杨氏模量实验报告汇总

合集下载

测量杨氏模量实验报告

测量杨氏模量实验报告

测量杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握用光杠杆法测量微小长度变化的原理和方法。

3、学会使用望远镜、标尺和螺旋测微计等测量仪器。

4、学习数据处理和误差分析的方法。

二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。

设一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用下伸长了ΔL。

根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:\Y =\frac{FL}{S\Delta L}\由于金属丝的伸长量ΔL 很小,难以用常规的测量工具直接测量,本实验采用光杠杆法进行测量。

光杠杆是一个带有可旋转的平面镜的支架,其前足置于固定平台上,后足置于金属丝的测量端。

当金属丝伸长或缩短时,光杠杆的后足会随之升降,带动平面镜旋转一个微小角度θ。

通过望远镜观察经平面镜反射的标尺像,可以测量出标尺像的移动距离 n。

根据几何关系,有:\\tan\theta \approx \theta =\frac{n}{D}\其中 D 为光杠杆平面镜到标尺的距离。

又因为\(\Delta L =\frac{b}{2D}n\),其中 b 为光杠杆后足到两前足连线的垂直距离。

将\(\Delta L =\frac{b}{2D}n\)代入杨氏模量的表达式,可得:\Y =\frac{8FLD}{S\pi d^2 n b}\其中 d 为金属丝的直径。

三、实验仪器1、杨氏模量测量仪:包括底座、立柱、金属丝、光杠杆等。

2、望远镜及标尺:用于观测光杠杆反射的标尺像。

3、螺旋测微计:测量金属丝的直径。

4、游标卡尺:测量光杠杆后足到两前足连线的垂直距离 b 和金属丝的长度 L。

5、砝码若干:提供拉力。

四、实验步骤1、调整仪器调节杨氏模量测量仪底座水平,使金属丝竖直。

调整望远镜与光杠杆平面镜高度大致相同,使望远镜光轴与平面镜中心等高。

调节望远镜目镜,看清十字叉丝;调节望远镜物镜,使能清晰看到标尺的像。

钢丝杨氏模量的测定实验报告

钢丝杨氏模量的测定实验报告

钢丝杨氏模量的测定实验报告篇一:用拉伸法测钢丝杨氏模量——实验报告用拉伸法测钢丝杨氏模量——实验报告杨氏弹性模量测定仪;光杠杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。

【实验原理】1.杨氏弹性模量Y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大小的因素之一,是表征材料机械特性的物理量之一。

2.光杠杆原理伸长量Δl比较小,不易测准,本实验利用了光杠杆的放大原理对Δl进行测量。

利用光杠杆装置后,杨氏弹性模量Y可表示为:式中,F是钢丝所受的力,l是钢丝的长度,L是镜面到标尺间的距离,d是钢丝的直径,b是光杠杆后足到两前足尖连线的垂直距离,Δn是望远镜中观察到的标尺刻度值的变化量。

3. 隔项逐差法隔项逐差法为了保持多次测量优越性而采用的数据处理方法。

使每个测量数据在平均值内都起到作用。

本实验将测量数据分为两组,每组4个,将两组对应的数据相减获得4个Δn,再将它们平均,由此求得的Δn 是F 增加4千克力时望远镜读数的平均差值。

【实验步骤】1.调整好杨氏模量测量仪,将光杠杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光杠杆平面镜倾斜。

2.调整望远镜。

调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。

3.在钢丝下加两个砝码,以使钢丝拉直。

记下此时望远镜中观察到的直尺刻度值,此即为n0 值。

逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记数据,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。

4. 用米尺测量平面镜到直尺的距离L;将光杠杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。

杨氏模量的测量实验报告

杨氏模量的测量实验报告
(3)数据处理
由于在测量C时采取了等间距测量,适合用逐差法处理,故采用逐差法对视伸长C求平均值,并估算不确定度。其中L、H、b只测量一次,由于实验条件的限制,其不确定度不能简单地由量具仪器规定的误差限决定,而应该根据实际情况估算仪器误差限。
对于直径为D的圆柱形钢丝,其弹性模量为:
E?
4FL
πD2?L
根据上式,测出等号右边各量,杨氏模量便可求得。式中的F、D、L三个量都可用一般方法测得。唯有?L是一个微小的变化量,用一般量具难以测准。故而本实验采用光杠杆法进行间接测量。 (2)光杠杆放大原理
光杠杆测量系统由光杠杆反射镜、倾角调节架、标尺、望远镜和调节反射镜组成。实验时,将光杠杆两个前足尖放在弹性模量测定仪的固定平台上,后足尖放在待测金属丝的测量端面上。当金属丝受力后,产生微小伸长,后足尖便随着测量端面一起作微小移动,并使得光杠杆绕前足尖转动一个微小角度,从而带动光杠杆反射镜转动相应的微小角度,这样标尺的像在光杠杆反射镜和调节反射镜之间反射,便把这一微小角位移放大成较大的线位移。
二、实验仪器
弹性模量测定仪(包括:细钢丝、光杠杆、望远镜、标尺和拉力测量装置);钢卷尺、螺旋测微器、游标卡尺。
三、实验原理
(1)杨氏弹性模量定义式
任何固体在外力作用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。设金属丝的长度为L,截面积为S,一端固定,一端在伸长方向上受力为F,伸长为△L。
2
?2.024?10N/cm
那么有最大不确定度
?EE=?DD
+?LL+?MM
+2?dd
+?ll+?bb?
21262.0
+
2941.0

杨氏模量实验报告实验原理(3篇)

杨氏模量实验报告实验原理(3篇)

第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。

在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。

本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。

二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。

其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。

应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。

应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。

2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。

3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。

具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。

(2)测量金属样品的原始长度L0和受力后的长度L。

(3)计算金属样品的形变长度ΔL = L - L0。

(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。

(5)计算应变ε = ΔL / L0。

(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。

三、实验仪器1. 拉伸试验机:用于施加拉伸力F。

2. 样品夹具:用于固定金属样品。

3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。

4. 计算器:用于计算应力、应变和杨氏模量。

四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。

2. 调整拉伸试验机,使其施加一定的拉伸力F。

3. 测量金属样品的原始长度L0。

4. 拉伸金属样品,使其受力后的长度L。

大学物理实验金属杨氏模量实验报告

大学物理实验金属杨氏模量实验报告

大学物理实验金属杨氏模量实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏模量。

2、掌握用光杠杆放大原理测量微小长度变化的方法。

3、学会用逐差法处理实验数据。

二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。

对于一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。

根据胡克定律,在弹性限度内,应力与应变成正比,即:\F/S = Y \times \Delta L/L\其中,Y 为杨氏模量。

2、光杠杆放大原理光杠杆是一个带有可旋转平面镜的支架。

将金属丝的微小伸长量ΔL 转化为光杠杆平面镜的转角θ,再通过测量平面镜反射光线在标尺上的移动距离Δn,就可以计算出微小伸长量ΔL。

根据几何关系,有:\\Delta L = b \times \Delta n / 2D \其中,b 为光杠杆前后脚的距离,D 为平面镜到标尺的距离。

三、实验仪器杨氏模量测量仪、光杠杆、望远镜、直尺、砝码、螺旋测微器、游标卡尺等。

四、实验步骤1、调整仪器(1)将杨氏模量测量仪的底座调水平,使金属丝竖直。

(2)调整光杠杆平面镜与平台垂直,望远镜与平面镜等高,并使望远镜水平对准平面镜。

2、测量金属丝长度 L用直尺测量金属丝的长度,重复测量三次,取平均值。

3、测量金属丝直径 d用螺旋测微器在金属丝的不同位置测量直径,共测量六次,取平均值。

4、测量光杠杆前后脚距离 b用游标卡尺测量光杠杆前后脚的距离,测量一次。

5、测量平面镜到标尺的距离 D用直尺测量平面镜到标尺的距离,测量一次。

6、加砝码测量依次增加砝码,每次增加相同质量,记录对应的标尺读数。

7、减砝码测量依次减少砝码,记录对应的标尺读数。

五、实验数据记录与处理1、原始数据记录(1)金属丝长度 L =______ cm(2)金属丝直径 d(单位:mm)|测量次数|1|2|3|4|5|6||||||||||直径|_____|_____|_____|_____|_____|_____|(3)光杠杆前后脚距离 b =______ cm(4)平面镜到标尺的距离 D =______ cm(5)砝码质量 m =______ kg|砝码个数|0|1|2|3|4|5|6|7|8||||||||||||增加砝码时标尺读数 n1(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____||减少砝码时标尺读数 n2(单位:cm)|_____|_____|_____|_____|_____|_____|_____|_____|2、数据处理(1)计算金属丝直径的平均值\d_{平均} =\frac{d_1 + d_2 +\cdots + d_6}{6}\(2)计算金属丝横截面积 S\S =\frac{\pi d_{平均}^2}{4}\(3)计算增加砝码时的伸长量Δn1\\Delta n_1 =\frac{n_1 n_0}{8} \(4)计算减少砝码时的伸长量Δn2\\Delta n_2 =\frac{n_8 n_7}{8} \(5)计算平均伸长量Δn\\Delta n =\frac{\Delta n_1 +\Delta n_2}{2} \(6)计算杨氏模量 Y\ Y =\frac{8mgLD}{\pi d_{平均}^2 b \Delta n} \3、不确定度计算(1)测量金属丝长度 L 的不确定度\\Delta L =\frac{\Delta L_1 +\Delta L_2 +\Delta L_3}{3} \(2)测量金属丝直径 d 的不确定度\\Delta d =\sqrt{\frac{\sum_{i=1}^6 (d_i d_{平均})^2}{6(6 1)}}\(3)测量光杠杆前后脚距离 b 的不确定度\\Delta b =\Delta b_1 \(4)测量平面镜到标尺的距离 D 的不确定度\\Delta D =\Delta D_1 \(5)计算伸长量Δn 的不确定度\\Delta \Delta n =\sqrt{\frac{\sum_{i=1}^8 (n_i \overline{n})^2}{8(8 1)}}\(6)计算杨氏模量 Y 的不确定度\\Delta Y = Y \sqrt{(\frac{\Delta L}{L})^2 +(\frac{2\Delta d}{d})^2 +(\frac{\Delta b}{b})^2 +(\frac{\Delta D}{D})^2 +(\frac{\Delta \Delta n}{\Delta n})^2} \4、实验结果表达\ Y = Y_{平均} \pm \Delta Y \六、误差分析1、测量误差(1)测量金属丝长度、直径、光杠杆前后脚距离、平面镜到标尺的距离时存在读数误差。

杨氏模量测量实验报告

杨氏模量测量实验报告

杨氏模量测量实验报告【实验名称】:杨氏模量测量实验【实验目的】:1.了解杨氏模量的定义和物理意义;2.掌握用实验方法测量杨氏模量的原理和步骤;3.熟练掌握实验仪器的使用方法和注意事项;4.学会分析处理实验数据,计算出被测物体的杨氏模量。

【实验仪器】:万能试验机、游标卡尺、数显卡尺、电子天平等。

【实验原理】:杨氏模量是描述物体抗拉性质的一个重要指标,它可以衡量物体在受到拉伸或压缩作用下的刚性程度。

在实验中,我们采用悬挂法来测量杨氏模量,具体步骤如下:1. 将被测物体悬挂在两个支点之间,保持水平,使其自由悬挂;2. 加上一定的负荷,在达到恒定的应力状态后,记录物体的长度变化量;3. 根据胡克定律,计算出物体所受的拉力大小,并根据形变和拉力的关系求出物体的杨氏模量。

【实验步骤】:1.准备工作(1)清洗被测物体表面,去除污垢和氧化层。

(2)使用游标卡尺或数显卡尺等测量被测物体的直径、长度等尺寸参数,并记录下来。

(3)悬挂被测物体到万能试验机的上夹具,保证其自由悬挂并水平。

2.实验操作(1)在万能试验机上加负荷,使被测物体达到恒定的应力状态。

(2)记录被测物体的长度变化量,并计算出拉力大小。

(3)根据拉力和形变的关系,求出被测物体的杨氏模量。

3.数据处理(1)根据实验所得数据,绘制出应力-应变曲线。

(2)通过斜率法或者曲线拟合法,求出被测物体的杨氏模量。

4.实验注意事项(1)掌握好实验仪器的使用方法,严格按照实验流程进行操作,以免发生意外。

(2)保持被测物体的表面光滑干净,避免影响实验结果。

(3)在实验过程中,需要注意对温度、湿度等因素的控制,以保证实验结果的准确性。

【实验结果】:本实验所测得被测物体的杨氏模量为XXX。

根据计算结果和应力-应变曲线,可以看出所测物体具有较好的抗拉性能和刚性特性。

杨氏模量测量实验总结

杨氏模量测量实验总结

杨氏模量测量实验总结引言杨氏模量是描述材料抗弯刚度的物理量,是工程设计和材料科学中非常重要的参数之一。

为了准确测量杨氏模量,我们进行了一系列实验。

本文将对相关实验进行总结和分析,并对实验结果进行讨论。

实验目的本实验的目的是测量材料的杨氏模量,通过实验数据的分析,验证材料的力学性能和材料的适用范围。

同时,本实验也是针对杨氏模量的测量方法和原理进行的验证和研究。

实验装置和方法实验使用的装置为弯曲测力装置,主要包括测力传感器、加载装置和数据采集系统。

实验步骤如下:1.将待测材料固定在加载装置上。

2.通过数据采集系统对测力传感器进行校准。

3.施加不同的力加载到待测材料上,并记录相应的变形量和加载力。

4.根据加载力和变形量的关系,计算出杨氏模量。

实验结果在本次实验中,我们选择了两种不同材料进行测量,分别是钢材和铝材。

实验数据如下所示:钢材测量结果加载力变形量100 N 0.1 mm200 N 0.2 mm300 N 0.3 mm铝材测量结果加载力变形量100 N 0.05 mm200 N 0.1 mm300 N 0.15 mm根据实验数据,我们可以计算出杨氏模量,计算公式如下:杨氏模量 = 加载力 / (变形量 * 断面积)其中,断面积可以通过材料的几何尺寸计算得到。

经过计算,得到钢材的杨氏模量为 2.0 GPa,铝材的杨氏模量为 0.5 GPa。

结果分析和讨论根据实验结果,可以发现钢材的杨氏模量大于铝材的杨氏模量。

这与钢材和铝材的力学性质相一致,钢材的抗弯刚度更大,因此杨氏模量更高。

同时,通过比较不同加载力下的变形量,可以观察到变形量随加载力的增加而增加。

这表明随着外力的增加,材料发生弯曲的程度也随之增大。

然而,本实验结果的准确性可能受到一些因素的影响,例如装置的精度、测量误差等。

因此,未来的实验可以进一步优化实验装置,提高实验数据的准确性。

结论本次实验通过测量钢材和铝材的杨氏模量,验证了材料的力学性质和适用范围。

杨氏模量_实验报告

杨氏模量_实验报告

一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。

2. 掌握杨氏模量的测定方法,即拉伸法。

3. 培养实验操作技能和数据处理能力。

二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。

根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。

本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。

三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。

2. 调整螺栓,使金属丝处于铅直状态。

3. 使用游标卡尺测量金属丝的直径,并记录数据。

4. 将望远镜和标尺放置在光杠杆前方约1.2m处。

5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。

6. 观察望远镜中的标尺像,记录初始像的位置。

7. 挂上重物,使金属丝产生一定的伸长量。

8. 观察望远镜中的标尺像,记录新的像的位置。

9. 计算金属丝的伸长量,并记录数据。

10. 重复步骤7-9,进行多次测量,取平均值。

五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。

2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。

3. 根据公式E = F/S ΔL/L,计算杨氏模量E。

4. 计算多次测量的平均值,并求出标准偏差。

六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学物理实验报告
课程名称:大学物理实验
实验名称:金属丝杨氏模量的测定
学院:食品学院专业班级:食品科学与工程152班
学生姓名:彭超学号: 5603115045 实验地点:基础实验大楼B106 座位号:
实验时间:第四周星期二下午十六点开始
)调节测定仪支架螺丝,使支架竖直,使夹头刚好穿过平台上的圆孔而不会与平台发生摩擦(1 )将杠杆后尖脚置于夹头上,两尖脚置于平台凹槽上(2 )调节光杠杆与望远镜、米尺中部在同一高度上(3)调节望远镜的位置或光杠杆镜面仰角,直至眼睛在望远镜目镜附近能直接(不通过望远镜筒)从4(光杠杆镜面中观察到标尺中部的像)细微调节望远镜方位和仰角调节螺丝,直至望远镜上缺口与准星连线粗略对准光杠杆镜面(5 (6)调节望远镜目镜调焦旋钮,直至在望远镜中能看清叉丝。

)调节望远镜的物镜调焦旋钮直至在望远镜中能看清整个镜面。

(如果只能看到部分镜面,应调节7(望远镜仰角调节螺丝,直至看到整个镜面)。

8)继续调节望远镜的物镜调焦旋钮,直至在望远镜中能看清标尺中部读数。

()如果只有部分标尺清楚,说明只有部分标尺聚焦,应调节望远镜仰角调节螺丝直至视野中标尺读(9 数完全清楚。

四、实验内容和步骤:个底脚螺丝,同时观察砝码挂在钢丝下端钢丝拉直,调节杨氏模量仪底盘下面的32kg(1)用放在平台上的水准尺,直至中间平台处于水平状态为止。

)调节光杠杆镜位置。

将光杆镜放在平台上,两前脚放在平台横槽内,后脚放在固定钢丝下(2端圆柱形套管上(注意一定要放在金属套管的边上,不能放在缺口的位置),并使光杠杆镜镜面基本所示。

垂直或稍有俯角,如图6-1左右处,松开望远镜固定螺钉,上下移动使得望远2m(3)望远镜调节。

将望远镜置于距光杆镜移动望远镜固定架位置,从望远镜筒上方沿镜筒轴线瞄准光杠杆镜面,镜和光杠杆镜的镜面基本等高。

直至可以看到光杠杆镜中标尺的像。

然后再从目镜观察,先调节目镜使十字叉丝清晰,最后缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至从望远镜里可以看到清晰的标尺刻度为止。

n砝,然后每加上1kg砝码时的读数作为开始拉伸的基数(4)观测伸长变化。

以钢丝下挂
2kg0n,n,n,n,n,n,n,n这是钢丝拉伸过程中的读数变, 这样依次可以得到码,读取一次数据, 76543210''''''''nnnnnnnn砝码,读取一次数据,依次得到1kg化。

紧接着再每次撤掉,这是钢丝收缩过程中50671342的读数变化。

注意:加、减砝码时,应轻放轻拿,避免钢丝产生较大幅度振动。

加(或减)砝码后,钢丝会有。

相关文档
最新文档