杨氏模量实验报告

合集下载

杨氏模量实验报告实验原理(3篇)

杨氏模量实验报告实验原理(3篇)

第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。

在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。

本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。

二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。

其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。

应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。

应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。

2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。

3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。

具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。

(2)测量金属样品的原始长度L0和受力后的长度L。

(3)计算金属样品的形变长度ΔL = L - L0。

(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。

(5)计算应变ε = ΔL / L0。

(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。

三、实验仪器1. 拉伸试验机:用于施加拉伸力F。

2. 样品夹具:用于固定金属样品。

3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。

4. 计算器:用于计算应力、应变和杨氏模量。

四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。

2. 调整拉伸试验机,使其施加一定的拉伸力F。

3. 测量金属样品的原始长度L0。

4. 拉伸金属样品,使其受力后的长度L。

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 弹性模量的定义
1.1.2 杨氏弹性模量的计算公式
1.2 实验仪器
1.3 实验步骤
1.4 数据处理
1.5 实验结果与分析
1.6 实验结论
1. 实验目的
通过本实验,旨在掌握杨氏弹性模量的测定方法,了解弹性模量的物理意义,以及实验中应注意的问题。

1.1 实验原理
1.1.1 弹性模量的定义
弹性模量是材料抗拉伸性能的指标,是描述材料抵抗拉伸形变的能力的物理量。

1.1.2 杨氏弹性模量的计算公式
杨氏弹性模量可以通过测得的外力、拉伸长度和截面积等参数,使用以下公式进行计算:
$$
E = \frac{
F \cdot L}{A \cdot \Delta L}
$$
1.2 实验仪器
本实验所需的仪器包括拉伸试验机、标尺、外力计等。

1.3 实验步骤
1. 将试样放置于拉伸试验机上,并进行固定。

2. 施加外力,逐渐增加拉伸长度,记录相应数据。

3. 根据实验数据计算杨氏弹性模量。

1.4 数据处理
利用实验中测得的数据,按照计算公式进行处理,求解杨氏弹性模量。

1.5 实验结果与分析
根据实验测得的杨氏弹性模量数值,进行结果分析,比较实验数据之
间的差异,探讨可能的原因。

1.6 实验结论
总结实验过程中的得失,对实验结果进行概括,并讨论可能存在的误
差和改进方法。

测定杨氏模量的实验报告

测定杨氏模量的实验报告

一、实验目的1. 理解杨氏模量的概念及其在材料力学中的重要性;2. 掌握杨氏模量的测定方法,包括实验原理、实验步骤和数据处理;3. 培养学生严谨的实验态度和实际操作能力。

二、实验原理杨氏模量(E)是描述材料在弹性范围内应力与应变成正比关系的物理量,其定义式为:E = σ/ε,其中σ为应力,ε为应变。

本实验采用拉伸法测定杨氏模量,实验原理如下:1. 将金属丝固定在拉伸试验机上,一端固定,另一端施加拉伸力;2. 测量金属丝的原始长度L0和受力后的长度L;3. 计算金属丝的伸长量ΔL = L - L0;4. 根据胡克定律,在弹性范围内,应力σ与伸长量ΔL成正比,即σ = Eε;5. 由上述公式,可得杨氏模量E = σΔL/(L0A),其中A为金属丝的横截面积。

三、实验仪器与材料1. 实验仪器:杨氏模量测定仪、光杠杆、望远镜、标尺、千分尺、游标卡尺、米尺、砝码、金属丝等;2. 实验材料:金属丝(长度约1米,直径约0.1毫米)。

四、实验步骤1. 准备实验仪器,检查设备是否完好;2. 将金属丝固定在杨氏模量测定仪的支架上,调整支架使金属丝铅直;3. 使用游标卡尺测量金属丝的直径d,计算横截面积A = πd²/4;4. 将金属丝一端固定在支架上,另一端连接到拉伸试验机;5. 在金属丝上施加一定的拉伸力,观察并记录金属丝的原始长度L0;6. 拉伸金属丝至一定长度,记录受力后的长度L;7. 重复步骤5和6,进行多次测量,以减小误差;8. 计算金属丝的伸长量ΔL和杨氏模量E。

五、数据处理与结果分析1. 将实验数据整理成表格,包括金属丝的直径、原始长度、受力后的长度、伸长量和杨氏模量;2. 计算每组数据的平均值,以减小误差;3. 分析实验结果,与理论值进行比较,探讨误差来源。

六、实验结论1. 通过本实验,成功测定了金属丝的杨氏模量;2. 实验结果表明,本实验测得的杨氏模量与理论值基本一致;3. 实验过程中,操作规范,数据处理合理,误差在可接受范围内。

杨氏模量_实验报告

杨氏模量_实验报告

一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。

2. 掌握杨氏模量的测定方法,即拉伸法。

3. 培养实验操作技能和数据处理能力。

二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。

根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。

本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。

三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。

2. 调整螺栓,使金属丝处于铅直状态。

3. 使用游标卡尺测量金属丝的直径,并记录数据。

4. 将望远镜和标尺放置在光杠杆前方约1.2m处。

5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。

6. 观察望远镜中的标尺像,记录初始像的位置。

7. 挂上重物,使金属丝产生一定的伸长量。

8. 观察望远镜中的标尺像,记录新的像的位置。

9. 计算金属丝的伸长量,并记录数据。

10. 重复步骤7-9,进行多次测量,取平均值。

五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。

2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。

3. 根据公式E = F/S ΔL/L,计算杨氏模量E。

4. 计算多次测量的平均值,并求出标准偏差。

六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。

杨氏模量实验报告

杨氏模量实验报告

课程名称:大学物理实验(一)实验名称:杨氏模量的测量二、实验原理1.杨氏模量如图,假设一根横截面积为S,长为L的材料,在大小为F 的力的拉压下,伸缩短了△L则:图1 杨氏模量示意图∆L称为轴向应变,其物理意义是单位长度上的伸长量,表征物体受外力作用时产生变化大小的物理量。

LF称为应力,其物理意义是横截面积为S的物体受到外力F的作用并处于平衡状态时,物体内部单位面积S上引起的内力。

应力和应变的比称为杨氏模量:E=FL(1)S∆L2.钢丝杨氏模量的测量方法S=πd2(2)4利用(1)和(2)式计算即可,其中F:可由实验中钢丝下面悬挂的砝码的重力给出L:可由米尺测量d:为细铁丝的直径,可用螺旋测微仪测量ΔL: 是一个微小长度变化量,本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量 L 的间接测量。

3.光杠杆的放大原理1)杨氏模量测定仪杨氏模量测定仪如图2所示,待测金属丝上端夹紧,悬挂于支架顶部;下端连着一个金属框架,框架较重使金属丝维持伸直;框架下方有砝码盘,可以荷载不同质量的砝码;支架前面有一个可以升降的载物平台。

底座上有三个可以调节水平的地脚螺丝,光杠杆和镜尺组是测量△L的主要部件,光杠杆如图2 所示,一个直立的平面镜装在三足底座的一端。

底座上三足尖(f₁、f₁、f₁)构成等腰三角形。

等腰三角形底边上的高b称为光杠杆常数。

镜尺组包括一个标尺和望远镜。

图2 杨氏模量测定仪2)光杠杆放大原理光杠杆放大原理图3 光杠杆放大原理使用时,光杠杆的后脚f₁放在与金属丝相连的框架上,前脚f₁、f₁放在载物平台的固定槽里面,f₁、f₁、f₁维持在同一水平面上。

镜尺组距离平面镜约为D,望远镜水平对准平面镜,从望远镜中可以看到竖尺由平面镜反射的像。

望远镜中有细叉丝(一条竖线,若干条横线),选最长的横线为标准观察刻度进行读数。

当金属丝受力伸长△L时,光杠杆的后脚f₁也随之下沉,如图3所示。

前脚f₁、f₁保持不变,于是以f₁为轴,以b为半径旋转一个角度,这时候平面镜也同样旋转θ角。

杨氏模量实验报告

杨氏模量实验报告

一、实验目的1. 了解杨氏模量的概念及其在材料力学中的重要性。

2. 掌握杨氏模量的测定方法,即拉伸法。

3. 通过实验,验证胡克定律,并计算杨氏模量的值。

二、实验原理杨氏模量(E)是衡量材料在受到拉伸或压缩时抵抗变形能力的物理量。

根据胡克定律,在弹性范围内,应力(σ)与应变(ε)成正比,即σ = Eε。

其中,σ为应力,单位为帕斯卡(Pa);ε为应变,无单位;E为杨氏模量,单位为帕斯卡(Pa)。

实验中,通过测量金属丝在受到拉伸力作用下的伸长量,计算出应变和应力,进而求得杨氏模量。

三、实验仪器与材料1. 金属丝(直径已知)2. 杨氏模量测量仪(含拉伸装置、夹具、光杠杆、望远镜、标尺等)3. 千分尺4. 游标卡尺5. 砝码6. 计算器四、实验步骤1. 将金属丝固定在杨氏模量测量仪的拉伸装置上,确保金属丝处于水平状态。

2. 使用千分尺和游标卡尺测量金属丝的直径,记录数据。

3. 将砝码挂在金属丝上,逐渐增加砝码的质量,使金属丝受到拉伸力。

4. 观察光杠杆和望远镜,记录望远镜中观察到标尺刻度值的变化量(n)。

5. 计算金属丝的应力(σ)和应变(ε)。

6. 根据胡克定律,计算杨氏模量(E)。

7. 重复上述步骤,进行多次测量,取平均值作为实验结果。

五、实验数据与处理1. 金属丝直径:d = 1.000 mm2. 砝码质量:m = 0.100 kg3. 望远镜中观察到的标尺刻度值变化量:n = 0.050 mm4. 金属丝长度变化量:ΔL = n × d = 0.050 mm × 1.000 mm = 0.050 mm5. 金属丝的应力:σ = F/A = mg/d² = 0.100 kg × 9.8 m/s² / (1.000 mm × 1.000 mm) = 9.8 Pa6. 金属丝的应变:ε = ΔL/L = 0.050 mm / L其中,L为金属丝的原始长度,由游标卡尺测量得到。

杨氏模量测量实验报告

杨氏模量测量实验报告

杨氏模量测量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握光杠杆放大法测量微小长度变化的原理和方法。

3、学会使用游标卡尺、螺旋测微器等长度测量仪器。

4、学习数据处理和误差分析的方法。

二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。

对于一根长度为L、横截面积为 S 的均匀金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。

根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:Y =(F/S) /(ΔL/L) = FL /(SΔL)2、光杠杆放大原理光杠杆是一个附有三个尖足的平面镜,前两尖足放在平台的沟内,后尖足置于待测金属丝的测量端面上。

当金属丝伸长时,光杠杆后尖足随之下降,反射镜转动一个小角度θ,使反射光线偏转2θ。

通过望远镜和标尺可以测量出光线在标尺上移动的距离 n,从而计算出金属丝的伸长量ΔL。

设光杠杆常数(两前尖足间距离)为 b,镜面到标尺的距离为 D,则有:ΔL = nD / 2b三、实验仪器杨氏模量测量仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、待测金属丝等。

四、实验步骤1、仪器调节(1)调节杨氏模量测量仪的底座水平,使金属丝铅直。

(2)将光杠杆放在平台上,使其前两尖足位于平台的沟槽内,后尖足置于金属丝的测量端面上,调整光杠杆平面镜与平台垂直。

(3)调整望远镜和标尺的位置,使望远镜与平面镜等高,且望远镜的光轴与平面镜中心等高。

通过望远镜目镜看清十字叉丝,然后调节望远镜的焦距,直到能清晰地看到标尺的像。

2、测量金属丝的长度 L用米尺测量金属丝的有效长度 L,测量多次,取平均值。

3、测量金属丝的直径 d用螺旋测微器在金属丝的不同位置测量直径 d,测量多次,取平均值。

4、测量光杠杆常数 b用游标卡尺测量光杠杆两前尖足间的距离b,测量多次,取平均值。

5、测量望远镜到标尺的距离 D用米尺测量望远镜到标尺的距离 D。

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。

2、掌握用光杠杆法测量微小长度变化的原理和方法。

3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。

4、学会用逐差法处理实验数据。

二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。

设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。

当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。

通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。

三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。

四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。

(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。

(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。

然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。

(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杨氏模量实验报告Young's modulus experiment report( 实验报告)姓名:____________________ 单位:____________________ 日期:____________________编号:YB-BH-054125杨氏模量实验报告杨氏模量实验报告1【实验目的】1.1.掌握螺旋测微器的使用方法。

2.学会用光杠杆测量微小伸长量。

3.学会用拉伸法金属丝的杨氏模量的方法。

【实验仪器】杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺),水准器,钢卷尺,螺旋测微器,钢直尺。

1、金属丝与支架(装置见图1):金属丝长约0.5米,上端被加紧在支架的上梁上,被夹于一个圆形夹头。

这圆形夹头可以在支架的下梁的圆孔内自由移动。

支架下方有三个可调支脚。

这圆形的气泡水准。

使用时应调节支脚。

由气泡水准判断支架是否处于垂直状态。

这样才能使圆柱形夹头在下梁平台的圆孔转移动时不受摩擦。

2、光杠杆(结构见图2):使用时两前支脚放在支架的下梁平台三角形凹槽内,后支脚放在圆柱形夹头上端平面上。

当钢丝受到拉伸时,随着圆柱夹头下降,光杠杆的后支脚也下降,时平面镜以两前支脚为轴旋转。

图1 图2 图33、望远镜与标尺(装置见图3):望远镜由物镜、目镜、十字分划板组成。

使用实现调节目镜,使看清十字分划板,在调节物镜使看清标尺。

这是表明标尺通过物镜成像在分划板平面上。

由于标尺像与分划板处于同一平面,所以可以消除读书时的视差(即消除眼睛上下移动时标尺像与十字线之间的相对位移)。

标尺是一般的米尺,但中间刻度为0。

【实验原理】1、胡克定律和杨氏弹性模量固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。

如果外力后仍有残余形变,这种形变称为塑性形变。

应力:单位面积上所受到的力(F/S)。

应变:是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。

用公式表达为:(1)2、光杠杆镜尺法测量微小长度的变化在(1)式中,在外力的F的拉伸下,钢丝的伸长量DL是很小的量。

用一般的长度测量仪器无法测量。

在本实验中采用光杠杆镜尺法。

初始时,平面镜处于垂直状态。

标尺通过平面镜反射后,在望远镜中呈像。

则望远镜可以通过平面镜观察到标尺的像。

望远镜中十字线处在标尺上刻度为。

当钢丝下降DL时,平面镜将转动q角。

则望远镜中标尺的像也发生移动,十字线降落在标尺的刻度为处。

由于平面镜转动q角,进入望远镜的光线旋转2q 角。

从图中看出望远镜中标尺刻度的变化。

因为q角很小,由上图几何关系得:则:(2)由(1)(2)得:【实验内容及步骤】1、调杨氏模量测定仪底角螺钉,使工作台水平,要使夹头处于无障碍状态。

2、放上光杠杆,T形架的两前足置于平台上的沟槽内,后足置于方框夹头的平面上。

微调工作台使T形架的三足尖处于同一水平面上,并使反射镜面铅直。

3、望远镜标尺架距离光杠杆反射平面镜1.2~1.5m。

调节望远镜光轴与反射镜中心等高。

调节对象为望远镜筒。

4、初步找标尺的像:从望远镜筒外侧观察反射平面镜,看镜中是否有标尺的像。

如果没有,则左右移动支架,同时观察平面镜,直到从中找到标尺的像。

5、调节望远镜找标尺的像:先调节望远镜目镜,得到清晰的十字叉丝;再调节调焦手轮,使标尺成像在十字叉丝平面上。

6、调节平面镜垂直于望远镜主光轴。

7、记录望远镜中标尺的初始读数(不一定要零),再在钢丝下端挂0.320kg 砝码,记录望远镜中标尺读数,以后依次加0.320kg,并分别记录望远镜中标尺读数,直到7块砝码加完为止,这是增量过程中的读数。

然后再每次减少0.320kg砝码,并记下减重时望远镜中标尺的读数。

数据记录表格见后面数据记录部分。

8、取下所有砝码,用卷尺测量平面镜与标尺之间的距离R,钢丝长度L,测量光杠杆常数b(把光杠杆在纸上按一下,留下三点的痕迹,连成一个等腰三角形。

作其底边上的高,即可测出b)。

9、用螺旋测微器测量钢丝直径6次。

可以在钢丝的不同部位和不同的经向测量。

因为钢丝直径不均匀,截面积也不是理想的圆。

【实验注意事项】1、加减砝码时一定要轻拿轻放,切勿压断钢丝。

2、使用千分尺时只能用棘轮旋转。

3、用钢卷尺测量标尺到平面镜的垂直距离时,尺面要放平。

4、杨氏模量仪的主支架已固定,不要调节主支架。

5、测量钢丝长度时,要加上一个修正值,是夹头内不能直接测量的一段钢丝长度。

【实验数据处理】标尺最小分度:1mm 千分尺最小分度:0.01mm 钢卷尺最小分度:1mm 钢直尺最小分度:1mm表一外力mg与标尺读数序号i1234567m(kg)0.000 0.320 0.6400.9601.280 1.6001.9202.240 加砝码1.002.013.084.115.296.577.458.59 减砝码0.831.943.054.225.316.357.708.590.9151.9753.0654.1655.3006.4607.5758.59表二的逐差法处理序号I123(cm)4.3854.4854.5104.4254.451(cm)-0.0660.0330.059-0.026的A类不确定度:的B类不确定度:合成不确定度:所以:表三钢丝的直径d 千分尺零点误差: -0.001mm 次数1234560.1950.1940.1950.1930.1940.1950.19530.0007-0.00030.0007-0.0013-0.00030.0007的A类不确定度:的B类不确定度:合成不确定度:所以:计算杨氏模量不确定度:实验结果:【实验教学指导】1、望远镜中观察不到竖尺的像应先从望远筒外侧,沿轴线方向望去,能看到平面镜中竖尺的像。

若看不到时,可调节望远镜的位置或方向,或平面反射镜的角度,直到找到竖尺的像为止,然后,再从望远镜中找到竖尺的像。

2、叉丝成像不清楚。

这是望远镜目镜调焦不合适的缘故,可慢慢调节望远镜目镜,使叉丝像变清晰。

3、实验中,加减法时,测提对应的数值重复性不好或规律性不好。

(1) 金属丝夹头未夹紧,金属丝滑动。

(2)杨氏模量仪支柱不垂直,使金属丝端的方框形夹头与平台孔壁接触摩擦太大。

(3)加冯法码时,动作不够平稳,导致光杠杆足尖发生移动。

(4)可能是金属丝直径太细,加砝码时已超出弹性范围。

【实验随即提问】⑴根据Y的不确定度公式,分析哪个量的测量对测量结果影响最大。

答:根据由实际测量出的量计算可知对Y的测量结果影响最大,因此测此二量尤应精细。

⑵可否用作图法求钢丝的杨氏模量,如何作图。

答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。

由公式Y=可得:F= Y△n=KY△n。

式中K=可视为常数。

以荷重F为纵坐标,与之相应的ni为横坐标作图。

由上式可见该图为一直线。

从图上求出直线的斜率,即可计算出杨氏模量。

⑶怎样提高光杠杆的灵敏度?灵敏度是否越高越好?答:由Δn= ΔL可知,为光杠杆的放大倍率。

适当改变R和b,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;因为ΔL=Δn成立的条件是平面镜的转角θ很小(θ≤2.5°),否则tg2θ≠2θ。

要使θ≤2.5°,必须使b ≥4cm,这样tg2θ≈2θ引起的误差在允许范围内;而b尽量大可以减小这种误差。

如果通过减小b来增加放大倍数将引起较大误差⑷称为光杠杆的放大倍数,算算你的实验结果的放大倍数。

答:以实验结果计算光杠杆的放大倍数为杨氏模量实验报告2【预习重点】(1)杨氏模量的定义。

(2)利用光杠杆测量微小长度变化的原理和方法。

(3)用逐差法和作图法处理实验数据的方法。

【仪器】杨氏模量仪(包括砝码组、光杠杆及望远镜-标尺装置)、螺旋测微器、钢卷尺。

【原理】1)杨氏模量物体受力产生的形变,去掉外力后能立刻恢复原状的称为弹性形变;因受力过大或受力时间过长,去掉外力后不能恢复原状的称为塑性形变。

物体受单方向的拉力或压力,产生纵向的伸长和缩短是最简单也是最基本的形变。

设一物体长为L,横截面积为S,沿长度方向施力F后,物体伸长(或缩短)了δL。

F/S是单位面积上的作用力,称为应力,δL/L是相对变形量,称为应变。

在弹性形变范围内,按照胡克(Hooke Robert 1635—1703)定律,物体内部的应力正比于应变,其比值(5—1)称为杨氏模量。

实验证明,E与试样的长度L、横截面积S以及施加的外力F的大小无关,而只取决于试样的材料。

从微观结构考虑,杨氏模量是一个表征原子间结合力大小的物理参量。

2)用静态拉伸法测金属丝的杨氏模量杨氏模量测量有静态法和动态法之分。

动态法是基于振动的方法,静态法是对试样直接加力,测量形变。

动态法测量速度快,精度高,适用范围广,是国家标准规定的方法。

静态法原理直观,设备简单。

用静态拉伸法测金属丝的杨氏模量,是使用如图5—1所示杨氏模量仪。

在三角底座上装两根支柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。

整个支架受力后变形极小,可以忽略。

待测样品是一根粗细均匀的钢丝。

钢丝上端用卡头A夹紧并固定在上横梁上,钢丝下端也用一个圆柱形卡头B 夹紧并穿过平台C的中心孔,使钢丝自由悬挂。

通过调节三角底座螺丝,使整个支架铅直。

下卡头在平台C的中心孔内,其周围缝隙均匀而不与孔边摩擦。

圆柱形卡头下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸。

下卡头的上端面相对平台C的下降量,即是钢丝的伸长量δL。

钢丝的总长度就是从上卡头的下端面至下卡头的上端面之间的长度。

钢丝的伸长量δL是很微小的,本实验采用光杠杆法测量。

3)光杠杆光杠杆是用放大的方法来测量微小长度(或长度改变量)的一种装置,由平面镜M、水平放置的望远镜T和竖直标尺S组成(图5—1)。

平面镜M竖立在一个小三足支架上,O、O′是其前足,K是其后足。

K至OO′连线的垂直距离为b(相当于杠杆的短臂),两前足放在杨氏模量仪的平台C的沟槽内,后足尖置于待测钢丝下卡头的上端面上。

当待测钢丝受力作用而伸长δL时,后足尖K就随之下降δL,从而平面镜M也随之倾斜一个α角。

在与平面镜M相距D处(约1~2m)放置测量望远镜T和竖直标尺S。

如果望远镜水平对准竖直的平面镜,并能在望远镜中看到平面镜反射的标尺像,那么从望远镜的十字准线上可读出钢丝伸长前后标尺的读数n0和n1。

这样就把微小的长度改变量δL放大成相当可观的变化量δn=n1-n0。

从图5—2所示几何关系看,平面镜倾斜α角后,镜面法线OB 也随之转动α角,反射线将转动2α角,有在α很小的条件下tgα≈α;tg2α≈2α于是得光杠杆放大倍数(5—2)在本实验中,D为1m~2m,b约为7cm,放大倍数可达30~60倍。

光杠杆可以做得很精细,很灵敏,还可以采用多次反射光路,常在精密仪器中应用。

相关文档
最新文档