2020年高考文科数学模拟考试题卷

合集下载

2020届高考模拟数学文科试题及答案

2020届高考模拟数学文科试题及答案

2020届数学文科高考模拟试题1、设集合22{|40},{|log 1}M x x N x x =-≤=<,则M N ⋂=( )A. ∅B. (0,2)C. (2,2)-D. [2,2)-2、已知复数312z i=- (i 是虚数单位),则z 的实部为( ) A. 35- B. 35 C. 15- D. 153、等比数列{}n a 中,若4568a a a ⋅⋅=,且5a 与62a 的等差中项为2,则公比q =( )A.2B.12C.2-D.12-4、在1,2,3,6这组数据中随机取出三个数,则数字2是这三个不同数字的平均数的概率是( )A.14 B. 13 C. 12 D. 345、已知α为第二象限角,且1sin cos 5αα+=,则sin2α= ( )A. 1225B. 2425C. 1225-D. 2425-6、执行如图所示程序框图,输出的S = ( )A. 25B. 9C. 17D. 207、函数2ln(1)3()x x x f x ++-=的图像大致为( ) A. B.C. D.8、若,x y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23z x y =-的最大值为9,则正实数m的值为( )A.1B.2C.4D.8 9、在△ABC 中, 3A π=,若2?a =,则△ABC 面积的最大值为( )A.2 B. 2 C. 6 D. 310、长方体1111ABCD A B C D -,11,2,3AB AD AA ===,则异面直线11A B 与1AC 所成角的余弦值为( )A. 1414B. 8314C. 1313D. 1311、双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12,F F ,过1F 3的直线与双曲线的左右两支分别交于点,?P Q ,若2QP QF =,则双曲线 C 的离心率为( )A. 7B. 6C.1312D. 131212、已知奇函数() f x 的导函数为()'f x ,当0x ≠时, ()()0xf x f x +>',若()()11,,1a f b ef e c f ee ⎛⎫==--= ⎪⎝⎭,则,,a b c 的大小关系正确的是( ) A. a b c << B. b c a << C. a c b << D. c a b << 二、填空题13、已知函数()2ln 24f x x x x =+-,则函数() f x 的图象在1?x =处的切线方程为__________.14、已知向量a r 与b r的夹角是3π,且1,2a b ==r r,若)b a λ+⊥r r ,则实数λ=__________.15、已知抛物线28y x =的焦点F ,过F 的直线与抛物线交于,A B 两点,则||4||FA FB +的最小值是 .16、若对任意[1,2]t ∈,函数22()(1)f x t x t x a =-++总有零点,则实数a 的取值范围是__________. 三、解答题17、在等差数列{}n a 中,n S 为其前n 项和(n *∈N ),且23a =,416S =. (1).求数列{}n a 的通项公式; (2).设11n n n b a a +=,求数列{}n b 的前n 项为n T .18、某商场营销人员进行某商品M 市场营销调查发现,每回馈消费者一定的点数,该商品当天的销量就会发生一定的变化,经过试点统计得到以下表:(1)经分析发现,可用线性回归模型拟合当地该商品一天销量y (百件)与该天返还点数 x 之间的相关关系.请用最小二乘法求y 关于 x 的线性回归方程y bx a =+,并预测若返回6个点时该商品当天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经过营销部调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:将对返点点数的心理预期值在[1,3)和[11,13]的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.(参考公式及数据:①回归方程y bx a =+,其中ni ii=1n22ii=1x y -nxyb=,a=y-bx x-nx∑∑;②5i ii=1x y =18.8∑.)19、如图,在ABC △中,BC AC ⊥,,D E 分别为,AB AC 的中点,将ADE △沿DE 折起到PDE △的位置.(1)证明:BC PEC ⊥平面;(2)若7,3BP PC BC CD ===,,求四棱锥P BCED -的体积.20、在直角坐标系 xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在 x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点()1,3M 的直线与椭圆E 交于不同的,?A B 两点,交直线14y x =-于点N ,若,NA mAM NB nBM ==u u u r u u u u r u u u r u u u u r ,求证: m n +为定值,并求出此定值21、已知函数()()()e ,2ln ,R xf x xg x a x x a ==+∈.(1)求()f x 单调区间;(2)若()()f x g x ≥在[)1+∞,上恒成立,求a 的取值范围.22、在直角坐标系 xOy 中,曲线1C 的参数方程为22cos {2sin x y ϕϕ=+= (ϕ为参数).以原点 O 为极点, x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0π)θαα=<<,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且,A B 均异于原点 O ,AB =α的值.23、已知函数2()23f x x a =+.(1).当0a =时,求不等式()23f x x +-≥的解集;(2).若对于任意实数x ,不等式21()2x f x a +-<恒成立,求实数a 的取值范围.答案以及解析1答案及解析:答案:B解析:24,22x x-≤∴-≤≤Q,[2,2]M∴=-,log21,02xx∴<<<∴,(0,2)N∴=,(0,2)M N∴⋂=,故选B.2答案及解析:答案:B解析:∵()()()312i336i 12i12i12i55z+===+--+,∴z的实部为35.故选B.3答案及解析:答案:B解析:根据题意,等比数列{}n a中,若4568a a a⋅⋅=,则35()8a=,解可得52a=,又由5a与62a的等差中项为2,则56()(2)4a a+=,解可得:61a=,则6512a q a ==; 故选B .4答案及解析: 答案:A解析:在1,2,3,6这组数据中随机取出三个数,基本事件总数 ()1,2,3,()1,2,6,()1,3,6,()2,3,6共4个,则数字2是这三个不同数字的平均数所包含的基本事件只有()1,2,31个.因此,数字2是这三个不同数字的平均数的概率是14.故应选A.5答案及解析: 答案:D解析:由1sin cos 5αα+=,两边平方得:221sin cos 2sin cos 25αααα++=.242sin cos 25αα=-,即24sin 225α=-.故选D.6答案及解析: 答案:C解析:按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=;17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C.7答案及解析: 答案:A解析:22ln(1)3ln(1)3()()0x x x x x xf x f x++-+-++-=+=,即()()f x f x-=-,故()f x为奇函数,排除C,D选项;ln(21)3(1)0f+-=<,排除B选项,故选A.8答案及解析:答案:B解析:,x y满足约束条件2030x yx y mx-+≥⎧⎪+-≥⎨⎪-≤⎩的可行域如图,则23z x y=-的最大值为9,所以直线0x y m+-=,过直线239x y-=和直线3x=的交点(3,1)-,2m∴=,故选B.9答案及解析:答案:D解析:△ABC中,,23A aπ==,由余弦定理得,2222cos3a b c bc π=+-,即42bc bc bc ≥⋅=,∴4bc ≤,当且仅当b c =时“=”成立; ∴△ABC 面积的最大值为11sin 422S bc A =≤⨯=故选D.10答案及解析: 答案:A解析:∵1111//C D A B ,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠.在11Rt AC D ∆中, 111C D =,1AD ==1AC ==,∴11111cos C D AC D AC ∠===.故选A.11答案及解析: 答案:C解析:双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点1F的直线为:)2,y x c QP QF =+=,122,4PF a PF a ==, 1212π2,3F F c PF F =∠=,可得: 222π1644222cos 3a a c a c =+-⨯⨯,解得2b a =,所以230,1e e e --=>, 可得131e +=12答案及解析: 答案:C解析:令()()g x xf x =,则()()()''0g x f x xf x =+>,所以()g x 为递增函数, 因为11e e>>,∴()()11g e g g e ⎛⎫>> ⎪⎝⎭∴()()111ef e f f e e ⎛⎫>> ⎪⎝⎭, 又() f x 为奇函数,所以()()ef e ef e --=, ∴b c a >>13答案及解析: 答案:30x y --=解析:∵()2ln 24f x x x x =+-,∴()1'44f x x x=+-,∴()'11f =,又()12f =-,∴所求切线方程为()21y x --=-,即30x y --=.14答案及解析: 答案:3-解析:∵向量a r 与b r的夹角是3π,且1,2a b ==r r ,∴11212a b ⋅=⨯⨯=r r ,∵()3a b a λ+⊥r r r ,∴则()2330a b a a a b λλ+⋅=+⋅=r r r r r r,∴30λ+=, ∴3λ=-15答案及解析: 答案:18解析:抛物线28y x =的焦点(2,0)F ,设1122(,),(,)A x y B x y ,则1212||4||24(2)410FA FB x x x x +=+++=++, 当直线AB 斜率不存在时,1||4||2421020FA FB x +=++⨯+=, 当直AB 斜率存在时,设直线AB 的方程为,代入28y x =得222212(48)40,4k x k x k x x -++=∴=211144||4||41041018FA FB x x x x ∴+=++≥⨯=, 当且仅当11x =时取等号.||4||FA FB +的最小值是18.故答案为:18.16答案及解析: 答案:9(,]16-∞ 解析:∵函数22()(1)f x t x t x a =-++总有零点,22(1)40t at ∴∆=+-≥对任意[1,2]t ∈恒成立,∴22211()()222t a t t+1≤=+ 记11()22y t =+在[1,2]上单调递减, ∴211119()()2222216t +≥+=⨯ ∴916a ≤故答案为:9(,]16-∞17答案及解析:答案:(1).设等差数列{}n a 的公差是d ,由23a =,416S =,得113,4616,a d a d +=⎧⎨+=⎩解得11a =,2d =,∴21n a n =-,*N n ∈. (2).由(1).知,21n a n =-, ∴()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭, 12111111111123352121221n n T b b b n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 即21n nT n =+,n *∈N .18答案及解析: 答案:(1)易知123450.50.61 1.4 1.73, 1.0455x y ++++++++====,522222211234555i i x ==++++=∑ , ni ii=1n222i i=1x y -nxy18.853 1.04b==0.325553x -nx-⨯⨯=-⨯∑∑, a=y-bx 1.040.3230.08=-⨯=则y 关于 x 的线性回归方程为0.320.08y x =+,当6x =时, 2.00y =,即返回6个点时该商品每天销量约为2百件. (2)设从“欲望膨胀型”消费者中抽取 x 人,从“欲望紧缩型”消费者中抽取y 人, 由分层抽样的定义可知6301020x y==,解得2,4x y ==在抽取的6人中,2名“欲望膨胀型”消费者分别记为12,A A ,4名“欲望紧缩型”消费者分别记为1234,,,B B B B ,则所有的抽样情况如下:共20种,其中至少有1名“欲望膨胀型”消费者的情况由16种记事件A 为“抽出的3人中至少有1名‘欲望膨胀型’消费者”,则16()0.820P A ==19答案及解析: 答案:(1)证明:∵,D E 分别为,AB AC 的中点 ∴//DE BC ∵BC AC ⊥∴,,DE AE DE EC ⊥⊥PE EC E =I ∴DE ⊥平面PEC∴BC ⊥平面PEC(2)在Rt BCP △中,由PC BP ==得2BC =∵12,12BC CD DE BC ====∴AE EC ==在PEC △中,PE EC PC === ∴点P 到EC 的距离为32d =∴113332P BCED BCED V S d -=⋅==20答案及解析:答案:(1)椭圆的标准方程为:2211612x y += (2)设1122001(,),(,),(,)4A x yB x y N x x -, 由,NA mAM =u u u r u u u u r 得1010111(,)(1,3)4x x y x m x y -+=--所以0011134,11m x m x x y m m -+==++,00134(,)11m x m x A m m -+∴++,因为2211612x y +=上,所以得到0220134()()1111612m x m x m m -++++=,得到220139964804m m x ++-=; 同理,由NB nBM =u u u r u u u u r 可得220139964804n n x ++-= 所以,m n 可看作是关于 x 的方程220139964804x x x ++-=的两个根,所以323m n +=-为定值答案:(1)()()e 1xf x x '=+由()0f x '>,得()1,x ∈-+∞ 由()0f x '<,得(),1x ∈-∞∴()f x 分别在区间()1,-+∞上单调递增,在区间(),1-∞上单调递减(2)令()()()()[)2ln e ,1,xh x g x f x a x x x x =-=+-∈+∞则()()()12e 21e 11xxa x h x a x x x x -⎛⎫'=+-+=+ ⎪⎝⎭由1知()e xf x x =在[)1+∞,上单调递增 ∴e e x x ≥ 当e2e,2a a ≤≤即时,2e 0x a x -≤, ∴()h x 在[)1+∞,上单调递减,()()max 12e h x h a ==- 令()max 0h x ≤,得e2a ≤ ②e 2e,2a a >>即时,存在()01,x ∈+∞,使002e 0xa x -= 当()01,x x ∈时,()0h x >;当()0,x x ∈+∞时,()0h x < ∴()h x 在()01,x x ∈上单调递增,在()0,x x ∈+∞上单调递减;()()()()000002ln e 2ln 21x man h x h x a x x x a a ==+-=- ∵e 2a >∴2ln 210a ->∴()()00man h x h x =≤不能恒成立综上:e ,2a ⎛⎤∈-∞ ⎥⎝⎦答案:(1)由22cos {2sin x y ϕϕ=+=消去参数ϕ,得1C 的普通方程为22(2)4x y -+=.∵24sin 4sin ρθρρθ=⇒=,又cos {sin x y ρθρθ==,∴2C 的直角坐标方程为22(2)4x y +-=(2)由(1)知曲线1C 的普通方程为22(2)4x y -+=,∴其极坐标方程为4cos ρθ=,∴π4sin cos 4A B AB ρρααα⎛⎫=-=-=-= ⎪⎝⎭∴又πππ3πsin 1ππ(Z)4424k k k ααα⎛⎫-=±⇒-=+⇒=+∈ ⎪⎝⎭, ∴0απ<<,∴34πα=.23答案及解析:答案:(1).当0a =时,()|2||2||2|3f x x x x +-=+-≥有0223x x x ≤⎧⎨--+≥⎩或02223x x x <<⎧⎨-+≥⎩或2223x x x ≥⎧⎨+-≥⎩解得13x ≤-或12x ≤<或2x ≥所以()|2|3f x x +-≥的解集为1(,][1,)3-∞-⋃+∞.(2)对于任意实数x ,不等式|21|()2x f x a +-<成立,即2|21||23|2x x a a +-+<恒成立。

2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

2020 年普通高等学校招生全国统一考试模拟卷(1)文科数学本试题卷共 6 页, 23 题(含选考题)。

全卷满分150 分。

考试用时120 分钟。

第Ⅰ 卷一、选择题:本大题共12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M x, y x y 2 , N x, y x y2,则集合M N()A.0,2 B .2,0C.0, 2D.2,0【答案】 D【解析】解方程组x y2x2N2,0 .选D.x y2,得.故 My02.设复数z12i( i 是虚数单位),则在复平面内,复数z2对应的点的坐标为()A. 3,4B. 5,4C.3,2D. 3,4【答案】 A【解析】 z12i z2121 44i 3 4i ,所以复数z2对应的点为3,4 ,2i故选 A.3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x 0,则一开始输入的x 的值为()371531A .B .C. D .481632【答案】 C【解析】 i1,( 1)x2x1,i2,( 2)x22x114x3,i3,( 3)x24x318x7,i4,( 4)x28x7116x15,i 5 ,所以输出16x150,得 x15,故选 C.164.已知cos22cos,则 tan4(A .4B.41C.D3【答案】 C【解析】因为 cos22cos,所以sin2co所以 tan41tan1,故选 C.1tan35.已知双曲线x2y21a0,b0的一个焦点为 F2,0a2b2则该双曲线的方程为()A. x2y21 B .x2y21C. y2x21D333【答案】 B【解析】令x2y20 ,解得ybx ,故双曲线的渐近线方程a2b2ab3a2a1由题意得c2,解得,∴该双曲线的方程为b23c22b2a6.某家具厂的原材料费支出x 与销售量y(单位:万元)之间有y x8?的全部数据,用最小二乘法得出与的线性回归方程为y?bxx245y253560A .5B. 15C.12D【答案】 C【解析】由题意可得:x245685 , y25355第1页,共6页回归方程过样本中心点,则:5285??.本题选择 C 选项.b , b 127.已知f x2018x20172017x20162x1,下列程序框图设计的是求 f x0的值,在“ ”中应填的执行语句是()开始输入 x0i=1,n=2018S=2018i=i+1i≤ 2017?否S=S+n是输出 SS=Sx0结束A .n2018iB .n2017 i C.n2018i D .n2017i 【答案】 A【解析】不妨设x0 1 ,要计算 f12018 2017 20162 1 ,首先S201812018,下一个应该加,再接着是加,故应填n2018 i.201720168.设π2)0x,则“x”是“cosx< x ”的(cosx2A .充分而不必要条件B .必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】作图 y cos x ,y x2,y x ,x0,,2可得 cosx x2解集为m,, cosx x 解集为 n,,因为22m,n,,因此选 A .229.如图为正方体ABCD A1B1C1 D1,动点M从 B1点出发,在正方体表面上沿逆时针方向1M11x与运动一周后,再回到 B 的运动过程中,点与平面 ADC 的距离保持不变,运动的路程l MA1MC1 MD 之间满足函数关系l f x ,则此函数图象大致是()A.B.C.D.【答案】 C【解析】取线段B1 A 中点为N,计算得:l N NA1NC1ND623l B l A.同221AC 或CB1的中点时,计算得l N NA1 NC1 ND622 3 l B,符合C项的图象特征.故选C.2110.已知双曲线E:x2y21( a 0, b 0)的右顶点为A,右焦点为Fa2b2第二象限上的一点, B 关于坐标原点O 的对称点为 C ,直线 CA 与直线 BF 的交点BF 的中点,则双曲线的离心率为()11C. 2 D . 3A .B .25【答案】 D【解析】不妨设B c, b2,由此可得 A a,0, C c,b2, F c,0,a ab2b2于 A,C, M 三点共线,故2aaac,化简得 c3a ,故离心率 e 3 .a11.已知点A 4,3和点B 1,2,点 O 为坐标原点,则OA tOB t R的最A.5 2 B . 5C. 3 D .5【答案】 D【解析】由题意可得:OA4,3, OB1,2,则:OA tOB4,3t 1,24t,32t232t25t24 t结合二次函数的性质可得,当t2时, OA tOB54202min本题选择 D 选项.第2页,共6页x2y2x2y212.已知椭圆C1 :a12b121 a1>b1>0与双曲线C2:a22b22 1 a2>0,b2>0有相同的焦点 F1, F2,若点P是 C1与 C2在第一象限内的交点,且F1F2 2 PF2,设 C1与 C2的离心率分别为 e1, e2,则 e2e1的取值范围是()A .1,1C.1D .1 3B .,,,322【答案】 D【解析】设F1F22c,令 PF1t ,由题意可得:t c2a2, t c 2a1,据此可得: a1 a2c11e2,,则: 1 ,e11e1e2e2则: e2e1e2e2e221,由 e21可得: 01e21e2 12 1 ,11e2e2e2211结合二次函数的性质可得:e20,1 ,e2则:e2e11,即 e e 的取值范围是1,.本题选择 D 选项.2212第Ⅱ卷本卷包括必考题和选考题两部分。

2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2020届高考数学模拟考试试卷及答案(文科)(一)

2020届高考数学模拟考试试卷及答案(文科)(一)

2020届高考数学模拟考试试卷及答案(一)(文科)一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣22.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.535.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm36.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.167.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.169.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f (x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i是虚数单位,复数为纯虚数,则实数a的值为()A.1 B.﹣1 C.D.﹣2【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵=为纯虚数,∴,解得:a=1.故选:A.2.集合A={0,1,2,3,4},B={x|(x+2)(x﹣1)≤0},则A∩B=()A.{0,1,2,3,4}B.{0,1,2,3}C.{0,1,2}D.{0,1}【考点】1E:交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式解得:﹣2≤x≤1,即B=[﹣2,1],∵A={0,1,2,3,4},∴A∩B={0,1},3.已知向量=(1,2),=(﹣2,m),若∥,则|2+3|等于()A.B.C.D.【考点】9R:平面向量数量积的运算.【分析】根据∥,算出=(﹣2,﹣4),从而得出=(﹣4,﹣8),最后根据向量模的计算公式,可算出的值.【解答】解:∵且∥,∴1×m=2×(﹣2),可得m=﹣4由此可得,∴2+3=(﹣4,﹣8),得==4故选:B4.设a1=2,数列{1+a n}是以3为公比的等比数列,则a4=()A.80 B.81 C.54 D.53【考点】8G:等比数列的性质;8H:数列递推式.【分析】先利用数列{1+a n}是以3为公比的等比数列以及a1=2,求出数列{1+a n}的通项,再把n=4代入即可求出结论.【解答】解:因为数列{1+a n}是以3为公比的等比数列,且a1=2所以其首项为1+a1=3.其通项为:1+a n=(1+a1)×3n﹣1=3n.当n=4时,1+a4=34=81.∴a4=80.5.若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm3【考点】L!:由三视图求面积、体积.【分析】由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.【解答】解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.6.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.16【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=16,i=9时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16【解答】解:模拟执行程序框图,可得i=1S=0满足条件,S=1,i=3满足条件,S=4,i=5满足条件,S=9,i=7满足条件,S=16,i=9由题意,此时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16,故选:D.7.已知l,m,n为三条不同直线,α,β,γ为三个不同平面,则下列判断正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n∥β,α⊥β,则m⊥nC.若α∩β=l,m∥α,m∥β,则m∥lD.若α∩β=m,α∩γ=n,l⊥m,l⊥n,则l⊥α【考点】LP:空间中直线与平面之间的位置关系.【分析】根据常见几何体模型举出反例,或者证明结论.【解答】解:(A)若m∥α,n∥α,则m与n可能平行,可能相交,也可能异面,故A错误;(B)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面CDD′C′为平面β,直线BB′为直线m,直线A′B为直线n,则m⊥α,n∥β,α⊥β,但直线A′B与BB′不垂直,故B错误.(C)设过m的平面γ与α交于a,过m的平面θ与β交于b,∵m∥α,m⊂γ,α∩γ=a,∴m∥a,同理可得:m∥b.∴a∥b,∵b⊂β,a⊄β,∴a∥β,∵α∩β=l,a⊂α,∴a∥l,∴l∥m.故C正确.(D)在正方体ABCD﹣A′B′C′D′中,设平面ABCD为平面α,平面ABB′A′为平面β,平面CDD′C′为平面γ,则α∩β=AB,α∩γ=CD,BC⊥AB,BC⊥CD,但BC⊂平面ABCD,故D 错误.故选:C.8.已知θ∈(0,),则y═的最小值为()A.6 B.10 C.12 D.16【考点】HW:三角函数的最值.【分析】y==()(cos2θ+sin2θ),由此利用基本不等式能求出y=的最小值.【解答】解:∵θ∈(0,),∴sin2θ,cos2θ∈(0,1),∴y==()(cos2θ+sin2θ)=1+9+≥10+2=16.当且仅当=时,取等号,∴y=的最小值为16.故选:D.9.已知变量x,y满足,则的取值范围为()A.[0,]B.[0,+∞)C.(﹣∞,]D.[﹣,0]【考点】7C:简单线性规划.【分析】画出约束条件的可行域,利用所求表达式的几何意义求解即可.【解答】解:不等式表示的平面区域为如图所示△ABC,设Q(3,0)平面区域内动点P(x,y),则=kPQ,当P为点A时斜率最大,A(0,0),C(0,2).当P为点C时斜率最小,所以∈[﹣,0].故选:D.10.已知直线l:y=kx与椭圆C:交于A、B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,再由椭圆的性质可得c>b,结合离心率公式和a,b,c的关系,即可得到所求范围.【解答】解:由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,可得||OA|=|OF|=c,由|OA|>b,即c>b,可得c2>b2=a2﹣c2,即有c2>a2,可得<e<1.故选:C.11.对于实数a、b,定义运算“⊗”:a⊗b=,设f(x)=(2x ﹣3)⊗(x﹣3),且关于x的方程f(x)=k(k∈R)恰有三个互不相同的实根x1、x2、x3,则x1•x2•x3取值范围为()A.(0,3)B.(﹣1,0)C.(﹣∞,0)D.(﹣3,0)【考点】3O:函数的图象;53:函数的零点与方程根的关系.【分析】根据定义求出f(x)解析式,画出图象,判断即可.【解答】解:∵a⊗b=,∴f(x)=(2x﹣3)⊗(x﹣3)=,其图象如下图所示:由图可得:x1=﹣k,x2•x3=k,故x1•x2•x3=﹣k2,k∈(0,3),∴x1•x2•x3∈(﹣3,0),故选:D.12.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)≤f(x),对任意的正数a、b,若a<b,则必有()A.af(a)≤bf(b)B.af(a)≥bf(b)C.af(b)≤bf(a)D.af(b)≥bf(a)【考点】6A:函数的单调性与导数的关系.【分析】由已知条件判断出f′(x)≤0,据导函数的符号与函数单调性的关系判断出f(x)的单调性,利用单调性判断出f(a)与f(b)的关系,利用不等式的性质得到结论.【解答】解:∵f(x)是定义在(0,+∞)上的非负可导函数且满足xf′(x)≤f(x),令F(x)=,则F′(x)=,∵xf′(x)﹣f(x)≤0∴F′(x)≤0,∴F(x)=在(0,+∞)上单调递减或常函数∵对任意的正数a、b,a<b∴≥,∵任意的正数a、b,a<b,∴af(b)≤bf(a)故选:C.二.填空题:本大题共4小题;每小题5分,共20分.13.圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离等于.【考点】J9:直线与圆的位置关系.【分析】求出圆的圆心坐标,利用点到直线的距离公式求解即可.【解答】解:圆(x+2)2+(y﹣2)2=2的圆心(﹣2,2),圆(x+2)2+(y﹣2)2=2的圆心到直线x﹣y+3=0的距离d==.故答案为:.14.已知函数y=sin(ωx+φ)(ω>0,0<φ≤)的部分图象如示,则φ的值为.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先利用函数图象,计算函数的周期,再利用周期计算公式计算ω的值,最后将点(,0)代入,结合φ的范围,求φ值即可【解答】解:由图可知T=2()=π,∴ω==2∴y=sin(2x+φ)代入(,0),得sin(+φ)=0∴+φ=π+2kπ,k∈Z∵0<φ≤∴φ=故答案为15.定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈=(﹣2,0)时,f(x)=2x+,则f=f(1)=﹣f(1),代入函数的表达式求出函数值即可.【解答】解:∵定义在R上的函数f(x)满足f(﹣x)=﹣f(x),∴函数f(x)为奇函数,又∵f(x﹣2)=f(x+2),∴函数f(x)为周期为4是周期函数,∴f=f(1)=﹣f(﹣1)=﹣2﹣1﹣=﹣1,故答案为:﹣1.16.已知△ABC的三边长成公差为2的等差数列,且最大角的正弦值为,则这个三角形最小值的正弦值是.【考点】8F:等差数列的性质.【分析】设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,求出a=c+4和b=c+2,由边角关系和条件求出sinA,求出A=60°或120°,再判断A的值,利用余弦定理能求出三边长,由余弦定理和平方关系求出这个三角形最小值的正弦值.【解答】解:不妨设三角形的三边分别为a、b、c,且a>b>c>0,设公差为d=2,三个角分别为、A、B、C,则a﹣b=b﹣c=2,可得b=c+2,a=c+4,∴A>B>C,∵最大角的正弦值为,∴sinA=,由A∈(0°,180°)得,A=60°或120°,当A=60°时,∵A>B>C,∴A+B+C<180°,不成立;即A=120°,则cosA===,化简得,解得c=3,∴b=c+2=5,a=c+4=7,∴cosC===,又C∈(0°,180°),则sinC==,∴这个三角形最小值的正弦值是,故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.【考点】8E:数列的求和;84:等差数列的通项公式;85:等差数列的前n项和.【分析】(Ⅰ)设等差数列{a n}的公差为d,由于a3=7,a5+a7=26,可得,解得a1,d,利用等差数列的通项公式及其前n项和公式即可得出.(Ⅱ)由(I)可得b n==,利用“裂项求和”即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)===,∴T n===.18.已知函数f(x)=﹣2sin2x+2sinxcosx+1(Ⅰ)求f(x)的最小正周期及对称中心(Ⅱ)若x∈[﹣,],求f(x)的最大值和最小值.【考点】GL:三角函数中的恒等变换应用;H2:正弦函数的图象.【分析】(1)利用二倍角以及辅助角公式基本公式将函数化为y=Asin (ωx+φ)的形式,即可求周期和对称中心.(2)x∈[﹣,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值.【解答】解:(1)函数f(x)=﹣2sin2x+2sinxcosx+1,化简可得:f(x)=cos2x﹣1+sin2x+1=sin2x+cos2x=2sin(2x+).∴f(x)的最小正周期T=,由2x+=kπ(k∈Z)可得对称中心的横坐标为x=kπ∴对称中心(kπ,0),(k∈Z).(2)当x∈[﹣,]时,2x+∈[,]当2x+=时,函数f(x)取得最小值为.当2x+=时,函数f(x)取得最大值为2×1=2.19.某流感病研究中心对温差与甲型H1N1病毒感染数之间的相关关系进行研究,他们每天将实验室放入数量相同的甲型H1N1病毒和100只白鼠,然后分别记录了4月1日至4月5日每天昼夜温差与实验室里100只白鼠的感染数,得到如下资料:日期4月1日4月2日4月3日4月4日4月5日温差101311127感染数2332242917(1)求这5天的平均感染数;(2)从4月1日至4月5日中任取2天,记感染数分别为x,y用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求|x﹣y|≤3或|x﹣y|≥9的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由已知利用平均数公式能求出这5天的平均感染数.(2)利用列举法求出基本事件总数n=10,设满足|x﹣y|≥9的事件为A,设满足|x﹣y|≤3的事件为B,利用列举法能求出|x﹣y|≤3或|x﹣y|≥9的概率.【解答】解:(1)由题意这5天的平均感染数为:.(2)(x,y)的取值情况有:(23,32),(23,24),(23,29),(23,17),(32,24),(32,29),(32,17),(24,29),(24,17),(29,17),基本事件总数n=10,设满足|x﹣y|≥9的事件为A,则事件A包含的基本事件为:(23,32),(32,17),(29,17),共有m=3个,∴P(A)=,设满足|x﹣y|≤3的事件为B,由事件B包含的基本事件为(23,24),(32,29),共有m′=2个,∴P(B)=,∴|x﹣y|≤3或|x﹣y|≥9的概率P=P(A)+P(B)=.20.如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(I)求证:BC⊥平面APC;(Ⅱ)若BC=3,AB=10,求点B到平面DCM的距离.【考点】LW:直线与平面垂直的判定;MK:点、线、面间的距离计算.【分析】(I)根据正三角形三线合一,可得MD⊥PB,利用三角形中位线定理及空间直线夹角的定义可得AP⊥PB,由线面垂直的判定定理可得AP⊥平面PBC,即AP⊥BC,再由AC⊥BC结合线面垂直的判定定理可得BC⊥平面APC;(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.分别求出MD长,及△BCD和△MDC面积,利用等积法可得答案.【解答】证明:(Ⅰ)如图,∵△PMB为正三角形,且D为PB的中点,∴MD⊥PB.又∵M为AB的中点,D为PB的中点,∴MD∥AP,∴AP⊥PB.又已知AP⊥PC,PB∩PC=P,PB,PC⊂平面PBC∴AP⊥平面PBC,∴AP⊥BC,又∵AC⊥BC,AC∩AP=A,∴BC⊥平面APC,…解:(Ⅱ)记点B到平面MDC的距离为h,则有V M﹣BCD=V B﹣MDC.∵AB=10,∴MB=PB=5,又BC=3,BC⊥PC,∴PC=4,∴.又,∴.在△PBC中,,又∵MD⊥DC,∴,∴∴即点B到平面DCM的距离为.…21.已知椭圆C: +=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.【考点】K4:椭圆的简单性质.【分析】(1)求得圆Q的圆心,代入椭圆方程,运用两点的距离公式,解方程可得a,b的值,进而得到椭圆方程;(2)讨论两直线的斜率不存在和为0,求得三角形MAB的面积为4;设直线y=kx+,代入圆Q的方程,运用韦达定理和中点坐标公式可得M的坐标,求得MP的长,再由直线AB的方程为y=﹣x+,代入椭圆方程,运用韦达定理和弦长公式,由三角形的面积公式,化简整理,由换元法,结合函数的单调性,可得面积的范围.【解答】解:(1)圆Q:(x﹣2)2+(y﹣)2=2的圆心为(2,),代入椭圆方程可得+=1,由点P(0,)到椭圆C的右焦点的距离为,即有=,解得c=2,即a2﹣b2=4,解得a=2,b=2,即有椭圆的方程为+=1;(2)当直线l2:y=,代入圆的方程可得x=2±,可得M的坐标为(2,),又|AB|=4,可得△MAB的面积为×2×4=4;设直线y=kx+,代入圆Q的方程可得,(1+k2)x2﹣4x+2=0,可得中点M(,),|MP|==,设直线AB的方程为y=﹣x+,代入椭圆方程,可得:(2+k2)x2﹣4kx﹣4k2=0,设(x1,y1),B(x2,y2),可得x1+x2=,x1x2=,则|AB|=•=•,可得△MAB的面积为S=•••=4,设t=4+k2(5>t>4),可得==<=1,可得S<4,且S>4=综上可得,△MAB的面积的取值范围是(,4].22.已知函数f(x)=,(e=2.71828…是自然对数的底数).(1)求f(x)的单调区间;(2)设g(x)=xf'(x),其中f'(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e﹣2.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(1)求导数,利用导数的正负,求f(x)的单调区间;(2)g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,确定当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.当x∈(0,+∞)时,0<<1,即可证明结论.【解答】解:(1)求导数得f′(x)=(1﹣x﹣xlnx),x∈(0,+∞),令h(x)=1﹣x﹣xlnx,x∈(0,+∞),当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.又e x>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).证明:(2)因为g(x)=xf′(x).所以g(x)=(1﹣x﹣xlnx),x∈(0,+∞).由h(x)=1﹣x﹣xlnx,求导得h′(x)=﹣lnx﹣2=﹣(lnx﹣lne﹣2),所以当x∈(0,e﹣2)时,h′(x)>0,函数h(x)单调递增;当x∈(e﹣2,+∞)时,h′(x)<0,函数h(x)单调递减.所以当x∈(0,+∞)时,h(x)≤h(e﹣2)=1+e﹣2.又当x∈(0,+∞)时,0<<1,所以当x∈(0,+∞)时,h(x)<1+e﹣2,即g(x)<1+e﹣2.综上所述,对任意x>0,g(x)<1+e﹣2。

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

2020年普通高等学校招生全国统一模拟考试文科数学【含答案】

2020年普通高等学校招生全国统一模拟考试文科数学【含答案】

上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有-项
是符合题目要求的-

1.已 知全集 U = {1,2,3,4,5,6,7,8,9},集合 A = {2,4,6,7},B = {3,5,6,7,町, 则
ω科

C CuA)门C CuB) =
A. {1,9}
B. {2,3,4,5,6,7,8}
C. {1,2,3,4,5,8,9}
D. {1,6,7,9}
树 黠
2.设 z = 主 i十τI十l(i是虚数单位),则[z[ =
A. 2
B.y'3
C.,/5
3.己知等差数列(αη}的前n项和 为乱,α3 = 7,53 = 9,则a10 =
A.25
B. 35
C. 40
4.已知函数f(x)的图象如图所示,则 f(x) 可以为
D.2y'3 D.45
丁三工 AJC工)=」子「 B.f(x)=
C.f(x)=号 巳
D.f(工) =xelxl
5.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的
观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾评分情况
2020年普通高等学校招生全国统一模拟考试
文科数学
2020.3
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
பைடு நூலகம்
如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡

2020最新高考模拟数学考试(文科)含答案

2020最新高考模拟数学考试(文科)含答案

65C . -33D . - 63,第Ⅰ卷(选择题,共 60 分)一、选择题:本大题共 l2 小题,每小题 5 分.共 60 分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设集合 A = {x || x - 2 |≤ 2, x ∈ R }, B = { y || y = - x 2,-1 ≤ x ≤ 2}, 则等于()A .RB . {x | x ∈ R 且x ≠ 0}C .{0}D . ∅R(A∩B )2 . 已 知 cos(α - β ) =3 ,sin β = - 5 , 且α ∈ (0, π ), β ∈ (- π ,0), 则 s in α =51322()A . 3365B . 63653.对于平面α 和共面的直线m ,n 下列命题中真命题是()A .若 m ⊥ α , m ⊥ n , 则n // αC .若 m ⊂ α,n // α,则m // nB .若 m // α,n // α,则m // nD .若 m ,n 与α所成的角相等,则m // n4.数列{a }中,若 a = 1 , a =n12n1 1 - an -1(n ≥ 2, n ∈ N ) 则 a2007的值为A -1B1 C 1D225.如果 f '(x) 是二次函数, 且 f '(x) 的图象开口向上,顶点坐标为(1,-那么曲线 y=f(x)上任一点的切线的倾斜角α的取值范围是()3),A. (0, 2π 3 ]B. [0, π 2π π 2π )∪[ , π)C. [0, ]∪[ 2 3 2 3, π) D.π 2π[ , ] 2 3a 2b 2| A .(1,2 + 3 ⎤B (1, 3 ⎤⎡2+ 3, +∞)D ⎡2 - 3,2 + 3 ⎤11.如图, 直线 MN 与双曲线 C: x 2线相交于 P 点, F 为右焦点,若|FM|=2|FN|, 又NP= λPM (λ∈R), 则6.两直线 3x +y -2=0 和 y +a=0 的夹角为()A. 30°B. 60°C. 120°D. 150°7.已知函数 y = f ( x )( x ∈ R)满足f ( x + 2) = f ( x ) 且当 x ∈ [-1,1]时f ( x ) = x 2 ,则y = f ( x )与y = log x 的图像的交点个数为()7A .3B .4C .5D .68.若关于 x 的方程 4cos x - cos 2 x + m - 3 = 0 恒有实数解,则实数 m 的取值范围是A. [ -1,+∞)B. [-1,8]C [0,8]D [0,5]9.如图,在杨辉三角中,斜线的上方从 1 开始按箭 头所示的数组成一个锯齿形数列 1,3,3,4,6,5,10,……,记此数列为{a } ,则 a 等于n21A .55B .65C .78D .6610.已知点 F 、F 为双曲线 x 2 - y 2 = 1 (a > 0, b > 0) 的左、右焦点, P 为右1 2支上一点,点 P 到右准线的距离为 d ,若 | PF | 、PF| 、d 依次成等差数列,12则此双曲线离心率的取值范围是()⎦⎦C⎣ ⎣ ⎦a 2 - y 2b 2 = 1的左右两支分别交于 M 、N 两点, 与双曲线 C 的右准→ →实数λ的取值为 ( )11A. B.1 C.2 D.2312.△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为()1221A.1B.C.D.1或333第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.x2113.二项式(-)9展开式中的系数为________2x x14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为_________15.过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B 分别作抛物线C的切线交于点M,则点M的轨迹方程为_________ 16.定义在R上的函数f(x)满足f(x+5)+f(x)=0,且函数f(x+5)为奇函24数,给出下列结论:①函数f(x)的最小正周期是5;②函数f(x)的2图像关于点(5,0)对称;③函数f(x)的图像关于直线x=5对称;④42函数f(x)的最大值为f(5).2其中正确结论的序号是__________(写出所有你认为正确的结论的序号)三、解答题:本大题共6小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx 年高考文科数学模拟考试题卷第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知集合P={ 0, m},Q={x│Z x x x ∈<-,0522},若P∩Q≠Φ,则m 等于( )A.1B.2C.1或25D. 1或2 2.将函数)32sin(3π+=x y 的图象按向量)1,6(--=πa平移后所得图象的解析式是( )A .1)322sin(3-+=πx y B .1)322sin(3++=πx y C .12sin 3+=x y D .1)22sin(3-+=πx y3.数列{a n }前n 项和S n = 3n – t ,则t = 1是数列{a n }为等比数列的( ) A .充分不必要 B .必要不充分C .充要条件D .既不充分又不必要4. 函数1)y x =≤-的反函数是( )A .0)y x =≥B .0)y x =≤C .y x =≥D .y x =≤ 5.某球与一个120°的二面角的两个面相切于A 、B ,且A 、B 间的球面距离为π,则此球体的表面积为( )A .π12B .π24C .π36D .π144那么分数在[100,110]中和分数不满110分的频率和累积频率分别是( ).A .0.18,0.47B .0.47,0.18C .0.18,1D .0.38,17.设f(x)= x 2+ax+b ,且1≤f(-1)≤2,2≤f(1)≤4,则点(a ,b)在aOb 平面上的区域面积是 ( )A .12B .1C .2D .928.已知P 是以F 1、F 2为焦点的椭圆)0(12222>>=+b a by a x 上一点,若21PF PF ⋅=0,21tan F PF ∠=2,则椭圆的离心率为( )A . 21B . 32C . 31D . 359.设(43)=,a ,a 在b b 在x 轴上的投影为2,且||14≤b ,则b 为( ) A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),10. 过抛物线y 2 = 2ρx (ρ>0 )上一定点M ( x 0,y 0 ) ( y 0≠0 ),作两条直线分别交抛物线于A( x 1 , y 1 ) , B ( x 2 , y 2 ),当MA 与MB 的斜率存在且倾斜角互补时,则021y y y += ( )A .4B .– 4C .2D .–2第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)11.设常数421,0⎪⎪⎭⎫ ⎝⎛+>x ax a 展开式中3x 的系数为,23则a = ______ 12.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为______ 13.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其它盒子中球的颜色齐全的不同放法共有种.(用数字作答)14.某篮球运动员在罚球线投中球的概率为32,在某次比赛中罚3球恰好命中2球的概率为__________________。

15.给出下列四个命题:①过平面外一点,作与该平面成θ角的直线一定有无穷多条;②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;③对确定的两条异面直线,过空间任意一点有且只有唯一的一个平面与这两条异面直线都平行;④对两条异面的直线,都存在无穷多个平面与这两条直线所成的角相等; 其中正确的命题序号为 (请把所有正确命题的序号都填上).三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若(cos ,sin )22A Am =-u r ,(cos ,sin )22A An =r ,且12m n ⋅=u r r(1)求角A ;(2)若a =S =b c +的值.17.(本小题满分12分)已知数列 {2 n •a n } 的前 n 项和 S n = 9-6n . (I) 求数列 {a n } 的通项公式; (II) 设 b n = n ·(2-log 2| a n |3),求数列 { 1b n } 的前 n 项和T n .18.(本小题满分12分) 已知斜三棱柱ABC —A 1B 1C 1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点1B 在底面上的射影D 落在BC 上.(Ⅰ)求证:AC ⊥平面BB 1C 1C ;(Ⅱ)当α为何值时,AB 1⊥BC 1,且使D 恰为BC 中点?(Ⅲ)若α = arccos 13,且AC=BC=AA 1时,求二面角C 1—AB —C 的大小.19.(本小题满分12分)随着我国加入WTO ,某企业决定从甲、乙两种产品中选择一种投资生产,打入国际市场,已知投资生产这两种产品的有关数据如下表:(单位:万美元)C 1AB C DA 1B 1其中年固定成本与年生产的件数无关,a 为常数,且 3≤a ≤8.另外,年销售 x 件乙产品时需上交 0.05x 2万美元的特别关税.(I) 写出该厂分别投资生产甲、乙两产品的年利润 y 1、y 2 与生产相应产品的件数 x (x ∈N)之间的函数关系;(II) 分别求出投资生产这两种产品的最大年利润; (III) 如何决定投资可获最大年利润.20.(本小题满分13分)设32()f x ax bx cx =++,其导函数'()y f x =的图像经过点2(2,0),(,0)3-,且()f x 在2x =-时取得最小值-8(1)求()f x 的解析式;(2)若对[3,3]x ∈-都有2()14f x m m ≥-恒成立,求实数m 的取值范围.21.(本小题共14分)已知A B 、是双曲线22221(0,0)x y a b a b-=>>上两点,O 为原点,直线OA OB 、的斜率之积22OA OBb k k a⋅= (Ⅰ)设OP OA OB =+u u u r u u u r u u u r,证明当A B 、运动时,点P 恒在另一双曲线上; (Ⅱ)设OQ OA OB λμ=+u u u r u u u r u u u r,是否存在不同时为零的实数λμ、,使得点Q 在题设双曲线的渐近线上,证明你的结论.xx 年高考文科数学模拟考试题卷参考答案一、选择题:(本大题共10个小题;每小题5分,共50分。

)二、填空题:(本大题共5小题,每小题5分,共25分。

)11、21; 12、7; 13、720; 14 、94; 15、②④;三、解答题:(本大题共6小题,共75分。

) 16、(本小题满分12分)解:(1)∵(cos ,sin )22A A m =-u r ,(cos ,sin )22A An =r ,且12m n ⋅=u r r∴221cos sin 222A A -+= …………………………………………2分即1cos 2A -=又(0,)A π∈,∴23A π= ……………………………5分⑵112sin sin 223ABC S bc A bc π∆=⋅=⋅=,∴bc=4……………………………7分由余弦定理得222o222cos120a b c bc b c bc =+-=++……………………………10分∴216()b c =+故4b c +=. ………………………………12分17、(本小题满分12分)解:(I) n = 1 时,2·a 1 = S 1 = 3,∴a 1 = 32 ; …………2分当 n ≥2 时,2 n ·a n = S n -S n -1 = -6,∴ a n =-62n . 又 32 ≠ -62 …………4分∴ 通项公式a n= ⎩⎨⎧ 32,(n = 1) -62n ,(n ≥2) …………6分(II)当 n = 1 时,b 1 = 2-log 2 12 = 3,∴ T 1 = 1b 1 = 13; …………8分n ≥2时, b n = n ·(2-log 263·2 n) = n ·(n + 1), ∴ 1b n = 1n (n + 1) …………10分 ∴ T n =1b 1 + 1b 2 + … + 1b n = 13 + 12×3 + 13×4+ … + 1n (n + 1) = 56 -1n + 1∴ T n = 56 -1n + 1 …………12分18、(本小题满分12分)解:(Ⅰ)∵ B 1D ⊥平面ABC , AC ⊂平面ABC ,∴ B 1D ⊥AC, 又AC ⊥BC, BC ∩B 1D=D .∴ AC ⊥平面BB 1C 1C . …………………… 3分(Ⅱ) ∵ AC ⊥平面BB 1C 1C ,要使AB 1⊥BC 1 ,由三垂线定理可知, 只须B 1C ⊥BC 1, ………………………… 5 分 ∴ 平行四边形BB 1C 1C 为菱形, 此时,BC=BB 1.又∵ B 1D ⊥BC, 要使D 为BC 中点,只须B 1C= B 1B ,即△BB 1C 为正三角形, ∴ ∠B 1BC= 60°. ………………………… 7分∵ B 1D ⊥平面ABC ,且D 落在BC 上, ∴ ∠B 1BC 即为侧棱与底面所成的角.故当α=60°时,AB 1⊥BC 1,且使D 为BC 中点…………………… 8分(Ⅲ)过C 1作C 1E ⊥BC 于E ,则C 1E ⊥平面ABC .过E 作EF ⊥AB 于F ,C 1F ,由三垂线定理,得C 1F ⊥AB .∴∠C 1FE 是所求二面角C 1—AB —C 的平面角.………………… 10分 设AC=BC=AA 1=a ,在Rt △CC 1E 中,由∠C 1BE=α=1arccos3,C 1E=322a .C 1ABCDA 1B 1在Rt △BEF 中,∠EBF=45°,EF=22BE=322a . ∴∠C 1FE=45°,故所求的二面角C 1—AB —C 为45°.………… 12分 解法二:(1)同解法一 ……………… 3分 (Ⅱ)要使AB 1⊥BC 1,D 是BC 的中点,即11BC AB ⋅=0,|BB 1→ |=|B 1C →|, ∴11()0AC CB BC +=u u u r u u u r u u u r, ||||11B BC ⋅=0,∴||||1BB =. ∴1BB BC B C ==u u u r u u u r u u u r,故△BB 1C 为正三角形,∠B 1BC=60°;∵ B 1D ⊥平面ABC ,且D 落在BC 上, …………………… 7分 ∴ ∠B 1BC 即为侧棱与底面所成的角.故当α=60°时,AB 1⊥BC 1,且D 为BC 中点. …………………8分(Ⅲ)以C 为原点,CA 为x 轴,CB 为y 轴,经过C 点且垂直于平面ABC 的直线为z 轴建立空间直角坐标系,则A (a ,0,0),B (0,a ,0),C (0,-34a ,322a ),平面ABC 的法向量n 1=(0,0,1),设平面ABC 1的法向量n 2=(x ,y ,z ). 由⋅n 2=0,及⋅1BC n 2=0,得⎩⎪⎨⎪⎧-x +y=0,-43y +2 2 3 z=0 . ∴n 2=(22,22,1).………………10分cos<n 1, n 2>=112 +12 +1 = 22 ,故n 1 , n 2所成的角为45°,即所求的二面角为45°.……………………12分 19、(本小题满分12分)解:(I)由年销售量为 x 件,按利润的计算公式,有生产甲、乙两产品的年利润 y 1, y 2分别为:y 1 = 10×x -(20 + ax ) = (10-a )x -20, 0≤x ≤200且 x ∈N …………1分 y 2 = 18×x -(40 + 8x ) - 0.05x 2 = -0.05x 2 + 10x -40,…………2分 ∴ y 2 = -0.05 (x -100) 2 + 460,0≤x ≤120,x ∈N …………3分(II) ∵ 3≤a ≤8, ∴ 10-a > 0, ∴ y 1 = (10-a )x -20为增函数, 又 0≤x ≤200,x ∈N∴ x = 200时,生产甲产品的最大年利润为 (10-a )×200-20 = xx -200a (万美元)。

相关文档
最新文档