电力:066-变压器设计与材料选择--设计篇
变压器设计与制作

变压器设计与制作一变压器的概述变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式组合一起。
当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
一般指连接交流电源的线圈称之为「一次线圈」(Primamary coil);而跨于此线圈的电压称之为「一次电压.」。
在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。
因此,变压器区分为升压与降压变压器两种。
大部份的变压器均有固定的铁心,其上绕有一次与二次的线圈。
基于铁材的高导磁性,大部份磁通量局限在铁心里,因此,两组线圈藉此可以获得相当高程度之磁耦合。
在一些变压器中,线圈与铁心二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。
因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。
由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附屑物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。
电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。
一般提供6OHz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。
电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。
各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。
「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。
变压器设计与材料选择

Litz线 的简化
通过1维分析,推算变压器的损耗 优点:较准确,可以连续分析 缺点:理想化的模型,对一些结构有 简化,简化越多,误差越大
漏磁通与漏感
漏感与磁场
I in V in
m Lk
Lk
n
**
Lm
磁通回路全部通过绕组的磁通为励磁磁通 位置上为全部在铁心中 磁通回路有一部分在绕组间的磁通为漏磁通, 位置上为经过窗口的磁通
可 用
镍锌铁氧体(Ni-Zn Ferrite):
高频开关电源变压器 (>2MHz)
作
变
压
器
的 磁 性
非晶,超微晶,纳米晶: 中低频开关电源变压器 (<40KHz)
材
料
硅钢片
工频变压器
铁氧体材料的选择
选择磁性材料的关键点:
BH曲线 B Bm
Bac Bac
Bac
A:磁心的饱和磁密 B:磁心的损耗 (储能与放能之差)
应用于PCB绕组等预制好的绕组的变压器和电感器
磁心的选择
磁性材料的选择依据 1.工作频率范围 2.饱和磁密大小
磁心形状的选择依据 1.功率密度的要求 2.成品高度的限制 3.绕组的多少 4.线包的引出线形式
Simple
绕组的结构
Sandwich
Interleaving
漏
感
减
小
交
流
损
耗
减
小
隔
离
结
构
法拉第定律
空间回路
变化磁场
变化磁场在闭 合回路中产生
E 的感生电势
Ed (N) 变压器 dt
I in
m
V in
高过载配电变压器的优化设计

高过载配电变压器的优化设计引言:随着电力需求的不断增长,传统的配电变压器已经无法满足高负载的要求。
高过载配电变压器的优化设计成为了一个研究的热点。
本文将从变压器的材料选择、结构设计和风冷系统设计三个方面探讨高过载配电变压器的优化设计方法。
一、材料选择对于高过载配电变压器来说,材料的选择对其性能至关重要。
铁心材料应具有高磁导率和低磁损耗,以确保变压器在高负载下的工作效率。
常见的铁心材料有硅钢片、钙钛矿钢片等。
绕组导线应具有较低的电阻和良好的导电性能,以降低变压器的损耗。
常见的绕组材料有铜和铝。
变压器的绝缘材料应具有较高的绝缘强度和耐热性能,以确保变压器的安全可靠运行。
二、结构设计高过载配电变压器在结构设计方面有一些特殊要求。
变压器的设计应考虑到高负载情况下的散热问题。
可以采用分层绕组结构,增加绕组与冷却介质之间的接触面积,提高散热效率。
变压器的设计还应考虑到震动和噪声问题。
可以采用减震措施,如添加减震材料或采用低噪音设计。
三、风冷系统设计高过载配电变压器需要一个高效的风冷系统来保证其在高负载下的散热效果。
变压器的外壳应设计合理,以便于空气流动。
风冷系统的设计应考虑到风道的布局和风扇的选择和安装等因素。
可以采用多风道设计,增加散热效果。
风扇的选择应考虑到风量和噪音等因素,以确保风冷系统的稳定运行。
结论:高过载配电变压器的优化设计是一个综合性的问题,需要从材料选择、结构设计和风冷系统设计等方面综合考虑。
通过合理选择材料、优化结构设计和设计高效的风冷系统,可以提高高过载配电变压器的性能和可靠性,满足更高负载的需求。
变压器制作资料

变压器制作资料变压器是一种将电能从一个交流电路传输到另一个交流电路的电器。
它通过电感耦合来改变电压和电流的比例。
制作变压器需要一些基本的材料和工具,下面是制作变压器的一些资料。
材料:1. 铁芯:可以使用硅钢片制作铁芯,因为硅钢具有较高的磁导率和较低的磁滞损耗。
2. 绕线:可以使用铜线或铝线作为绕线材料。
这两种金属具有良好的导电性能和适当的耐高温性能。
3. 绝缘材料:用于绝缘绕线和隔离铁芯的绝缘材料,如绝缘纸或绝缘漆。
4. 外壳:为了保护变压器并提高安全性,可以选择一个合适的外壳材料,如塑料或金属。
工具:1. 绕线工具:可以使用绕线机或手动绕线工具来完成绕线工作。
2. 焊接工具:用于连接绕线和连接绕线与引线的焊接工具。
3. 绝缘工具:用于剥离绕线末端的绝缘层的工具。
4. 测试工具:用于测试变压器的工作状态和性能的工具,如万用表或示波器。
5. 切割工具:用于切割铁芯和调整绕线长度的工具。
制作步骤:1. 准备铁芯:根据设计要求切割硅钢片,然后堆叠在一起以形成一个闭合的铁芯结构。
2. 绕线:使用绝缘纸或绝缘漆绝缘铁芯,并使用绕线工具将绕线缠绕在铁芯上。
根据设计要求绕制初级绕组和次级绕组。
3. 连接引线:使用焊接工具将绕线与引线连接起来,以便将变压器与电路连接。
4. 绝缘处理:使用绝缘材料覆盖绕线和引线,确保绝缘性能符合要求。
5. 安装外壳:根据需要选择一个合适的外壳材料,并根据变压器尺寸将变压器放入外壳中。
6. 完工检查:使用测试工具检查变压器的绝缘性能、电阻、电压变化等参数,确保变压器正常工作。
这些是制作变压器的基本资料和步骤,制作变压器需要一定的专业知识和技术,因此建议在制作变压器前咨询专业人士或参考相关资料。
制作一个变压器是一个相对复杂的过程,需要仔细的计划和准备。
以下是进一步的详细资料和步骤,以帮助您更好地理解变压器制造过程。
设计阶段:在制作变压器之前,首先需要进行设计。
设计包括确定所需的电压变比、功率容量和铁芯尺寸。
变压器结构设计与制造工艺

变压器结构设计与制造工艺变压器是一种重要的电力设备,主要用于实现电能的传输、分配和转换。
为了保证变压器运行的稳定性和高效性,变压器的结构设计和制造工艺显得尤为重要。
本文将从这两个方面进行讨论。
1.铁心设计铁心是变压器中起支撑和固定线圈作用的重要组件。
其设计应考虑到磁通密度分布的均匀性、铁损耗的最小化以及抗磁饱和的能力等因素。
通常采用EI、UI、三角形、五边形等多种形状的铁心,其中EI形铁心具有价格低、制作方便、磁路的平衡性好等优点,因此是使用最为广泛的一种形式。
2.绕组设计绕组是变压器中的另一个重要组成部分,其设计应考虑到高电压下绝缘能力的提高、漏磁流的控制以及整流效率的提高等因素。
通常采用铜线或铜箔制作绕组,其中铜箔绕组的接触面积大、散热效果好等优点使得其应用范围越来越广泛。
3.冷却系统设计变压器在工作过程中会产生大量的热量,如果不能及时散热,会严重影响其性能和寿命。
因此在设计变压器时需要考虑到冷却系统的设计,通常采用自然冷却和强制风冷两种方式。
其中强制风冷系统可以提高变压器的冷却效率,但其能耗会更高。
1.铁芯加工铁芯是变压器中最为耗费制造成本的部分,因此在制造过程中需要考虑到尽量降低成本的同时不影响其性能。
通常采用钢板切割和铁芯覆盖设备制造两种方式。
其中钢板切割方式更加经济、快捷,但会增加铁损耗;而覆盖设备制造则能够较好的控制铁芯的准确度,但成本较高。
绕组是变压器中关键的传输介质,其制造需要保证导电性能的同时保证绝缘性能,通常采用机械绕线、自动绕线和焊接绕线等方式进行制造。
其中机械绕线的适用范围广、成本低,但是生产效率相对较低;而自动绕线则能够高效的完成大批量的绕线任务,但需要相对较高的投资成本。
3.绝缘层制造绝缘层是保证变压器运行安全的重要环节,其制造需要考虑到绝缘性能的均匀性和寿命的长短。
一般采用PVC、纸板、电木等材料进行制造。
其中PVC较为便宜、加工简单,但耐热性能较差;而纸板和电木制造的绝缘层耐火性、耐高温性能较好,但成本相对较高。
电力变压器的设计与研发

电力变压器的设计与研发一、引言电力变压器是电力系统中不可或缺的重要组成部分。
在电力输配电过程中,变压器起着重要的功效,通过变换电压等级使电能得以传递和分配。
综合这些因素,变压器的设计和研发尤为重要,其性能直接影响了电力系统的可靠性和稳定性。
二、变压器性能参数1.额定容量变压器额定容量是指在一定的工作电流、电压等一系列条件下,变压器可以正常运行的最大容量。
2.转换比在变压器工作时,变压器的输入电压和输出电压之间的比值称为转换比。
例如,输入电压为10kV,输出电压为220V,则转换比为1:45.45。
3.短路阻抗短路阻抗是变压器在短路时的电阻值。
短路阻抗越小,短路电流越大,短路容量越大。
4.损耗变压器的损耗分为两部分:铁心损耗和线圈损耗。
铁心损耗是变压器磁通变化过程中所对应的磁通损耗,线圈损耗是变压器在运行时因为电流穿过线圈而产生的热能损耗。
三、变压器设计流程1.确定变压器容量及等级按需求确定变压器容量,并确定最符合需求的电压等级。
2.确定变压器结构和参数针对设计要求、材料可获得性和可制造性等因素,确定变压器结构和参数,如铁心结构、线圈数目、制造方式等。
3.计算电路参数以电压电流平衡为前提,按照性能需求和材料特点,计算铁心和线圈尺寸、匝数、电感、短路等参数。
4.绘制制造图纸根据变压器结构和参数,绘制制造图纸,并保证生产效率和质量。
5.组装和调试在生产制造阶段中,需要进行铁心加工、线圈制作、组装、油漆、状况试验等工序,最终进行变压器的调试和试运行。
四、变压器研发趋势1.节能减排新型变压器所采用的材料和技术,能够有效地降低变压器的损耗,降低能耗并减少对环境的污染。
2.数字化技术采用数字化电力系统与变压器,能够实现智能化、自动化控制,提高了电力系统运行的安全性能和可靠性。
3.高压直流变压器高压直流变压器在输电方面具有广泛的应用前景。
其采用高压直流技术使得输电距离更远、更稳定,并且通过优化设计可以降低系统投资成本。
变压器设计选用

OCL:OLC 的大小會影響到變壓器的耦合能力,過低的OCL會造成 波形失真,有較差的數據傳輸率(Bit Error Rate)
LL:繞線時因沒有緊貼著鐵芯表面導致產生的磁通沒有在鐵芯上 運行
DCR:良好的DCR值設定可以驗證產品是否有短路,斷路與空焊 的情形
Turn Ratio:圈數比是來驗證繞線製程中腳位是否錯誤正確的重要 參數, 對於Power Transformer更是直接決定其性能的主要因素
CWW :初級與次級繞組之間的雜散電容,提供了共模訊號一個穿 過變壓器的路徑
DCR:良好的DCR值設定可以驗證產品是否有短路,斷路與空焊 的情形
Turn Ratio:圈數比是來驗證繞線製程中腳位是否錯誤正確的重要 參數
HI-POT:隔離異常瞬間高壓防止customer端的IC遭受損壞 Insertion loss/Return loss/Cross Talk/DCMR/CMRR:驗證零件在實 際應用中對雜訊的抑制能力
设计&選用注意事項
1.設計端需根據客戶不同需求選擇,對結構/電路/材料/功能需求/使用 環境進行設計 2.除特殊要求,IEEE 802.3u Standard規定加8mADC Bias需有350μH的感 值,Hi-POT一般規定1.5KV 3.影響漏感量的因素主要為繞線在鐵芯表面的鬆緊度相關,而繞線分佈 疏密度及絞線則會影響雜散電容的大小,LL與雜散電容CW是決定變壓 器性能的主要因素,低LL則會有高CW,相同地低CW則會有高LL,故設計 時可依使用所需特性調整兩數據來取得一個平衡點。因為實際電路中 其信號雜訊無法精確計算和控制,故要使產品達到一個好的性能,需 要在終端產品研發階段即開始配合設計并進行改善。 4.在設計POE/POE+產品時必须考虑线圈发热和磁芯饱和问题, 以及其 承受DC偏流的能力。
选择变压器课程设计

选择变压器课程设计一、课程目标知识目标:1. 学生能理解变压器的原理,掌握变压器的构造、分类及工作特性。
2. 学生能掌握变压器的基本公式,如变压器的变压比、变流比和功率不变原理。
3. 学生能了解变压器在实际电路中的应用及其影响。
技能目标:1. 学生能够运用所学知识,正确选择合适的变压器。
2. 学生能够通过实际操作,测量变压器的变压比和变流比,并分析其性能。
3. 学生能够运用变压器解决简单的电路问题,培养解决问题的能力。
情感态度价值观目标:1. 学生通过学习变压器,培养对物理学科的兴趣,增强学习动力。
2. 学生在学习过程中,培养团队合作意识,学会倾听、交流和分享。
3. 学生能够认识到变压器在生活中的应用,了解科技进步对生活的影响,增强环保意识。
分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够解释变压器的原理和构造,并掌握相关术语。
2. 学生能够运用变压器的基本公式,进行实际电路分析。
3. 学生能够通过实际操作,验证变压器的性能,并提出改进措施。
4. 学生能够主动参与课堂讨论,积极与同学交流,共同解决问题。
5. 学生能够关注变压器在生活中的应用,关注科技进步,形成良好的环保意识。
二、教学内容1. 变压器原理及构造- 变压器的工作原理- 变压器的构造及各部分功能2. 变压器的分类及工作特性- 单相变压器与三相变压器- 变压器的额定参数及性能指标3. 变压器的基本公式- 变压比、变流比的计算- 功率不变原理4. 变压器的应用及影响- 变压器在实际电路中的应用- 变压器对电路性能的影响5. 变压器的选择与使用- 选择合适变压器的方法- 变压器的安全使用与维护教学安排与进度:第一课时:变压器原理及构造,变压器的分类及工作特性第二课时:变压器的基本公式,变压器的应用及影响第三课时:变压器的选择与使用,实际操作练习教材章节及内容:第一章:电与磁的基本概念第二节:磁路及变压器原理第二章:交流电路第四节:变压器及三相交流电路第三章:电气设备第一节:变压器的构造与性能教学过程中,教师将结合教材内容,通过讲解、实例分析和实际操作,确保学生掌握教学内容,达到课程目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器的基本原理
磁路与电路的对比:磁性元件设计中要注意的
1.磁材料会饱合,所以设计的B和H不可能无限制的大, 2.由于磁通连续,因此励磁之后必需有退磁过程 3.由于磁滞现像和磁滞损耗的存在,磁损没有理论上的计算公式,而只 有跟据理论和实测数据拟合出的经验计算公式
变压器的基本原理
2.磁性材料的使用限制 导体的特性不同
跟据不同的需求选择绕组的线型.并计算此选择的 绕组损耗.绕组损耗应该考虑交流损耗.粗算时可跟 据频率将直流损耗乘个系数(>1)代替.精算时可以 用designtool软件计算损耗系数.
计算实际的Ku,有条件可以推导绕组的排布 计算Pc和Pw,Pc和Pw的差踞如果超过5倍,应 评估是否可以进一步优化 计算其它参数是否付合设计需求
…
…
Rm _ serial
…
R R m _ p _1 m _ p _ 2
…
Rm _ p _ x
Rm _ parallel
Rserial
Rp _1
…
Rp_2
…
Rp _ x
R paralle l
变压器的基本原理
磁路与电路的对比:磁路的基尔霍夫定律
磁路
基尔霍夫定律 Kirchhoff laws
磁路中任一节点,在任一瞬 间流出该节点的磁通的代 数和恒为零
电路 电动势,Voltage, E
电流,Current, I 电流密度,Current density, J
电阻,Resistance, R
磁导率
安培环路定律
NI
H l
磁阻
Rm
Rm
lm Am
欧姆定律
E RI
电导率
电阻 R lc
Ac
变压器的基本原理
磁路与电路的对比:电路的串并联关系在磁路上成立
双管正激变压器的设计
设计参数
1.从电路引入的设计参数
1 最小直流输入电压 Vmin (V) 2 输出电压 Vo (V) 3 输出电流 Io (A) 4 输出二极管压降 Vd (V) 5 工作效率 h 6 开关频率 f (kHz) 7 最大占空比 Dmax 8 环境温度 Ta (℃) 9 允许温升 Tr (℃)
存在当H=0时fi=/=0 及当fi=0是H=/=0
P=V*I
b.有饱合性,即当H上升到一定程
度时,fi将不再增加
3.损耗特性
由于有磁回路,恒定磁场P=0
交变磁场,P=/=mmf*fi
输入变压器设计需求
跟据功率,频率,一二次 侧电流计算AP值
跟据AP值选和实际需求选 择铁心和材质
跟据铁心和其它参数计算各绕 组圈数,并复算各参数合理性
节点1
I1
IV
I2 R1
V2 回路1 +
R2
-
V
节点1: 1 2 V 0 回路1: F F2 0
节点1: I1 I2 IV 0 回路1: V V2 0
变压器的基本原理
磁路与电路的对比:磁通连续性定理
描述:表征磁场基本性质的一个定理。它指出,由任一闭合面穿出的净磁通等于零,即穿出 的磁通等于穿入的磁通,而其代数和为零 (这个定律应用于磁路上就是KCL的磁路定理)
1.温度特性: a.温度上升导磁率上升 b.温度升到居里温度导磁率会突
然降为不良导体
1.温度特性: a.温度下降导电率上升 b.温度降到特定温度时电阻率会 突然降为零,成为超导体
2.导磁特性
2.导电特性
非线性态,有B-H回路
线性导电,即:V=R*I
• 有剩磁Br和校顽力Hc
3.损耗特性
即:mmf=Hl=/=R*fi
跟据电流计算各绕组的选线, 并计算绕组损耗
跟据设计结果复算各参数
变压器的设计
Lp,Ls,Lk,n,f,Np,Ns,电压,容量,外形等等
AP
Ae
Aw
V Ton Bm
2I J
prms p
Ku
AP给了选取铁心大小的参考;具体型号 要跟据实际的外形限制来选取
跟据铁心,B的要求等等计算Np和Ns,并计算气隙等. 需要判断B值的合理性和气隙的可加工性
磁路与电路的对比:类比
+- NI R m
i
+- V
R
ห้องสมุดไป่ตู้
Magnetic circuit,磁路
磁路 磁动势,Magnetomotive force, F,MMF
磁通,Flux, 磁通密度,Flux density, B 磁阻,Magneto-resistance, Rm
Electric circuit,电路
基本理论: 磁场中任何一条B线(磁感应强度,即磁通密度)都是连续且闭合的 空间任何一点,进去多少B就得出来多少B☺
因为磁通不能被截断,所以磁通在时间上也只能连续变化而不能突变
B
B
变压器的基本原理
磁路与电路的对比:导磁材料(磁性材料)的特点
1.有顺磁性的基本元素少,只有铁钴镍,(而纯金属基本都可以导电) 2存在居里温度,高温会使磁性材料失去导磁性;(导体在低温下会出 现超导现像) 3.存在磁滞现像,即H上升时对应该的B曲线与H下降时的不同,但2条 曲线是合起来可以形成一个闭合回路(而电阻中电压与电流的关系是 线性的) 4.由于磁滞现像,磁性材料的磁场中,一个储能-放能周期中,储能将 大于放能,形成磁滞损耗:此损耗为周期性的而非线性的 5.由于形成磁滞现像要有周期性变化的磁场,因此恒定磁场的磁性材料 没有磁滞损耗.(只有Bdc时磁材料不会有损耗,而Idc在电阻中照样 有损耗) 6.磁性材料有饱合特性,H增大到一定值后磁性材料将失去导磁性,B 将线性增加
Delta Confidential
变压器设计与材料选择
目录
• 变压器的结构和组成 • 双管正激变压器的设计范例 • 反激变压器的设计范例 • 全桥变压器的设计范例
变压器的结构和组成
励磁磁通 漏磁磁通
原边绕组
I in Vin
一次侧
m I out
导磁回路(磁心)
Lk
Vout
副边绕组
二次侧
变压器的基本原理
电路
KCL:任一集总参数电路(Lumped
circuit)中的任一节点,在任一瞬间流
出该节点的所有电流的代数和恒为零
磁路中任一回路,在任一瞬
间此回路的各段磁动势的
代数和恒为零
节点1
1 2
Rm1
F
F2 回路1 Rm 2
+ -
F
KVL:任一集总参数电路中的任一回路点
,在任一瞬间沿此回路的各段电压的代
数和恒为零
磁路
串并联关系
R R m _ serial
m_s_x
x
1
1
Rm _ parallel
R x m _ p _ x
R R m _ s _1 m _ s _ 2
Rm _ s _ x
…
…
电路
Rserial Rs _ x
x
1 1
R paralle l
x Rp_x
Rs _1 Rs _ 2
Rs _ x