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a 、b 的值,根据两点间的距离,可得答案;(2)根据A 和B 所对应的数,可得AB 中点所表示的数,即为点P 所表示的数; (3)根据题意可以得到c 的值,然后利用分类讨论的方法即可求得点P 对应的数. 【详解】解:(1)∵2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,∴11002ab +=,20a -=, 解得:a=2,b=-10,∴A 、B 之间的距离为:2-(-10)=12; (2)∵P 到A 和B 的距离相等, ∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12- ∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14- 【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别. 26.(1)1011,1101;(2)①12,65,97,见解析,②38 【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数 【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+ 故答案为:1011,1101()2①()()222301,1210M M ==, ()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+,12∴与23满足“模二相加不变”.()()222301,6501M M ==,, ()()()222652310,652300M M M +=+=()()()22265236523M M M +≠+, 65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=, ()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++==∴与23满足“模二相加不变”有12个(28、48、68不符合) 当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个 当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合 当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个 综上所述共有12+6+16+4=38 故答案为:38 【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.。

人教版第六章 实数单元 期末复习测试提优卷试题

人教版第六章 实数单元 期末复习测试提优卷试题

人教版第六章 实数单元 期末复习测试提优卷试题一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……② ②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a -- B .201911a a -- C .20181a a - D .20191a -2.设n 为正整数,且1n n <<+,则n 的值为( )A .42B .43C .44D .453.(b ﹣3)2=0,则(a +b )2019等于( )A .1B .﹣1C .﹣2019D .20194 )A .12B .14C .18 D .12±5.下列各数中3.1415926,0.131131113……,-117无理数的个数有()A .1个B .2个C .3个D .4个6.下列说法正确的是 ( )A .m -一定表示负数B .平方根等于它本身的数为0和1C .倒数是本身的数为1D .互为相反数的绝对值相等7.下列各式正确的是( )A 4=±B 143= C 4=- D 4=8.下列各组数中,互为相反数的是( )A .B .2-与12- C .()23-与23- D 9.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个 10.在下列实数:2π、3、4、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个二、填空题 11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.13.若已知()21230a b c -+++-=,则a b c -+=_____.14.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2k n 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .15.313312+333123++33331234+++333312326++++=__________.16.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数.例如:[]2.32=,[]1.52-=-.则下列结论: ①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).17.一个数的立方等于它本身,这个数是__.18.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++=_____.19.若34330035.12=,30.3512x =-,则x =_____________.20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.规定两数a ,b 之间的一种运算,记作(a ,b ):如果c a b =,那么(a ,b )=c . 例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,14)=_______. (2)小明在研究这种运算时发现一个现象:(3n ,4n )=(3,4)小明给出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)22.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)23.你能找出规律吗?(149= ,49⨯= ;1625= ,1625⨯= . 4949⨯1625 1625⨯“<”).(2)请按找到的规律计算:520;231935(3)已知:a =2,b =10,则40= (可以用含a ,b 的式子表示).24.观察下列两个等式:112-2133=⨯+,225-5133=⨯+,给出定义如下:我们称使等式 1a b ab -=+ 成立的一对有理数a ,b 为“共生有理数对”,记为(a ,b ),如:数对(2,13),(5,23),都是“共生有理数对”. (1)数对(-2,1),(3,12)中是“共生有理数对”吗?说明理由. (2)若(m ,n )是“共生有理数对”,则(-n ,-m )是“共生有理数对”吗?说明理由.25.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳26.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=.(1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围,②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可.【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①,∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②,②-①,可得aM-M=a 2019-1,即(a-1)M=a 2019-1,∴M= 201911a a --. 故选:B.【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.C解析:C【分析】先确定2019介于1936、2025这两个平方数之间,从而可以得到4445<<,再根据已知条件即可求得答案.【详解】解:∵193620192025<<∴2244201945<<.<∴4445<<∵n 为正整数,且1n n <<+ ∴44n =.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与2019临界的两个完全平方数是解决问题的关键.3.B解析:B【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子【详解】根据题意得,a +4=0,b ﹣3=0,解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1,故选:B .【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.4.A解析:A【分析】【详解】14,12. 故选:A .【点睛】此题主要考查了立方根的性质、算术平方根的性质和应用,要熟练掌握,解答此题的关键. 5.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】32,3.1415926,-117是有理数,0.131131113……是无理数,共2个. 故选B.【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.6.D【分析】当m 是负数时,-m 表示正数;平方根等于本身的数是0;倒数等于本身的数是±1;互为相反数的绝对值相等.【详解】A. 若m=﹣1,则﹣m=﹣(﹣1)=1,表示正数,故A 选项错误;B. 平方根等于它本身的数为0,故B 选项错误;C. 倒数是本身的数为1和﹣1,故C 选项错误;D. 互为相反数的绝对值相等,故D 选项正确;故选D【点睛】本题考查了平方根、倒数以及相反数的概念,熟练掌握各个知识点是解题关键. 7.D解析:D【分析】根据算术平方根的定义逐一判断即可得解.【详解】4=,故原选项错误;=,故原选项错误;D. 4=,计算正确,故此选项正确.故选D.【点睛】此题主要考查了算术平方根,解题的关键是掌握算术平方根的定义.8.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.9.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.10.C解析:C【分析】根据“无理数”的定义进行分析判断即可.【详解】∵在实数:π2、227、-1.010010001…中,属于无理数的是:?-1.010*******, ∴上述实数中,属于无理数的有3个.故选C.【点睛】本题考查了无理数,熟记“无理数”的定义:“无限不循环小数叫做无理数”是解答本题的关键.二、填空题11.、、、.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53;如果两次才输出结果:则x =(53-2)÷3=17; 如果三次才输出结果:则x =(17-2)÷3=5; 如果四次才输出结果:则x =(5-2)÷3=1; 则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.13.6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为,所以,解得,故,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可.【详解】解:因为()2120a b -+++=,所以10,20,30a b c -=+=-=,解得1,2,3a b c ==-=,故1(2)36a b c -+=--+=,故答案为:6.【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.14..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.15.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n+=351=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.16.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]+[-x]=2-3=-1,故②错误;③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.17.0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的解析:0或±1.【分析】根据立方的定义计算即可.【详解】解:∵(﹣1)3=﹣1,13=1,03=0,∴一个数的立方等于它本身,这个数是0或±1.故答案为:0或±1.【点睛】本题考查了乘方的定义,熟练掌握立方的定义是解题关键,注意本题要分类讨论,不要漏数.18.【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a、b互为倒数,c、d互为相反数求出ab=1,c+d=0,然后代入求值即可.【详解】∵a、b互为倒数,∴ab=1,∵c、d互为相反数,∴c+d=0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.19.-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添解析:-0.0433【分析】三次根式变化规律为:三次根号内的式子扩大或缩小1000倍,则得到的结果扩大或缩小10倍,根据规律可得x的值.【详解】从35.12变为-0.3512,缩小了100倍,且添加了“-”∴根据规律,三次根式内的式子应该缩小1000000倍,且添加“-”故答案为:-0.0433【点睛】本题考查三次根式的规律,二次根式规律类似:二次根号内的式子扩大或缩小100倍,则得到的结果扩大或缩小10倍.20.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;1->-,故不是答案;12是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.三、解答题21.(1)3,0,-2 (2) (4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=1 4∴(2,14)=-2(2)设(4,5)=x,(4,6)=y则x45=,y4=6∴x y x y44430+=⋅=∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.22.24-23=16-8=23 24﹣23=16﹣8=23 2n﹣2(n﹣1)═2(n﹣1)【解析】试题分析:(1)根据已知规律写出④即可.(2)根据已知规律写出n个等式,利用提公因式法即可证明规律的正确性.(3)写出前101个等式,将这些等式相加,整理即可得出答案.试题解析:(1)根据已知等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;得出以下:④24-23=16-8=23,(2)①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;④24-23=16-8=23;得出第n个等式:2n-2(n-1)=2(n-1);证明:2n-2(n-1),=2(n-1)×(2-1),=2(n-1);(3)根据规律:21-20=2-1=20;22-21=4-2=21;23-22=8-4=22;24-23=16-8=23;…2101-2100=2100;将这些等式相加得:20+21+22+23+ (2100)=2101-20,=2101-1.∴20+21+22+23+…+2100=2101-1.23.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.24.(1) (−2,1)不是“共生有理数对”,13,2⎛⎫ ⎪⎝⎭是“共生有理数对”;理由见详解.(2) (−n ,−m )是“共生有理数对”, 理由见详解.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义即可判断;【详解】(1)−2−1=−3,−2×1+1=1,∴−2−1≠−2×1+1,∴(−2,1)不是“共生有理数对”,∵1515 3,312222 -=⨯+=,∴1133122-=⨯+,∴(13,2)是“共生有理数对”;(2)是.理由:− n−(−m)=−n+m,−n⋅(−m)+1=mn+1∵(m,n)是“共生有理数对”∴m−n=mn+1∴−n+m=mn+1∴(−n,−m)是“共生有理数对”,【点睛】考查有理数的混合运算,整式的加减—化简求值,等式的性质,读懂题目中“共生有理数对”的定义是解题的关键.25.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.26.(1)2,3 (2)①5722x≤<②330,,42(3)00.5a≤<【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<; ②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.。

七年级初一数学第二学期第六章 实数单元 期末复习提优专项训练

七年级初一数学第二学期第六章 实数单元 期末复习提优专项训练

七年级初一数学第二学期第六章 实数单元 期末复习提优专项训练一、选择题1.对于每个正整数n ,设()f n 表示(1)n n +的末位数字.例如:(1)2f =(12⨯的末位数字),(2)6f =(23⨯的末位数字),(3)2f =(34⨯的末位数字),…则(1)(2)(3)(2019)f f f f ++++的值为( ) A .4040 B .4038 C .0 D .40422.已知x 、y 为实数,且34x ++(y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( )A .14B .﹣14C .74D .﹣743.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=±4.让我们轻松一下,做一个数字游戏.第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;……依此类推,则a 2018的值为( )A .26B .65C .122D .1235.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤6.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上7.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B8.如图,若实数m =﹣7+1,则数轴上表示m 的点应落在( )A .线段AB 上 B .线段BC 上 C .线段CD 上 D .线段DE 上9.估计7+1的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间10.若a 是16的平方根,b 是64的立方根,则a+b 的值是( ) A .4 B .4或0 C .6或2D .6 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.已知a n =()211n +(n =1,2,3,…),记b 1=2(1-a 1),b 2=2(1-a 1)(1-a 2),…,b n =2(1-a 1)(1-a 2)…(1-a n ),则通过计算推测出表达式b n =________ (用含n 的代数式表示).13.写出一个3到4之间的无理数____.14.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.16.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是52)⊕3=___.17.已知72m =,则m 的相反数是________.18.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.对于实数a,我们规定用a }a {a}为 a 的根整数.如10}=4.(1)计算9?(2)若{m}=2,写出满足题意的m 的整数值;(3)现对a 进行连续求根整数,直到结果为2为止.例如对12进行连续求根整数,第一次12}=4,再进行第二次求根整数4}=2,表示对12连续求根整数2次可得结果为2.对100进行连续求根整数, 次后结果为2.22.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下:(1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4;因为23=8,所以23个位上的数字是8;因为24= _____ ,所以24个位上的数字是_____;因为25= _____ ,所以25个位上的数字是_____;因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____.23.(12的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以122,<<因为21.4 1.96=,21.5 2.25=,所以1.42 1.5,<< 因为221.41 1.9881,1.42 2.0164==,所以1.41 1.42<< 因为221.414 1.999396,1.415 2.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定2⎤⎦= ;a ,b 求a b -的值.24.是无理数,而无理数是无限不循环小数,﹣1的小数部的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为2<3的整数部分为2﹣2) 请解答:(1的整数部分是 ,小数部分是 ;(2a b ,求a +b25.你会求(a ﹣1)(a 2012+a 2011+a 2010+…+a 2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a -+=-,()()23111a a a a -++=-,()()324111a a a a a -+++=-,(1)由上面的规律我们可以大胆猜想,得到(a ﹣1)(a 2014+a 2013+a 2012+…+a 2+a+1)= 利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是 .(3)求52014+52013+52012+…+52+5+1的值.26.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据已知得出规律,f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f (3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,找出规律,进而求出即可.【详解】解:∵f(1)=2(1×2的末位数字),f(2)=6(2×3的末位数字),f(3)=2(3×4的末位数字),f(4)=0,f(5)=0,f(6)=2,f(7)=6,f(8)=2,f(9)=0,…,∴每5个数一循环,分别为2,6,2,0,0…,∴2019÷5=403…4,∴f(1)+f(2)+f(3)+…+f(2019)=2+6+2+0+0+2+6+2+…+2+6+2+0=403×(2+6+2)+10=4040故答案为:A.【点睛】此题主要考查了数字变化规律,根据已知得出数字变化以及求出f(1)+f(2)+f(3)+…+f(2019)=403×(2+6+2)+10是解题关键.2.A解析:A【分析】()230y-=可得:34030xy+=⎧⎨-=⎩,据此求出x、y的值,然后把求出的x、y的值代入axy-3x=y,求出实数a的值即可.【详解】()230y-=,∴34030xy+=⎧⎨-=⎩,解得433xy⎧=-⎪⎨⎪=⎩,∵axy-3x=y,∴a(﹣43)·3-3×(﹣43)=3, ∴﹣4a +4=3, 解得a =14. 故选:A .【点睛】 本题考查了算数平方根平方数的非负性,利用非负数性质求x 、y 的值是解决问题的关键.3.C解析:C【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定.【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误.故选:C .【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.B解析:B【分析】依照题意分别求出a l =26,n 2=8,a 2=65,n 3=11,a 3=122,n 4=5,a 4=26…然后依次循环,从而求出结果.【详解】解:∵n 1=5,a l =52+1=26,n 2=8,a 2=82+1=65,n 3=11,a 3=112+1=122,n 4=5,…,a 4=52+1=26…∵20183=6722÷∴20182=65=a a .故选:B .【点睛】此题考查数字的变化规律,找出数字之间的联系,得出数字之间的运算规律,利用规律解决问题.5.D解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.6.D解析:D【分析】根据A、C、O、B四点在数轴上的位置以及绝对值的定义即可得出答案.【详解】∵|m-5|表示点M与5表示的点B之间的距离,|m−c|表示点M与数c表示的点C之间的距离,|m-5|=|m−c|,∴MB=MC.∴点M在线段OB上.故选:D.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应的关系是解答此题的关键.7.B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B解析:B【分析】+1的取值范围进而得出答案.【详解】<<解:∵实数m,23∴﹣2<m<﹣1,∴在数轴上,表示m的点应落在线段BC上.故选:B.【点睛】9.B解析:B【分析】的范围,继而可求得答案.【详解】∵22=4,32=9,∴<3,∴+1<4,故选B.【点睛】本题考查了无理数的估算,熟练掌握是解题的关键.10.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C .【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π.解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12..【解析】【详解】根据题意按规律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=. 解:根据以上分析bn=2(1-a1)(1-a2)…(1-an )=.“ 解析:12++n n . 【解析】【详解】 根据题意按规律求解:b 1=2(1-a 1)=131221-4211+⎛⎫⨯== ⎪+⎝⎭,b 2=2(1-a 1)(1-a 2)=314221-29321+⎛⎫⨯== ⎪+⎝⎭,…,所以可得:b n =12++n n . 解:根据以上分析b n =2(1-a 1)(1-a 2)…(1-a n )=12++n n . “点睛”本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题中表示b 值时要先算出a 的值,要注意a 中n 的取值.13.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31=⨯++n nn=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.16.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.18.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A 点位置附近的点和实数12-. 【详解】解:∵数轴的正方向向右,A 点在原点的左边,∴A 为负数,从数轴可以看出,A 点在2-和1-之间,2<=-,故不是答案;刚好在2-和1-之间,故是答案;112->-,故不是答案;是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a的值,再根据无理数的估算得出b的值,然后计算有理数的乘法即可.【详解】6a==<<479<<<<23∴的整数部分是2,即2b=ab=⨯=则6212故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.(1)3;(2)2,3,4(3)3【分析】(1的大小,再根据新定义可得结果;(2)根据定义可知12,可得满足题意的m的整数值;(3)根据定义对100进行连续求根整数,可得3次之后结果为2.【详解】解:(1)根据新定义可得,,故答案为3;(2)∵{m}=2,根据新定义可得,1,可得m的整数值为2,3,4,故答案为2,3,4;(3)∵{100}=10,{10}=4,{4}=2,∴对100进行连续求根整数,3次后结果为2;故答案为3.【点睛】本题考查了估算无理数的大小的应用,主要考查了对新定义的理解能力,准确理解新定义是解题的关键.22.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.23.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.24.(1)3,﹣3;(2)1.【分析】(1)根据34<解答即可;(2)根据23得出a ,根据34得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵34<<,3﹣3,故答案为:3﹣3;(2)∵23,a 2,∵34,∴b =3,a +b 2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.25.(1)a2015﹣1;(2)22015﹣1;(3)2015514-.【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,故答案为:a2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514-.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.26.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据A和B所对应的数,可得AB中点所表示的数,即为点P所表示的数;(3)根据题意可以得到c的值,然后利用分类讨论的方法即可求得点P对应的数.【详解】解:(1)∵2110|2|0 2ab a⎛⎫++-=⎪⎝⎭,∴11002ab+=,20a-=,解得:a=2,b=-10,∴A、B之间的距离为:2-(-10)=12;(2)∵P到A和B的距离相等,∴此时点P所对应的数为:()21042+-=-;(3)∵|ac|=-ac,a=2>0,∴c<0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 实数单元 期末复习测试提优卷试卷一、选择题1.若24a =,29b =,且0ab <,则-a b 的值为( )A .5±B .2-C .5D .5-2.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( ) A .1B .﹣1C .﹣2019D .20193.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B 5C 6D .34.将不大于实数a 的最大整数记为[]a ,则33⎡⎤=⎣⎦( )A .3-B .2-C .1-D .05.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( ) A .1个B .2个C .3个D .4个6.下列各数中3.1415926,390.131131113 (9)4,-117无理数的个数有( )A .1个B .2个C .3个D .4个 7.若a ,b 均为正整数,且7a >32b <+a b 的最小值是( )A .3B .4C .5D .68.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2 B .4 C .8D .69.在3.14,237,2-327,π这几个数中,无理数有( ) A .1个 B .2个 C .3个 D .4个 10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.若x +1是125的立方根,则x 的平方根是_________. 12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.13.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.14.若()2320m n ++-=,则m n 的值为 ____.15.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.17.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 18.已知72m =,则m 的相反数是________.1946________.20.0.050.55507.071≈≈≈≈,按此规500_____________三、解答题21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.23.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?24.(1)观察下列式子: ①100222112-=-==; ②211224222-=-==; ③322228442-=-==; ……根据上述等式的规律,试写出第n 个等式,并说明第n 个等式成立; (2)求01220192222++++的个位数字.25.已知2+a b 312b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.26.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数. (1)3与 互为特征数;(2)正整数n (n>1)的特征数为;(用含n的式子表示)(3)若m,n互为特征数,且m+mn=-2,n+mn=3,求m+n的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b 的值.【详解】解:∵a2=4,b2=9,∴a=±2,b=±3,而ab<0,∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;②a<0时,b>0,即a=-2时,b=3,a-b=-5.故选:A.【点睛】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.B解析:B【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a、b的值,代入所求式子即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.3.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B解析:B【分析】3-的范围,即可得出答案【详解】解:∵12∴﹣23<﹣1∴3⎤=⎦﹣2故答案为B【点睛】.5.B解析:B【分析】利用无理数的概念,邻补角、平方根与立方根的定义、实数与数轴的关系,两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】①无理数是无限不循环小数,正确;②平方根与立方根相等的数只有0,故错误;③在同一平面内,过一点有且只有一条直线与这条直线平行,故错误;④邻补角是相等的角,故错误;⑤实数与数轴上的点一一对应,正确.所以,正确的命题有2个,故选B.【点睛】本题考查了命题与定理的知识,解题的关键是能够了解无理数、平方根与立方根的定义、两直线的位置关系等知识,难度不大.6.B【解析】 【分析】根据无理数是无限不循环小数,可得答案. 【详解】32,3.1415926,-117是有理数,0.131131113……是无理数,共2个.故选B. 【点睛】本题考查了无理数,无理数是无限不循环小数,注意带根号的数不一定是无理数.7.B解析:B 【分析】的范围,然后确定a 、b 的最小值,即可计算a +b 的最小值. 【详解】23.∵a a 为正整数,∴a 的最小值为3.12.∵b b 为正整数,∴b 的最小值为1,∴a +b 的最小值为3+1=4. 故选B . 【点睛】本题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.8.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8. 【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….解析:B 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】3.14,237,π中无理数有:,π,共计2个. 故选B.【点睛】考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.C解析:C 【解析】试题分析:∵16<20<25, ∴∴4<5.故选C .考点:估算无理数的大小.二、填空题 11.±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根 ∴x+1=,解得:x=4 ∴x 的平方根是±2 故答案为:±2 【点睛】本题考查立方根和平方根,注意一个正解析:±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n和q互为相反数,O在线段NQ的中点处,∴绝对值最大的是点P表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数p . 故答案为:p . 【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.14.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】由题意得,m+3=0,n-2=0, 解得m=-3,n=2, 所以,mn=(-3)2=9. 故答案为9. 【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】由题意得,m+3=0,n-2=0, 解得m=-3,n=2, 所以,m n =(-3)2=9. 故答案为9. 【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.15.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案. 【详解】解:=8,=2,2的算术平方根是, 故答案为:. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案. 【详解】82,2,. 【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.16.403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2,当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.17.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】解:(1)由题意得:64→=8→2=→=1, ∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.18.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m 的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】7.071≈≈≈≈,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的估值扩大1022.36≈. 故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.三、解答题21.(1)5012nn =∑;(2)1011nn =∑;(3)50【分析】(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+ (100)5012nn =∑;(2)1+12+13+…+110=1011nn=∑;(3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012nn =∑;(2)1011nn =∑;(3)85.【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC为3xcm,宽AD为2xcm,结合长方形ABCD的面积为300cm2,即可得出关于x的一元二次方程,解方程即可求出x的值,从而得出AB的长,再根据圆的面积公式以及圆的面积147cm2,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB的长进行比较即可得出结论.【详解】解:设长方形的长DC为3xcm,宽AD为2xcm.由题意,得3x•2x=300,∵x>0,∴x=∴AB=,BC=cm.∵圆的面积为147cm2,设圆的半径为rcm,∴πr2=147,解得:r=7cm.∴两个圆的直径总长为28cm.∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm2的圆.23.(1)20cm;(2)不能剪出长宽之比为5:4,且面积为2360cm的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.24.(1)11222n n n ---=,理由见解析;(2)01220192222++++的个位数字为5.【分析】(1)找规律,发现等式满足11222n n n ---=,证明,即可.(2)利用公式11222n n n ---=,分别表示每个项,利用相消法,计算结果,即可.【详解】(1)11222n n n ---=理由是:122n n -- 11122n n +--=-11222n n --=⨯-()1212n -=-⨯12n -=(2)原式=()()()()1021322020201922222222-+-+-++-2020022=-()505421=-505161=-因为6的任何整数次幂的个位数字为6.所以505161-的个位数字为5,即01220192222++++的个位数字为5.【点睛】本题考查了与数字运算有关的规律题,仔细观察发现规律是解题的关键.25.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:20a b ++=由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x =解得3x =±.【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.26.(1)32;(2)1n n -;(3)13 【分析】(1)设3的特征数为b ,根据特征数的定义列式求解即可;(2)设n 的特征数为m ,根据特征数的定义列式求解即可;(3)根据m ,n 互为特征数得出m +n =mn ,结合已知的两个等式进行求解即可.【详解】解:(1)设3的特征数为b ,由题意知,33b b +=, 解得,32b =, ∴3与32互为特征数, 故答案为:32(2)设n 的特征数为m ,由题意知,n +m =nm , 解得,1n m n =-,∴正整数n (n >1)的特征数为1n n -, 故答案为:1n n - (3)∵ m ,n 互为特征数, ∴ m +n =mn ,又m +mn =-2 ①,n +mn =3 ②, ①+②得,m +n +2mn =1, ∴ m +n +2(m +n )=1, ∴ m +n =13. 【点睛】本题考查了新定义的运算,正确理解特征数的定义是解题的关键.。

相关文档
最新文档