基于温度传感器的单片机温控电路设计

基于温度传感器的单片机温控电路设计
基于温度传感器的单片机温控电路设计

德州学院2011级物理与电子信息学院电子信息科学与技术

基于温度传感器的单片机温控电路设计

摘要随着微处理器和大规模集成电路的发展,及其在测试控制技术方面的广泛应用,仪器设备的智能化已成为自动化技术发展方向,数据采集与温度检测的自动化将取代传统的方法。

本设计采用STC89C52型号的单片机,数字温度传感器采用美国DALASS公司的1–Wire器件DS18B20,即单总线器件DS18B20,与单片机组成一个测温系统,当系统上电时,温度传感器就会读出当前环境的温度,并在LED数码显示管上显示出当前的温度,该测温系统的测温范围为-40℃~110℃,按此要求设计硬件和软件以实现这一功能。

关键词:单片机温度传感器DS18B20 温度

一、实验目的

充分利用网络资料,搜集资料,设计制作由51单片机为控制核心的实用系统硬件电路,完成环境温度采集、显示、设置、报警、执行等功能。

二、实验内容

本文设计是以单片机为核心,实现温度实时测控和显示。确定电路中的一些主要参数,了解温度控制电路的结构,工作原理,对该控制电路性能进行测试。主要内容:

硬件部分设计

以STC89C52单片机作为处理器来处理数据,DS18B20温度传感器进行温度采集,八段数码管作为显示模块,利用键盘完成对温度测控。

三、设计方案

方案一:本设计是用来测控温度的,可以利用热敏电阻的感温效应,将被测温度变化的模拟信号,电压或电流的采集过来,首先进行放大和滤波后,再通过A/D转换,将得到的数字量送往单片机中去处理,用数码管将被测得的温度值显示出来。但是这种电路的设计需要用到放大滤波电路,A/D转换电路,感温电路等一系列模拟电路,设计起来较麻烦。

方案二:本设计采用单片机做处理器,可以考虑使用温度传感器,采用由达拉斯公司研制的DS18B20型温度传感器,此传感器可以将被测的温度直接读取出来,并进行转换,这样就很容易满足设计要求。

方案比较:从上面的两种方案,可以很容易看出来,虽然方案(2)软件部分设计复杂点,但是电路比较简单且精度高,方案(1)所需硬件部分比较麻烦,

德州学院2011级物理与电子信息学院电子信息科学与技术

且精度不是太高,故采用方案(2)

图3-1 总体方框图

本方案主处理器采用STC89C52单片机,温度采集部分采用DS18B20型温度传感器,用2位LED显示数码管作为显示部分,用来将温度显示出来。系统硬件电路部分由四大模块组成:单片机最小系统模块、温度采集模块、温度显示模块和设置模块。

四、系统硬件设计

(一)最小系统模块

图4-1单片机最小系统

1、STC89C52单片机结构介绍

STC89C52单片机是一种8位微控制器,特点是低功耗、有高性能CMOS ,同时内置8K 字节可编程Flash 存储器。芯片内拥有十分灵巧的8位微处理器和在系统可编程Flash ,使得STC89C52单片机提供为许多较灵活、十分有效的解决方案,主要在工农业控制系统中。STC89C52的标准功能如下:8k 字节Flash ,256字节RAM ,32位I/O 接口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量的中断结构,全双工串行口。另外,STC89C52可降至0Hz 静态逻辑操作,支持2种工作软件,用来选择节电模式。当工作在空闲模式下,微处理器就会停止工作,允许随机存储器、定时器/计数器、串口、中断继续工作。在掉电的时候,随机存储器中的内容会被保存起来,振荡器被冻结,单片机停止一切内外部工作,直到下一个中断或硬件复位为止。最高运作频率35Mhz ,6T/12T 可选。下面为单片机引脚图 图3-2

D0D1D2D3D4D5D6D7EA ALE PSEN P1.01P1.12P1.23P1.34P1.45P1.56P1.67P1.78RST

9P3.0(RXD)10P3.1(TXD)11P3.2(INT0)12P3.3(INT1)13P3.4(T0)14P3.5(T1)15P3.6(WR)16P3.7(RD)17XTAL218XTAL119GND 20

P2.0

21

P2.122P2.223P2.324P2.425P2.526P2.627P2.728PSEN 29ALE 30EA 31P0.732P0.633P0.534P0.435P0.336P0.237P0.138P0.039Vcc 40U1

STC89C52

P10P11P12P13P14P15P16P17P20

P21P22P23P24P25P26P27P30P31P32P33P34P35P36P37X2X1

RST Vcc

图4-5 温度传感器

2、控制模块

键盘实际是就是很多案件的一种组合,按键的按下与否形成一个高低电平,主控芯片CPU通过高低电平来识别所需信号,进而使程序进行下一步的操作。键盘操作的软硬件的设计有以下几个方面的问题:对于此设计来说我们要准确的显示我们所要对应的信息,每按一次按键要显示所要显示的信息。这按键是主要用来控制温度而设计的。这样比键盘操作方便,也比较实惠。按键电路采用中断模式。当有按键按下时,系统产生中断,CPU响应中断后,开始计数,即查询键号,通过软件来实现该键号所对应键的功能键盘的大体设置为:K1为温度控制的上下限,K2,K3用来控制温度的加减。如果K1没按下,则温度在上限控制状态,如果K1按下,则温度在下限控制状态。其电路图如下图3-6所示。

图4-6按键电路

3、报警模块

本设计中的报警装置电路用到了发光二级管、1k欧姆的电阻。将发光二级管的一端单片机相连,另一端接电阻,电阻的另一端接地。其电路图如图3-7所示。

图4-7 报警装置电路图

(三)显示模块

此模块采用两位的数码管显示数据,LED显示数码管一般正向压降的都是1.5~2V,额定电流为10mA,通过最大的电流为20mA。根据各种不同管接线的方式,可将数码管分成共阴极型和共阳极型。根据要求,本设计采用2位共阳LED数码管,从P0口输出段码,列扫描用P0口来实现。

图4-8 数码管显示

(四)电源模块

图4-9电源部分(五)系统总电路图

图4-10 系统总电路图五、系统硬件制作

(一)硬件电路制作方法

本设计采用pcb制图,根据画好的pcb制作电路板。(二)硬件电路制作过程

图5-1制作流程

(1)曝光

将印好的电路图放在曝光箱内,关好箱子,120秒后取出。

(2)显影

图5-3 显影

(3) 蚀刻

图5-4 腐蚀和腐蚀后电路板

(4) 钻孔

图5-5 钻孔过程

(5) 清洗

将电路板清洗干净,并将感光蓝油清洗掉

图5-6 清洗过程

(6) 半成品

(7)小组成员及作品展

图5-8 小组成员及作品展

六、设计总结

通过这一周的实训,加深了对单片机最小系统模块、温度控制系统、报警、显示模块等这样的模块和控制系统的结构的理解以及主要了解了利用pcb制作电路板的过程。在这个实训过程中,锻炼了自己的动手制作能力和团体合作能力。虽然只有短短的一周时间,但是它让我真正地理解了单片机控制系统和温度控制系统,这是一次实践和理论的接合。这次的实训,虽然仅仅制作了单片机的硬件设施,却也让我们了解到了我们即将要学到的专业知识的重要性,生活中处处可以见到单片机控制的物体。由此可见,我们只有在学习专业知识之前,就要为之打下一定的坚实的基础,这样学起来才会如鱼得水。在实验中,不仅锻炼了我的魄力,更使我产生了兼顾整体的理念。这是以后工作中所必须的心态,很有幸在这次实训中得到了提前的锻炼

参考文献

[1] 余孟尝主编.数字电子技术基础简明教程(第二版)[M].北京:高等教育出版社,

2000,8:45-56.

[2] 张国栋.TL494的功能和检测方法[J].中国教育技术装备,2003(11):32-33.

[3] 童诗白主编.模拟电子技术基础(第四版)[M].北京:高等教育出版社,,2006,9:

28-36.

[4] 胡汉才主编. 单片机原理及其接口技术(第二版)[M].北京:清华大学出版社,2002,

5:79-110.

[5] 戴梅萼主编. 微型计算机技术及应用(第四版)[M].北京:清华大学出版社,2008,

3:309-331.

基于单片机的模糊温度控制器的设计

基于单片机的模糊温度控制器的设计 1 引言 本文研究的被控对象为某生产过程中用到的恒温箱,按工艺要求需保持箱温100℃恒定不变。我们知道温度控制对象大多具有非线性、时变性、大滞后等特性, 采用常规的PID 控制很难做到参数间的优化组合, 以至使控制响应不能得到良好的动态效果。而模糊控制通过把专家的经验或手动操作人员长期积累的经验总结成的若干条规则,采用简便、快捷、灵活的手段来完成那些用经典和现代控制理论难以完成的自动化和智能化的目标, 但它也有一些需要进一步改进和提高的地方。模糊控制器本身消除系统稳态误差的性能比较差, 难以达到较高的控制精度, 尤其是在离散有限论域设计时更为明显, 并且对于那些时变的、非线性的复杂系统采用模糊控制时, 为了获得良好的控制效果, 必须要求模糊控制器具有较完善的控制规则。这些控制规则是人们对受控过程认识的模糊信息的归纳和操作经验的总结。然而, 由于被控过程的非线性、高阶次、时变性以及随机干扰等因素的影响, 造成模糊控制规则或者粗糙或者不够完善, 都会不同程度的影响控制效果。为了弥补其不足, 本文提出用自适应模糊控制技术,达到模糊控制规则在控制过程中自动调整和完善, 从而使系统的性能不断完善, 以达到预期的效果。 2 自调整模糊控制器的结构及仿真 (1) 控制对象 一般温度可近似用一阶惯性纯滞后环节来表示, 其传递函数为: 式中: K———对象的静态增益; Tc———对象的时间常数; τ———对象的纯滞后时间常数。 本文针对某干燥箱的温度控制, 用Cohn-Coon 公式计算各参数得: K=0.181; Tc=60; τ=20。 ( 2) 自调整模糊控制器的结构 自调整模糊控制器的结构如图1 所示。

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

温度传感器实验

实验二(2)温度传感器实验 实验时间 2017.01.12 实验编号 无 同组同学 邓奡 一、实验目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、实验原理 1、热电偶测温原理 由两根不同质的导体熔接而成的,其形成的闭合回路叫做热电回路,当 两端处于不同温度时回路产生一定的电流,这表明电路中有电势产生,此电势即为热电势。 试验中使用两种热电偶:镍铬—镍硅(K 分度)、镍铬—铜镍(E 分度)。图2.3.5所示为热电偶的工作原理,图中:T 为热端,0T 为冷端,热电势为)()(0T E T E E AB AB t -=。 热电偶冷端温度不为0℃时(下式中的1T ),需对所测热电势进行修正,修正公式为:),(),(),(0110T T E T T E T T E +=,即: 实际电动势+测量所得电动势+温度修正电势 对热电偶进行标定时,以K 分度热电偶作为标准热电偶来校准E 分度热 电偶。 2、铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在C 650T C 0?≤≤?时,

)1(20BT AT R R T ++=, 式中:T R ——铂热电阻在T ℃时的电阻值 0R ——铂热电阻在0℃时的电阻值 A ——系数(=C ??/103.96847-31) B ——系数(= C ??/105.847--71) 3、PN 结温敏二极管 半导体PN 结具有良好的温度线性,PN 结特性表达公式为: γln be e kT U =?, 式中,γ为与PN 结结构相关的常数; k 为波尔兹曼常数,K J /1038.1k 23-?=; e 为电子电荷量,C 1910602.1e -?=; T 为被测物体的热力学温度(K )。 当一个PN 结制成后,当其正向电流保持不变时,PN 结正向压降随温度 的变化近似于线性,大约以2mV/℃的斜率随温度下降,利用PN 结的这一特性可以进行温度的测量。 4、热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的 热敏元件,灵敏度高,可以测量小于0.01℃的温差变化。 热敏电阻分为正温度系数热敏电阻PTC 、负温度系数热敏电阻NTC 和在 某一特定温度下电阻值发生突然变化的临界温度电阻器CTR 。 实验中使用NTC ,热敏电阻的阻值与温度的关系近似符合指数规律,为:)11(00e T T B t R R -=。式中: T 为被测温度(K),16.273t +=T 0T 为参考温度(K),16.27300+=t T T R 为温度T 时热敏电阻的阻值 0R 为温度0T 时热敏电阻的阻值 B 为热敏电阻的材料常数,由实验获得,一般为2000~6000K 5、集成温度传感器 用集成工艺制成的双端电流型温度传感器,在一定温度范围内按1uA/K 的恒定比值输出与温度成正比的电流,通过对电流的测量即可知道温度值(K 氏温度),经K 氏-摄氏转换电路直接得到摄氏温度值。

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.360docs.net/doc/3016920551.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

(毕业论文)基于单片机的电烤箱温度控制设计

本科毕业论文开题报告 拟定论文题目:基于单片机的电烤箱温度控制设计学院: 专业:班级:学号: 学生姓名:物理学 物理与电子工程学院凯里学院教务处制 2013年9月9 日填写

填表须知 、本表从凯里学院教务处下载专区下载,不得随意改变表格结构。 二、开题人应逐项认真填写,各部分如不够填写,可自行加页。 三、文字输入部分,一律五号字、宋体、单倍行间距编排。 四、本表以A4 纸单面打印,于左侧装订成册。 五、本表一式三份,学生自存一份,教学单位存档一份,教务处存档一份。

一、选题背景及研究意义(选题背景应对该选题的国内外研究现状进行综述,研究意义应从理论 和实践两个方面进行阐述。要 1 2 3求字数在800字左右) (一)选题背景 国内外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得很大的成果。 目前温度控制大多数采用智能调节器,国内生产调节器分辨率和精度都较低,温度控制效果不是很理想,但价格便宜;国外生产调节器分辨率和精度都比较高,但价格昂贵。美国、德国、瑞典、日本等国家技术领先,都各自生产了一批商品化的性能优异的温度控制器及仪器仪表,并在各个行业都得到了广泛的应用。其主要特点为:一是用于大惯性、大滞后等复杂温度控制系统的控制; 二是能够适应于受控系统数学模型难以建立的温度控制系统的控制;三是能够适应于受控系统复杂参数时变的温度控制系统的控制;四是温度控制系统普片采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术,运用先进的算法,适应的范围广泛;五是温度控制普遍具有参数自整定功能。借助计算机软件技术,温控器具有对控制对象控制参数及特性进行自动调定的功能。有的还以具有自学习功能,能够根据历史经验及控制对象的变化自动调整相关控制参数, 以保证控制效果的最优化;六是具有控制精度高、抗干扰能力强等特点。目前,国内外温度控制系统及仪表正朝着高精度、智能化、小型化等方面迅速发展。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输, 并能所测温度场进行较精确的控制,仍然是目前要解决的问题。温度控制技术包括温度测量技术和温度控制技术两个方面。在温度的测量技术中,接触式测温发展较早,这种测温方法优点是: 简单、可靠、低廉、测量精度较高,一般能够测得真实温度;但是由于检测元件热惯性的影响, 响应时间较长,对热容量小的物体难以实现精确的测量,并且该方法不适应对于腐蚀性介质测温, 不能用于超高温测量,难以测量运动物体的温度。而非接触式测温方法是通过对辐射能量的检测来实现温度测量的方法,其优点是:不破坏被测温场,可以测量热容量小的物体,适用于测量运动物体的温度,还可以测量区域的温度分布,响应速度较快;但也存在测量误差较大,仪表指示值一般仅代表物体表观温度,测温装置结构复杂,价格昂贵等缺点。 (二)研究意义 1.理论意义 本设计利用AT89C51单片机为核心的温度控制系统,主要由两部分组成:硬件部分和软件部分。其中硬件部分包括:单片机电路、传感器电路、放大电路、转换器电路、以及键盘和显示电路。软件部分包括:主程序、运算控制程序、以及各功能实现模块的程序。其中单片机电路用到了单片机基础知识,涉及到我们学过的数字电子技术、高频电子线路、电工学等的一些知识;传感器电路、转换器电路涉及到了怎样将一个非电信号转换为电信号并将其怎样转化成单片机能接收的信号的相关知识;放大电路涉及到学过的模拟电子技术的相关知识;显示电路主要涉及到数 字电子技术的相关技术。软件部分都是用C语言程序来实现对单片机的控制,主要是利用C语言 程序来控制硬件部分,从而达到控制的目的。本设计有的知识是我们已经学过的,这部分应该不是很难,通过本设计来巩固所学知识,使理论走到实际中去;有的知识是我们没有学过的,通过本设计,培养我们自己查阅资料的能力、活学活用的能力。 2.实践意义 近年来,因为人们使用电烤火箱不当发生火灾的事例经常发生,为了减少使用电烤火箱时火灾的发生,利用单片机的控制功能来设计一种智能的烤火箱系统,保证使用安全又达到节能的作用。以AT89C51单片机为控制芯片,利用电阻传感器采集温度,利用按钮调节温度。这种温度控制系统能过通过显示屏直观的来观察电烤箱温度,通过按钮也很方便的来调节温度的高低,精度也比较高;另外,单片机廉价,可以在保障安全的同时又节约成本;所以在工业上是很有生产价值的。 1说明:1.论文题目类型:A —理论研究;B —应用研究;C—设计等; 2 论文题目来源:指来源于科研项目、生产/社会实际、教师选题或其他(学生自拟)等; 3 各项栏目空格不够,可自行扩大。

基于51单片机DS18B20温度传感器的C语言程序和电路

基于51单片机DS18B20温度传感器的C语言程序和电路 DS18B20在外形上和三极管很像,有三只脚。电压范围为3.0 V至5.5 V 无需备用电源测量温度位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包敏感系统。 下面是DS18B20的子程序,本人用过完全可行的: #include #include #define uchar unsigned char #define uint unsigned int sbit DQ=P2^0; void reset(); //DS18B20 void write_byte(uchar val); //DS18B20写命令函数 uchar read_byte(void); //DS18B20读1字节函数 void read_temp(); //温度读取函数 void work_temp(); //温度数据处理函数 uchar data temp_data[2]={0x00,0x00}; uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; //对于温度显示值值 uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x0数部分查表 main() { while(1) { 自己添加; } } void delay1(uint t) { for(;t>0;t--); } ///////温度控制子函数 void reset() { uchar presence=1; while(presence) { while(presence) {

温度传感器课程设计

温度传感器课程设计报告 专业:电气化___________________ 年级:13-2 学院:机电院 姓名:崔海艳 ______________ 学号:8021209235 目录 1弓I言................................................................... ..3

2设计要求................................................................. ..3 3工作原理................................................................. ..3 4 方案设计 ................................................................ ..4 5单元电路的设计和元器件的选择.............................................. ..6 5.1微控制器模块........................................................... .6 5.2温度采集模块...................................................... .. (7) 5.3报警模块.......................................................... .. (9) 5.4 温度显示模块..................................................... .. (9) 5.5其它外围电路........................................................ (10) 6 电源模块 (12) 7程序设计 (13) 7.1流程图............................................................... (13) 7.2程序分析............................................................. ..16 8.实例测试 (18) 总结.................................................................... ..18 参考文献................................................................ ..19

基于单片机的温度传感器的设计说明

基于单片机的温度传感器 的设计 目录 第一章绪论-------------------------------------------------------- ---2 1.1 课题简介 ----------------------------------------------------------------- 2 1.2 设计目的 ----------------------------------------------------------------- 3 1.3 设计任务 ----------------------------------------------------------------- 3 第二章设计容与所用器件 --------------------------------------------- 4第三章硬件系统设计 -------------------------------------------------- 4 3.1单片机的选择------------------------------------------------------------- 4 3.2温度传感器介绍 ---------------------------------------------------------- 5 3.3温度传感器与单片机的连接---------------------------------------------- 8 3.4单片机与报警电路-------------------------------------------------------- 9 3.5电源电路----------------------------------------------------------------- 10 3.6显示电路----------------------------------------------------------------- 10 3.7复位电路----------------------------------------------------------------- 11 第四章软件设计 ----------------------------------------------------- 12 4.1 读取数据流程图--------------------------------------------------------- 12 4.2 温度数据处理程序的流程图 -------------------------------------------- 13 4.3程序源代码 -------------------------------------------------------------- 14

AT89C51单片机温度控制系统

毕业设计(论文) 论文题目:AT89C51单片机温度控制系统 所属系部:电子工程系 指导老师:职称: 学生姓名:班级、学号: 专业:应用电子技术 2012 年05 月15 日

毕业设计(论文)任务书 题目:AT89C51单片机温度控制系统 任务与要求:设计并制作一个能够控制1KW电炉的温度控制系统,控制温度恒定在37--38度之间。 时间:年月日至年月日 所属系部:电子工程系 学生姓名:学号: 专业:应用电子技术 指导单位或教研室:测控技术教研室 指导教师:职称: 年月日

摘要 本设计是以一个1KW电炉为控制对象,以AT89C51为控制系统核心,通过单片机系统设计实现对保电炉温度的显示和控制功能。本温度控制系统是一个闭环反馈调节系统,由温度传感器DS18B20对保炉内温度进行检测,经过调理电路得到合适的电压信号。经A/D转换芯片得到相应的温度值,将所得的温度值与设定温度值相比较得到偏差。通过对偏差信号的处理获得控制信号,去调节加热器的通断,从而实现对保温箱温度的显示和控制。本文主要介绍了电炉温度控制系统的工作原理和设计方法,论文主要由三部分构成。①系统整体方案设计。②硬件设计,主要包括温度检测电路、A/D转换电路、显示电路、键盘设计和控制电路。③系统软件设计,软件的设计采用模块化设计,主要包括A/D转换模块、显示模块等。 关键词:单片机传感器温度控制

目录 绪论 (1) 第一章温度控制系统设计和思路 (2) 1.1温度控制系统设计思路 (2) 1.2 系统框图 (2) 第二章 AT89C51单片机 (3) 2.1 AT89C51单片机的简介 (3) 2.2 AT89C51单片机的主要特性 (3) 2.3 AT89C51单片机管脚说明 (4) 第三章温度控制的硬件设备 (6) 3.1温度传感器简介 (6) 3.2 DS18B20工作原理 (7) 3.3 DS18B20使用中注意事项 (8) 第四章系统硬件设计 (9) 4.1温度采集电路 (9) 4.2 数码管温度显示电路 (9) 4.2.1 数码管的分类 (9) 4.2.2 数码管的驱动方式 (10) 4.2.3 恒流驱动与非恒流驱动对数码管的影响 (11) 4.3 单片机接口电路 (12) 4.3.1 P0口的上拉电阻原理 (12) 4.3.2 上拉电阻的选择 (14) 4.4 单片机电源及下载线电路 (14) 4.5 温度控制电路 (15) 第五章温度控制的软件设计 (17) 5.1 数码管动态显示 (17) 5.2 DS18B20初始化 (17) 5.3 系统流程图 (19) 谢辞 (20) 参考文献 (21) 附录 (22)

温度传感器 程序

第4章系统程序的设计 4.1 系统设计内容 系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、测量序列号子程序、显示数据刷新子程序等。 4.1.1主程序 主程序主要功能是负责温度的实时显示、读出处理DS18B20的测量温度值。主程序流程图如图4-1所示: 开始 初始化 调用显示子程序 读取并显示序列号 显示当前四路 温度 图4-1 主程序流程图 4.1.2读出温度子程序 读出温度子程序的主要功能是读出RAM中的9字节。在读出时须进行CRC 校验,校验有错时不进行温度数据的改写。 读出温度子程序流程图如图4-2所示:

图4-2 读出温度子程序流程图 4.1.3 温度转换命令子程序 温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时,转换时间约为750ms 。在本程序设计中,采用1s 显示程序延时法等待转换的完成。温度转换命令子程序流程图如图4-3所示: 图4-3 温度转换命令子程序流程图 4.1.4计算温度子程序 计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定。计算温度子程序流程图如图4-4所示: 发DS18B20复位命 发跳过ROM 命令 发温度转换开始命令 结束 开始 复位DS18B20 发跳过ROM 命令 发出温度转换命 转换完毕 复位DS18B20 发匹配ROM 命令 发1个DS18B20序列 读温度值 存入储存器 指向下一个 延时 N Y

图4-4 计算温度子程序流程图 4.1.5 温度数据的计算处理方法 从DS18B20读取出的二进制值必须转换成十进制值,才能用于字符的显示。DS18B20的转换精度为9~12位,为了提高精度采用12位。在采用12位转换精度时,温度寄存器里的值是以0.0625为步进的,即温度值为寄存器里的二进制值乘以0.0625,就是实际的十进制温度值。 通过观察表4-1可以发现,一个十进制与二进制间有很明显的关系,就是把二进制的高字节的低半字节和低字节的高半字节组成一字节,这个字节的二进制化为十进制后,就是温度值的百、十、个位字节,所以二进制值范围是0~F ,转换成十进制小数就是0.0625的倍数(0~15倍)。这样需要4位的数码管来表示小数部分。实际应用不必这么高的精度,采用1位数码管来显示小数,可以精确到0.1℃。 开始 温度零下? 温度值取补码置 “-”标志位 计算小数位温度BCD 值 计算小数位温计算小数位 结束 置“+”标志 N Y

PCB电路板绘制和单片机设计说明书

燕山大学 课程设计说明书 题目:PCB电路板绘制和单片机设计 学院(系):理学院 年级专业:12级电子信息科学与技术学号:

学生姓名: 指导教师:杜会静徐超 教师职称:副教授讲师 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:12级电子信息科学与技术一班 学号120108040005 学生姓名王欣彦专业(班级)12级电子一班设计题目PCB电路板绘制和单片机设计 设计技术参数设计参数: 能够用AD按照给定的参数的要求要求绘制元器件图库和封装图原理图库,误差精确的0.01mm。 实际单片机程序,利用计时器实现小灯1S、2S的闪烁,而且能够在数码管上实现时钟计时。 设计要求 利用印刷电路板(简称PCB)绘图软件Altium Designer (简称AD)绘制单片机系统印刷电路板,学会利用51单片机开发板对I/O口控制、数码管显示、中断、定时器和串口等基本功能调试。 工 作 量 10个工作日

工作计划2014.7.5-2014.7.8 学习绘制PCB电路板 2014.7.9-2014.7.9 焊接PCB板 2014.7.10-2014.7.12 学习单片机编程,设计单片机程序2014.7.13-2014.7.13 绘制PCB电路板与单片机设计测试2014.7.14-2014.7.14 课设结题,实验总结 参考资料[1] 周冰主编.《Altium_Designer_Summer_09从入门到精通》.机械工业出版社.2011 [2] 孙彦龙.PCB教学PPT.2014 [3] 单片机教学PPT.2014 [4] 郭天祥.《新概念51单片机C语言教程+入门、提高、开发、拓展全攻略》.电子工业出版社.2012 指导教师签字基层教学单位主任签字 年月日

模电温控电路设计与仿真

水温测量与控制电路的设计与仿真 1设计任务与要求 温度测量,测量范围0~100 ℃; 控制温度±1 ℃; 控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V,10A)。 学习并运用proteus仿真软件,绘制电路图,进行基本的仿真实验对所设计的电路进行分析与调试。 2方案设计与论证 温度控制器是实现可测温度和控制温度的电路,通过对温度控制电路的设计、调试了解温度传感器的性能,学会在实际电路中的应用。进一步熟悉集成运算放大器的线性和非线性应用。 Proteus介绍: Proteus 软件是由英国 Labcenter Electronics 公司开发的EDA工具软件,已有近20年的历史,在全球得到了广泛应用。Proteus 软件的功能强大,它集电路设计、制版及仿真等多种功能于一身,不仅能够对电工、电子技术学科涉及的电路进行设计与分析,还能够对微处理器进行设计和仿真,并且功能齐全,界面多彩,是近年来备受电子设计爱好者青睐的一款新型电子线路设计与仿真软件。 Proteus软件和我们手头的其他电路设计仿真软件最大的不同即它的功能不是单一的。它的强大的元件库可以和任何电路设计软件相媲美;它的电路仿真功能可以和Multisim相媲美,且独特的单片机仿真功能是Multisim 及其他任何仿真软件都不具备的;它的PCB电路制版功能可以和Protel相媲美。它的功能不但强大,而且每种功能都毫不逊于Protel,是广大电子设计爱好者难得的一个工具软件。

Proteus具有和其他EDA工具一样的原理图编辑、印刷电路板(PCB)设计及电路仿真功能,最大的特色是其电路仿真的交互化和可视化。通过Proteus 软件的VSM(虚拟仿真模式),用户可以对模拟电路、数字电路、模数混合电路、单片机及外围元器件等电子线路进行系统仿真 Proteus软件由ISIS和ARES两部分构成,其中ISIS是一款便捷的电子系统原理设计和仿真平台软件,ARES是一款高级的PCB布线编辑软件。 Proteus ISIS的特点有: 实现了单片机仿真和SPICE电路仿真的结合。具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、RS232动态仿真、I2C调试器、SPI调试器、键盘和LCD系统仿真等功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 具有强大的原理图绘制功能。 支持主流单片机系统的仿真。目前支持的单片机类型有68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 提供软件调试功能。在硬件仿真系统中具有全速、单步、设置断点等调试功能,同时可以观察各个变量、寄存器等的当前状态,因此在该软件仿真系统中,也必须具有这些功能;同时支持第三方的软件编译和调试环境,如Keil C51 uVision2等软件。 2.1温度控制系统的基本原理: 温度测量与控制原理框图如图下所示。本电路有温度传感器,K-OC变换、控制温度设置、数字电压表(显示)和放大器等部件组成。温度传感器的作用是把温度信号转换成电流信号或电压信号,K-OC变换将热力学温度K 转换成摄氏温度OC。信号经放大器放大和刻度定标后由数字电压表直接显示温度值,并同时送入比较器与预先设定的固定温度值进行比较,由比较器输出电平的高低变化来控制执行机构(如继电器)工作,实现温度的自动控制。 2.2AD590温度传感器简介: AD590是单片集成感温电流源,具有良好的互换性和线性性质,能够消

基于单片机的数字温度计设计课程设计

摘要 温度的检测与控制是工业生产过程中比较典型的应用。本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。本系统大部分功能能由软件实现,吸收了硬件软件化的思想。实际操作时,各功能在开发板上也能完美实现。本系统实现了要求的基本功能,其余发挥部分也能实现。 关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集

目录 一.绪论 .............................................................................................................

二.设计目的..................................................................................................... 三.设计要求..................................................................................................... 四.设计思路..................................................................................................... 五.系统的硬件构成及功能................................................................. 5.1主控制器............................................................................................... 5.2显示电路............................................................................................... 5.3温度传感器.......................................................................................... 六.系统整体硬件电路................................................................................. 七.系统程序设计 .......................................................................................... 八.测量及其结果分析 ................................................................................... 九.设计心得体会............................................................................................ 十.参考文献..................................................................................................... 附录1 源程序 附录2 元件清单及PCB图 一.绪论

相关文档
最新文档