2020高考数学一轮复习第2章函数导数及其应用第3讲函数的奇偶性与周期性增分练
2020版高考数学一轮复习第二章函数、导数及其应用2.3函数的奇偶性与周期性课件理新人教版

最小值为 m,则 M+m 等于( C )
A.0
B.2
C.4
D.8
【解析】 (1)解法 1:由 f(x)是奇函数知 f(-x)=-f(x),所 以 a-e-x2+1=-a+ex+2 1,得 2a=ex+2 1+e-x2+1,所以 a=ex+1 1 +ex+ex 1=1,所以 f(x)=1-ex+2 1.因为 ex+1>1,所以 0<ex+1 1<1, -1<1-ex+2 1<1,所以函数 f(x)的值域为(-1,1).故选 A.
方向 1 函数奇偶性的判断
【例 1】 (2019·福州市一模)下列函数为偶函数的是( B )
A.y=tan(x+π4) B.y=x2+e|x| C.y=xcosx D.y=ln|x|-sinx
【解析】 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数; 对于选项 B,设 f(x)=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|= f(x),所以 y=x2+e|x|为偶函数;对于选项 C,设 f(x)=xcosx,则 f(-x)=-xcos(-x)=-xcosx=-f(x),所以 y=xcosx 为奇函数; 对于选项 D,设 f(x)=ln|x|-sinx,则 f(2)=ln2-sin2,f(-2)=ln2 -sin(-2)=ln2+sin2≠f(2),所以 y=ln|x|-sinx 为非奇非偶函数, 故选 B.
3.(必修 1P39A 组第 6 题改编)已知函数 f(x)是定义在 R 上的奇函
数,且当 x>0 时,f(x)=x2+1x,则 f(-1)等于( A )
A.-2
B.0
C.1
D.2
解析:f(-1)=-f(1)=-(1+1)=-2.
高考数学大一轮总复习 第二章 函数、导数及其应用 2.3 函数的奇偶性与周期性名师课件 文 北师大版

4.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是_(_-__1_,0_)_∪__(_1_,__+__∞__)____。
解 析 画 草 图 , 由 f(x) 为 奇 函 数 知 : f(x)>0 的 x 的 取 值 范 围 为 ( - 1,0)∪(1,+∞)。
③由 x+ x2+1>x+|x|≥0 知 f(x)=ln(x+ x2+1)的定义域为 R,
又 f(-x)=ln(-x+ -x2+1)
=ln x+ 1x2+1=-ln(x+ x2+1)=-f(x),
则 f(x)=ln(x+ x2+1)为奇函数;
④由11- +xx>0,得-1<x<1,即 f(x)=ln 11- +xx的定义域为(-1,1),
得,定义域为(-1,1],关于原点不对称,故
f(x)为非奇非偶函数。
②f(x)=|lxg-1- 2|-x22 ; 【解】 由1|x--x22|>≠0,2 得,定义域为(-1,0)∪(0,1),关于原点对称。 ∴x-2<0。∴|x-2|-2=-x。∴f(x)=lg1--xx2。 又∵f(-x)=lg [1-x-x2]=-lg1--xx2=-f(x), ∴函数 f(x)为奇函数。
22xx+ -1a,即 1-a·2x=-2x+a,化简得 a·(1+2x)=1+2x,所以 a=1,f(x)
=22xx+ -11。由 f(x)>3 得 0<x<1。故选 C。
【答案】 C
(4)已知f(x)是R上的奇函数,且当x>0时,f(x)=x2-x-1,则f(x)的解
x2-x-1 x>0,
变式训练2 (1)(2016·九江模拟)已知f(x)是奇函数,g(x)是偶函数,且
高三数学一轮总复习 第二章 函数、导数及其应用 2.3 函数的奇偶性与周期性课件.ppt

8
3 条结论——与周期性和对称性有关的三条结论 (1)若对于 R 上的任意 x 都有 f(2a-x)=f(x)或 f(-x)=f(2a+x),则 y=f(x)的图象 关于直线 x=a 对称。 (2)若对于 R 上的任意 x 都有 f(2a-x)=f(x),且 f(2b-x)=f(x)(其中 a<b),则 y =f(x)是以 2(b-a)为周期的周期函数。 (3)若对于定义域内的任意 x 都有 f(x+a)=f(x+b)(a≠b),则函数 f(x)是周期函数, 其中一个周期为 T=2|a-b|。
那么函数 f(x)就叫做奇函数。
(3)奇函数的图象关于□3 ___原__点_____对称;偶函数的图象关于□4 ___y__轴_______对
称。
5
2.奇函数、偶函数的性质
(1)奇函数在关于原点对称的区间上的单调性□5 相__同__,偶函数在关于原点对称的 区间上的单调性□6 ___相__反___。
答案:13
13
5.设函数 f(x)=x3cosx+1。若 f(a)=11,则 f(-a)=__________。 解析:令 g(x)=f(x)-1=x3cosx, ∵g(-x)=(-x)3cos(-x)=-x3cosx=-g(x), ∴g(x)为定义在 R 上的奇函数。又∵f(a)=11, ∴g(a)=f(a)-1=10,g(-a)=-g(a)=-10。 又 g(-a)=f(-a)-1, ∴f(-a)=g(-a)+1=-9。 答案:-9
《金版新学案》高三数学一轮复习 第2章 函数、导数及其应用第3课时 函数的奇偶性与周期性精品课件 理

• 2.对于有些复杂的函数,有时需要将函数进行化简或应用定义的等价
形式:f(-x)=±f(x)⇔f(-x)∓f(x)=0⇔
=±1(f(x)≠0).
• 3.对于分段函数的奇偶性的判断应分段逐一判断,然后统一下结论.
判断下列函数的奇偶性: (1)f(x)=|x|(x2+1);(2)f(x)= x+1x;
• (2)对函数周期性的考查,主要涉及判断函数的周期、利用周期性 求函数值,以及解决与周期有关的函数综合问题.充分利用题目 提供的信息,迁移到有定义的范围上进行求值是解答此类问题的 关键.
• (2010·全国新课标卷)设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x- 2)>0}=( )
(2)∵f(x)的定义域为[-2,2], -2≤1-m≤2
∴有-2≤1-m2≤2 , 解得-1≤m≤ 3 ① 又f(x)为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减, ∴f(1-m)<-f(1-m2)=f(m2-1)⇒1-m>m2-1, 即-2<m<1 ② 综合①②可知,-1≤m<1.
值是( )
A.-13
1 B.3
1 C.2
D.-12
解析: ∵函数f(x)=ax2+bx在x∈[a-1,2a]上为偶函数,
∴b=0,且a-1+2a=0,即b=0,a=13.
∴a+b=13. 答案: B
• 3.已知f(x)在R上满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则 f(2 013)=( )
数;
• 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数, 即非奇非偶函数.
• 【思考探究】 奇函数、偶函数的定义域具有什么特点?它是函 数具有奇偶性的什么条件?
2020版高考数学总复习第二篇函数导数及其应用第3节函数的奇偶性与周期性应用能力提升理含解析

第3节函数的奇偶性与周期性【选题明细表】知识点、方法题号函数奇偶性的判定1,2函数周期性的应用6,8,9函数的奇偶性的应用3,5,7,10,12,13函数基本性质的综合应用4,11,14,15,16基础巩固(建议用时:25分钟)1.(2018·辽宁省大连本溪联考)函数y=x2lg 的图象( B )(A)关于x轴对称 (B)关于原点对称(C)关于直线y=x对称 (D)关于y轴对称解析:记f(x)=x2lg ,定义域为(-∞,-2)∪(2,+∞),f(-x)=(-x)2lg =x2lg=-x2lg =-f(x),所以f(x)为奇函数,即函数y=x2lg 的图象关于原点对称.故选B.2.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( C )(A)f(x)g(x)是偶函数 (B)|f(x)|g(x)是奇函数(C)f(x)|g(x)|是奇函数(D)|f(x)g(x)|是奇函数解析:f(x)是奇函数,则f(-x)=-f(x),g(x)是偶函数,则g(-x)=g(x),则f(-x)g(-x)=-f(x)g(x),选项A错;|f(-x)|g(-x)=|f(x)|g(x),选项B错;f(-x)|g(-x)|=-f(x)|g(x)|,选项C正确;|f(-x)·g(-x)|=|f(x)g(x)|,选项D错.3.(2018·浙江省宁波市高三模拟)若函数f(x)=ax2+(2a2-a-1)x+1为偶函数,则实数a的值为( C )(A)1 (B)-(C)1或-(D)0解析:a=0时,f(x)=-x+1不是偶函数,a≠0时,二次函数f(x)=ax2+(2a2-a-1)x+1的对称轴为x=-,若f(x)为偶函数,则-=0,得a=1或a=-,故选C.4.(2018·河南中原名校高考一模)已知函数y=f(x),满足y=f(-x)和y=f(x+2)是偶函数,且f(1)=,设F(x)=f(x)+f(-x),则F(3)等于( B )(A)(B)(C)π(D)解析:由题意得f(-x)=f(x),f(x+2)=f(-x+2)=f(x-2),故f(x)=f(x+4).则F(3)=f(3)+f(-3)=2f(3)=2f(-1)=2f(1)=,故选B.5.(2018·山西省六校第四次联考)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=3x-7x+2b(b 为常数),则f(-2)等于( A )(A)6 (B)-6 (C)4 (D)-4解析:因为f(x)为奇函数,所以f(-2)=-f(2)=-(32-7×2+2b)=5-2b,又奇函数f(x)在x=0处有意义,所以f(0)=30-7×0+2b=0,所以2b=-1,所以f(-2)=6.故选A.6.(2018·湖南九月调研)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2 018) 的值等于( B )(A)403 (B)405 (C)806 (D)809解析:定义在R上的函数f(x),满足f(x+5)=f(x),即函数的周期为5.当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.f(1)+f(2)+f(3)+…+f(2 018)=403×(f(1)+f(2)+f(3)+f(4)+f(5))+f(2 016)+f(2 017)+f(2 018)=403×1+f(1)+f(2)+f(3)=403+0+1+1=405.故选B.7.(2018·江西省六校联考)设函数f(x)是定义在R上的奇函数,且f(x)=则g[f(-8)] 等于( A )(A)-1 (B)-2 (C)1 (D)2解析:因为f(x)是奇函数,所以f(-8)=-f(8)=-log39=-2,所以g[f(-8)]=g(-2)=f(-2)=-f(2)=-log33=-1.故选A.8.(2018·云南玉溪市高考模拟)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈(4,6]时f(x)=2x+1,则f(x)在区间[-2,0)上的表达式为( B )(A)f(x)=2x+1 (B)f(x)=-2-x+4-1(C)f(x)=2-x+4+1 (D)f(x)=2-x+1解析:当x∈[-2,0)时,-x∈(0,2],所以-x+4∈(4,6].又因为当x∈(4,6]时,f(x)=2x+1,所以f(-x+4)=2-x+4+1.又因为f(x+4)=f(x),所以函数f(x)的周期为T=4.所以f(-x+4)=f(-x).又因为函数f(x)是R上的奇函数,所以f(-x)=-f(x).所以-f(x)=2-x+4+1,所以当x∈[-2,0)时,f(x)=-2-x+4-1.故选B.9.(2018·山东省菏泽市高三上学期期中)已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=9x,则f(-)+f(2)= .解析:因为函数f(x)是定义在R上的周期为2的奇函数,所以f(-)=f(--2)=f(-)=-f(),又当0<x<1时,f(x)=9x,所以f(-)=-=-3,又f(2)=f(0)=0,所以f(-)+f(2)=-3.答案:-310.(2018·河南省中原名校质检)已知函数f(x)=asin x++c,x∈[-5π,0)∪(0,5π],若f(1)+f(-1)=4 034,则c= .解析:令g(x)=f(x)-c=asin x+,易知g(x)是奇函数,则g(1)+g(-1)=0,即f(1)-c+f(-1)-c=0,所以c==2 017.答案:2 017能力提升(建议用时:25分钟)11.(2018·陕西省西工大模拟)已知函数f(x)=2sin x-3x,若对任意m∈[-2,2],f(ma-3)+f(a2)>0恒成立,则a的取值范围是( A )(A)(-1,1)(B)(-∞,-1)∪(3,+∞)(C)(-3,3)(D)(-∞,-3)∪(1,+∞)解析:因为f(x)=2sin x-3x,所以f′(x)=2cos x-3<0,则f(x)是一个单调递减函数,而f(-x)=2sin(-x)+3x=-f(x),所以f(x)是一个奇函数,因为f(ma-3)+f(a2)>0,所以f(ma-3)>-f(a2)=f(-a2),所以ma-3<-a2,因为m∈[-2,2],所以所以所以-1<a<1.故选A.12.(2018·安徽省亳州市高三质量检测)已知f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数,若F(x)=f(x)·[g(x)-1],则F(-2)+F(2)等于( A ) (A)0 (B)2 (C)-2 (D)4解析:F(-x)=f(-x)[g(-x)-1]=-f(x)[g(x)-1]=-F(x),所以F(x)是奇函数,所以F(-2)+F(2)=0,故选A.13.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( B )(A)2 (B)(C)(D)a2解析:因为f(x)为奇函数,g(x)为偶函数,所以f(-2)=-f(2),g(-2)=g(2)=a,因为f(2)+g(2)=a2-a-2+2,①所以f(-2)+g(-2)=g(2)-f(2)=a-2-a2+2,②由①、②联立得g(2)=a=2,f(2)=a2-a-2=.14.(2018·山东济宁一模)已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1.则f(2 017)+f(2 018)的值为( D )(A)-2 (B)-1 (C)0 (D)1解析:因为函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,所以f(-x)=-f(x),由图象关于x=1对称,得f(1+x)=f(1-x),即f(x)=f(2-x)=-f(-x).所以f(4-x)=-f(2-x)=f(-x),所以周期是T=4.因为当x∈[0,1]时,f(x)=2x-1.所以f(2 017)+f(2 018)=f(1)+f(2)=f(1)-f(0)=2-1-1+1=1.故选D.15.已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lg x,设a=f(),b=f(),c=f(),则( A )(A)c<a<b (B)a<b<c(C)b<a<c (D)c<b<a解析:a=f()=f(-)=-f()=-lg =lg ,b=f()=f(-)=-f()=-lg=lg 2,c=f()=f()=lg ,因为2>>,所以lg 2>lg>lg,所以b>a>c.16.(2018·河北石家庄二中八月模拟)已知函数f(x)满足对任意实数m,n,都有f(m+n)=f(m)+f(n)-1,设g(x)=f(x)+(a>0,a≠1),若g(ln 2 017)=2 018,则g(ln)等于( D )(A)2 017 (B)2 018 (C)-2 016 (D)-2 015解析:因为f(m+n)=f(m)+f(n)-1,令m=n=0,得f(0)=1,再令m=x,n=-x,得f(x)+f(-x)=2,设h(x)=,则h(-x)=,得h(x)+h(-x)=1,所以g(x)+g(-x)=f(x)+h(x)+f(-x)+h(-x)=3,所以g(ln)=g(-ln 2 017)=3-g(ln 2 017)=3-2 018=-2 015.故选D.。
高考数学一轮总复习第2章函数、导数及其应用2.3函数的

由题意知 f( - 2) = f(2) = 0 ,当 x ∈ ( - 2,0] 时,
f(x)<f( - 2) = 0 ,由对称性知, x ∈ [0,2) 时, f(x) 为增函数, f(x)<f(2)=0,故 x∈(-2,2)时,f(x)<0,故选 B.
x 4.若函数 f(x)= 为奇函数,则 a=( 2x+1x-a 1 A.2 2 B.3 3 C.4 D.1
[ 双基夯实] 一、疑难辨析 判断下列结论的正误. ( 正确的打“√”,错误的打 “×”) 1.偶函数图象不一定过原点,奇函数的图象一定过原 点.( × ) 2.定义域关于原点对称是函数具有奇偶性的一个必要 条件.( √ )
3.函数 y= 数.( × )
1 -x +
x-1 既 是 奇 函 数 又 是 偶 函
解析
) B.f(-1)>f(-2) D.f(-2)=f(1)
∵f(1)<f(2),∴-f(1)>-f(2),又∵f(x)是奇函数,
∴f(-1)>f(-2),故选 B.
3.[2017· 福建模拟] 若函数 f(x)是定义在 R 上的偶函数, 在(-∞,0]上是减函数,且 f(2)=0,则使得 f(x)<0 的 x 的 取值范围是( ) B.(-2,2) D.(2,+∞) A.(-∞,2) C.(-∞,-2)∪(2,+∞)
第2章 函数、导数及其应用
第3讲 函数的奇偶性与周期性
板块一 知识梳理· 自主学习
[ 必备知识] 考点 1 函数的奇偶性
考点 2
函数的周期性
1.周期函数 对于函数 y=f(x),如果存在一个非零常数 T,使得当 x f(x+T)=f(x) 取定义域内的任何值时, 都有 , 那么就称 函数 y=f(x)为周期函数,称 T 为这个函数的周期. 2.最小正周期 如果在周期函数 f(x) 的所有周期中存在一个 最小 的 正数,那么这个
高考数学一轮总复习 第二章 函数、导数及其应用 第三节 函数的奇偶性与周期性课件 文
答案:D
(2)(2014·课标全国Ⅰ卷)设函数 f(x),g(x)的定义域都为 R,且 f(x) 是奇函数,g(x)是偶函数,则下列结论中正确的是( )
第三节 函数的奇偶性与周期性
函数奇偶性的判断
判断下列函数的奇偶性
(1)f(x)= 3-x2+ x2-3; (2)f(x)=lg|(x-1-2|-x22);
(3)f(x)=x-2+x2x+,x,
x<0, x>0.
解:(1)由3x-2-x32≥≥00得 x2=3,所以 x=± 3, 即函数 f(x)的定义域为{- 3, 3}, 从而 f(x)= 3-x2+ x2-3=0. 因此 f(-x)=-f(x)且 f(-x)=f(x), 所以函数 f(x)既是奇函数又是偶函数. (2)由1|x--x22|>≠02,得,定义域为(-1,0)∪(0,1). ∴x-2<0,∴|x-2|-2=-x, ∴f(x)=lg(1--xx2). 又∵f(-x)=lg[1-(x-x)2]=-lg(1--xx2)=-f(x),
C.y=2x+21x
D.y=x2+sin x
解析:A 项,定义域为 R,f(-x)=-x-sin 2x=-f(x),为奇函 数,故不符合题意;
B 项,定义域为 R,f(-x)=x2-cos x=f(x),为偶函数,故不符 合题意;
C 项,定义域为 R,f(-x)=2-x+21-x=2x+21x=f(x),为偶函数, 故不符合题意;
C.{x|x<0,或 x>4} D.{x|0<x<4}
解析:(1)因为 f(x)为定义在 R 上的奇函数,所以有 f(0)=20+2×0 +b=0,解得 b=-1,所以当 x≥0 时,f(x)=2x+2x-1,所以 f(- 1)=-f(1)=-(21+2×1-1)=-3.
高考数学一轮总复习第二章函数导数及其应用2.3函数的奇偶性与周期性课件理
2
基础自主梳理
第五页,共47页。
「基础知识填一填」
1.函数的奇偶性
奇偶性
定义
图象特点
如果对于函数 f(x)的定义域内任 偶函数 意一个 x,都有 f(-x)=f(x) ,那 关于
y轴
对称
么函数 f(x)就叫做偶函数
奇函数
如果对于函数 f(x)的定义域内任 意一个 x,都有 f(-x)=-f(x) ,
常见的命题角度有 (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.
第三十四页,共47页。
[多 维 视 角] 角度一 函数的奇偶性与单调性相结合
(2017 届重庆适应性测试二)若 f(x)为奇函数,且在(0,+∞)上是增 函数,f(-3)=0,则 x·f(x)<0 的解集为________.
第二十四页,共47页。
【解】 (1)证明:∵f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x), ∴f(x)是周期为 4 的周期函数. (2)当 x∈[-2,0]时,-x∈[0,2],由已知得 f(-x)=2(-x)-(-x)2=-2x-x2. 又 f(x)是奇函数,∴f(-x)=-f(x)=-2x-x2. ∴f(x)=x2+2x.
第二十七页,共47页。
(1)求解与函数的周期性有关的问题,应根据题目特征及周期定义,求出函数的 周期.
(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,函数的周 期性常与函数的其他性质综合命题.
(3)在解决具体问题时,要注意结论“若 T 是函数的周期,则 kT(k∈Z 且 k≠0)也 是函数的周期”的应用.
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
【2020】最新高考数学一轮复习:第二篇函数导数及其应用第3节函数的奇偶性与周期性训练理
【选题明细表】知识点、方法题号函数奇偶性的判定1,4函数周期性的应用3,9函数奇偶性的应用2,5,6,7,8,10,12 函数基本性质的综合应用11,13,14基础巩固(时间:30分钟)1.(20xx·北京××区二模)下列函数中为奇函数的是( D )(A)y=x2+2x (B)y=ln|x|(C)y=()x (D)y=xcos x2.已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(-1)等于( A )(A)-2 (B)0 (C)1 (D)2解析:因为f(x)是定义在R上的奇函数,所以f(-x)=-f(x),f(-1)=-f(1),又当x>0时,f(x)=x2+,所以f(1)=12+1=2,所以f(-1)=-2.故选A.3.(20xx·浙江台州一模)若函数y=f(x)是定义在R上的周期为2的奇函数,则f(2 017)等于( B )(A)-2 017 (B) 0 (C)1 (D)2 017解析:因为函数f(x)是定义在R上的周期为2的奇函数,所以f(1)=f(-1),所以-f(1)=f(-1)=f(1),所以f(1)=f(-1)=0,所以f(2 017)=f(1)=0.故选B.4.(20xx·广东深圳一模)已知f(x)=,g(x)=|x-2|,则下列结论正确的是( D )(A)h1(x)=f(x)+g(x)是偶函数(B)h2(x)=f(x)·g(x)是奇函数(C)h3(x)=是偶函数(D)h4(x)=是奇函数解析:f(x)=,g(x)=|x-2|,A.h1(x)=f(x)+g(x)=+|x-2|=+2-x,x∈[-2,2].h1(-x)=+2+x,不满足函数的奇偶性的定义,是非奇非偶函数.B.h2(x)=f(x)·g(x)=|x-2|=(2-x),x∈[-2,2].h2(-x)=(2+x),不满足奇偶性的定义.C.h3(x)==,x∈[-2,2),不满足函数的奇偶性定义.D.h4(x)==,x∈[-2,0)∪(0,2],函数是奇函数.故选 D.5.(20xx·湖南郴州二模)已知函数f(x)是奇函数,当x>0时,f(x)=ax(a>0且a≠1),且f(lo4)=-3,则a的值为( A )(A) (B)3 (C)9 (D)解析:因为奇函数f(x)满足f(lo4)=-3,lo4=-2<0,所以f(2)=3,又因为当x>0时,f(x)=ax(a>0且a≠1),所以f(2)=a2=3,解之得a=±(舍负).故选A.6.导学号 38486027(20xx·山东济宁二模)已知函数y=f(x)是R 上的偶函数,当x1,x2∈(0,+∞)时,都有(x1-x2)·[f(x1)-f(x2)]<0.设a=ln,b=(ln π)2,c=ln,则( C )(A)f(a)>f(b)>f(c) (B)f(b)>f(a)>f(c)(C)f(c)>f(a)>f(b) (D)f(c)>f(b)>f(a)解析:由已知条件知f(x)在(0,+∞)上是减函数;且f(a)=f(|a|),f(b)=f(|b|),f(c)=f(|c|);|a|=ln π>1,b=(ln π)2>|a|,c=∈(0,|a|),所以f(c)>f(a)>f(b).故选C.7.已知f(x)=lg(+a)是奇函数,则使f(x)<0的x的取值范围是( B )(A)(-∞,0) (B)(-1,0)(C)(0,1) (D)(-∞,0)∪(1,+∞)解析:由f(x)+f(-x)=0,即lg(+a)+lg(+a)=0可得a=-1,所以f(x)=lg.解0<<1可得-1<x<0.故选B.8.函数f(x)在R上为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=.解析:令x<0,则-x>0,所以f(x)=-f(-x)=-(+1),即x<0时,f(x)=-(+1)=--1.答案:--19.若偶函数y=f(x)为R上周期为6的周期函数,且满足f(x)=(x+1)(x-a)(-3≤x≤3),则f(-6)等于.解析:因为y=f(x)为偶函数,且f(x)=(x+1)(x-a)(-3≤x≤3),所以f(x)=x2+(1-a)x-a,所以1-a=0,所以a=1.f(x)=(x+1)(x-1)(-3≤x≤3).f(-6)=f(-6+6)=f(0)=-1.答案:-1能力提升(时间:15分钟)10.已知f(x)是奇函数,且当x<0时,f(x)=x2+3x+2.若当x∈[1,3]时,n≤f(x)≤m恒成立,则m-n的最小值为( A )(A) (B)2 (C) (D)解析:设x>0,则-x<0,所以f(x)=-f(-x)=-[(-x)2+3(-x)+2]=-x2+3x-2.所以在[1,3]上,当x=时,f(x)max=;当x=3时,f(x)min=-2.所以m≥且n≤-2.故m-n≥.故选A.11.导学号38486028(20xx·宁夏中卫一模)已知定义在R上的奇函数f(x)满足f(x)=f(2-x),且f(-1)=2,则f(1)+f(2)+f(3)+…+ f(2 017)的值为( C )(A)1 (B)0 (C)-2 (D)2解析:因为f(2-x)=f(x),所以f[2-(2+x)]=f(2+x),即f(-x)=f(2+x),。
2020版高考数学一轮复习第2章函数、导数及其应用第3节函数的奇偶性与周期性教学案理新人教版
第三节函数的奇偶性与周期性[考纲传真] 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图象理解和研究函数的奇偶性;3.了解函数周期性、正周期的含义,会判断、应用简单函数的周期性.1.函数的奇偶性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期.[常用结论]1.函数奇偶性的三个重要结论(1)如果一个奇函数f(x)在x=0处有定义,那么一定有f(0)=0.(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).(3)奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.周期性的几个常用结论对f(x)的定义域内任一自变量的值x,周期为T,则(1) 若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f x,则T=2a;(3)若f(x+a)=f(x+b),则T=a-b.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y=x2,x∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( )(4)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( )[答案] (1)× (2)× (3)√ (4)√ 2.(教材改编)下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-xB [A 为奇函数,C ,D 为非奇非偶函数,B 为偶函数,故选B.]3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13 C.12D .-12B [依题意b =0,且2a =-(a -1), ∴b =0且a =13,则a +b =13.]4.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则当x <0时,f (x )的解析式为( ) A .f (x )=x (1+x ) B .f (x )=x (1-x ) C .f (x )=-x (1+x ) D .f (x )=x (x -1) B [当x <0时,-x >0, 又x ≥0时,f (x )=x (1+x ), 故f (-x )=-x (1-x ).又f (x )为奇函数,所以f (-x )=-f (x ),∴-f (x )=-x (1-x ),即f (x )=x (1-x ),故选B.]5.已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为________. 0 [∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又f (x +4)=f (x ),∴T =4. ∴f (8)=f (0)=0.]函数的奇偶性及其应用【例1】 (1)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________. (2)判断下列函数的奇偶性: ①f (x )=3-x 2+x 2-3; ②f (x )=-x2|x -2|-2;③f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.(1)-32 [由f (-x )=f (x )得ln(e -3x +1)-ax =ln(e 3x+1)+ax ,整理得ln e 3x+1e -3x +1+2ax =0.∵e 3x+1e -3x +1=e 3x-3x+e-3x+1=e 3x,∴ln e 3x +2ax =0,∴2ax =-3x ,即(2a +3)x =0对任意x 恒成立, 故2a +3=0,所以a =-32.](2)[解] ①由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.②由⎩⎪⎨⎪⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x , ∴f (x )=-x2-x.又∵f (-x )=lg[1--x2]x=--x 2-x=-f (x ),∴函数f (x )为奇函数.③显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数.(1)=f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是①y =f (|x |);②y =f (-x );③y =xf (x );④y =f (x )+x . A .①③ B .②③ C .①④D .②④(2)(2019·湖北重点中学联考)已知函数f (x )=(e x +e -x)ln 1-x 1+x -1,若f (a )=1,则f (-a )=( ) A .1 B .-1 C .3D .-3(3)若函数f (x )=x 5+ax 3+b sin x +2在[-3,3]上的最大值为M ,最小值为m ,则M +m =________.(1)D (2)D (3)4 [(1)由奇函数的定义,f (-x )=-f (x )验证, ①f (|-x |)=f (|x |),故为偶函数; ②f [-(-x )]=f (x )=-f (-x ),为奇函数; ③-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数; ④f (-x )+(-x )=-[f (x )+x ],为奇函数. 综上可知②④正确,故选D.(2)令g (x )=f (x )+1=(e x +e -x )ln 1-x 1+x ,则g (-x )=(e -x +e x )ln 1+x 1-x =-(e x +e -x)ln1-x 1+x =-g (x ),所以g (x )为奇函数,所以f (-a )=g (-a )-1=-g (a )-1=-f (a )-2=-3,故选D.(3)令g (x )=x 5+ax 3+b sin x ,x ∈[-3,3], 则g (x )为奇函数,f (x )=g (x )+2, ∴M =f (x )max =g (x )max +2,m =f (x )min =g (x )min +2,∴M +m =4.]函数周期性、对称性的应用【例2】 (1)(2018·全国卷Ⅱ)已知f (x )是定义在(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.(1)C (2)22[(1)由f (1+x )=f (1-x )可知f (x )=f (2-x ), 又f (-x )=-f (x ),且f (-x )=f (2+x ), 故f (2+x )=-f (x ),∴f (4+x )=f (x ), 即函数y =f (x )是周期为4的周期函数. 又由题意可知f (0)=0,f (1)=2,所以f (2)=f (0)=0,f (3)=f (-1)=-f (1)=-2,f (4)=f (0)=0, ∴f (1)+f (2)+f (3)+f (4)=2+0-2+0=0. 又50=12×4+2,∴f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2)=12×0+2+0=2.故选C.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R),可知函数f (x )的最小正周期是4.因为在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,所以f (f (15))=f (f (-1))=f ⎝ ⎛⎭⎪⎫12=cos π4=22.] 利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能数的周期,则kTk ∈Z 也是函数的周期(2019·泉州检测)奇函数则f (4)+f (5)=________.2[∵f(x+1)为偶函数,f(x)是奇函数,∴f(-x+1)=f(x+1),f(x)=-f(-x),f(0)=0,∴f(x+1)=f(-x+1)=-f(x-1),∴f(x+2)=-f(x),f(x+4)=f(x+2+2)=-f(x+2)=f(x),∴f(x)是周期为4的周期函数,则f(4)=f(0)=0,f(5)=f(1)=2,∴f(4)+f(5)=0+2=2.]函数性质的综合应用►考法1 单调性与奇偶性结合【例3】函数f(x)是定义在R上的奇函数,当x≥0时,f(x)为减函数,且f(-1)=1,若f(x-2)≥-1,则x的取值范围是( )A.(-∞,3] B.(-∞,1]C.[3,+∞) D.[1,+∞)A[函数f(x)是定义在R上的奇函数,且是[0,+∞)上的减函数,故函数f(x)在R上单调递减.又f(-1)=1,所以f(1)=-1,因此f(x-2)≥-1⇔f(x-2)≥f(1)⇔x-2≤1⇔x≤3,所以x的取值范围是(-∞,3],故选A.]►考法2 周期性与奇偶性结合【例4】(1)(2019·四川模拟)设奇函数f(x)的定义域为R,且f(x+4)=f(x),当x∈[4,6]时f(x)=2x+1,则f(x)在区间[-2,0]上的表达式为( )A.f(x)=2x+1 B.f(x)=-2-x+4-1C.f(x)=2-x+4+1 D.f(x)=2-x+1(2)(2017·山东高考)已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x∈[-3,0]时,f(x)=6-x,则f(919)=________.(1)B (2)6 [(1)当x∈[-2,0]时,-x∈[0,2],∴-x+4∈[4,6].又∵当x∈[4,6]时,f(x)=2x+1,∴f(-x+4)=2-x+4+1.又∵f(x+4)=f(x),∴函数f(x)的周期为T=4,∴f(-x+4)=f(-x).又∵函数f(x)是R上的奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+4+1,∴当x∈[-2,0]时,f(x)=-2-x+4-1.故选B.(2)∵f(x+4)=f(x-2),∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x),∴f (x )是周期为6的周期函数, ∴f (919)=f (153×6+1)=f (1). 又f (x )是定义在R 上的偶函数, ∴f (1)=f (-1)=6,即f (919)=6.] ►考法3 奇偶性、周期性、单调性的综合【例5】 (2019·惠州调研)已知函数y =f (x )的定义域为R ,且满足下列三个条件: ①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f x 1-f x 2x 1-x 2>0恒成立;②f (x +4)=-f (x ); ③y =f (x +4)是偶函数.若a =f (7),b =f (11),c =f (2 018),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <bD .c <b <aB [由①知函数f (x )在区间[4,8]上为单调递增函数;由②知f (x +8)=-f (x +4)=f (x ),即函数f (x )的周期为8,所以c =f (2 018)=f (252×8+2)=f (2),b =f (11)=f (3);由③可知函数f (x )的图象关于直线x =4对称,所以b =f (3)=f (5),c =f (2)=f (6).因为函数f (x )在区间[4,8]上为单调递增函数,所以f (5)<f (6)<f (7),即b <c <a ,故选B.] 函数单调性与奇偶性结合称性.周期性与奇偶性结合所求函数值的自变量转化到已知解析式的函数定义域内求解周期性、奇偶性与单调性结合然后利用奇偶性和单调性求解(1)若f (x )在[-1,0]上单调递减,则函数f (x )在[3,5]上是( ) A .增函数 B .减函数 C .先增后减的函数 D .先减后增的函数(2)已知f (x )是定义在R 上的偶函数,在区间[0,+∞)上为增函数,且f ⎝ ⎛⎭⎪⎫13=0,则不等式f (x )>0的解集为________.(1)D (2)⎩⎨⎧⎭⎬⎫xx >13或x <-13 [(1)已知f (x +1)=-f (x ),则函数周期T =2,因为函数f (x )是R 上的偶函数,在[-1,0]上单调递减,所以函数f (x )在[0,1]上单调递增,即函数f (x )在[3,5]上是先减后增的函数.故选D.(2)由已知f (x )在R 上为偶函数,且f ⎝ ⎛⎭⎪⎫13=0, ∴f (x )>0等价于f (|x |)>f ⎝ ⎛⎭⎪⎫13, 又f (x )在[0,+∞)上为增函数, ∴|x |>13,即x >13或x <-13.]1.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( ) A .[-2,2] B .[-1,1] C .[0,4]D .[1,3]D [∵f (x )为奇函数, ∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减, ∴-1≤x -2≤1, ∴1≤x ≤3.故选D.]2.(2014·全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数C [A :令h (x )=f (x )·g (x ),则h (-x )=f (-x )·g (-x )=-f (x )·g (x )=-h (x ), ∴h (x )是奇函数,A 错.B :令h (x )=|f (x )|g (x ),则h (-x )=|f (-x )|g (-x )=|-f (x )|g (x )=|f (x )|g (x )=h (x ), ∴h (x )是偶函数,B 错.C :令h (x )=f (x )|g (x )|,则h (-x )=f (-x )|g (-x )|=-f (x )|g (x )|=-h (x ),∴h (x )是奇函数,C 正确.D :令h (x )=|f (x )·g (x )|,则h (-x )=|f (-x )·g (-x )|=|-f (x )·g (x )|=|f (x )·g (x )|=h (x ),∴h (x )是偶函数,D 错.]3.(2017·全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.12[法一:令x>0,则-x<0.∴f(-x)=-2x3+x2.∵函数f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∴f(x)=2x3-x2(x>0).∴f(2)=2×23-22=12.法二:f(2)=-f(-2)=-[2×(-2)3+(-2)2]=12.]4.(2015·全国卷Ⅰ)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.1[∵f(x)为偶函数,∴f(-x)-f(x)=0恒成立,∴-x ln(-x+a+x2)-x ln(x+a+x2)=0恒成立,∴x ln a=0恒成立,∴ln a=0,即a =1.]5.(2014·全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x 的取值范围是________.(-1,3)[∵f(x)是偶函数,∴图象关于y轴对称.又f(2)=0,且f(x)在[0,+∞)单调递减,则f(x)的大致图象如图所示,由f(x-1)>0,得-2<x-1<2,即-1<x<3.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考数学一轮复习第2章函数导数及其应用第3讲
函数的奇偶性与周期性增分练
板块四模拟演练·提能增分
[A级基础达标]
1.[2018·合肥质检]下列函数中,既是偶函数,又在(0,+∞)上单调递增的函
数是( )
B.y=|x|+1
A.y=x3
D.y=2-|x|
C.y=-x2+1
答案B
解析因为y=x3是奇函数,y=|x|+1,y=-x2+1,y=2-|x|均为偶函数,
所以A错误;又因为y=-x2+1,y=2-|x|=|x|在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以C,D两项错误,只有B正确.2.[2018·南宁模拟]设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)
是偶函数,则下列结论中正确的是( )
B.f(x)|g(x)|是奇函数
A.f(x)g(x)是偶函数
C.|f(x)|g(x)是奇函数
D.|f(x)g(x)|是奇函数
答案B
解析f(x)为奇函数,g(x)为偶函数,故f(x)g(x)为奇函数,f(x)|g(x)|为奇函
数,|f(x)|g(x)为偶函数,|f(x)g(x)|为偶函数.故选B. 3.[2017·齐鲁名校模拟]已知f(x)为定义在R上的奇函数,当x≥0时,f(x)=
2x+m,则f(-2)=( )
B.-
A.-3
C.
D.3
答案A
解析因为f(x)为R上的奇函数,所以f(0)=0,即f(0)=20+m=0,解得m=
-1,则f(-2)=-f(2)=-(22-1)=-3. 4.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足不等式f(2x-1)>f成
立的x的取值范围是( )
A. ⎝ ⎛⎭
⎪⎫-13,43B. C.
⎣⎢⎡⎭⎪⎫13,43D. 答案 B
解析 因为偶函数f(x)在区间[0,+∞)上单调递减,所以f(x)在区间(-∞,0]
上单调递增,若f(2x -1)>f ,则-<2x -1<,解得-<x<.
5.已知f(x)为奇函数,当x>0,f(x)=x(1+x),那么x<0,f(x)等于( )
A .-x(1-x)
B .x(1-x)
C .-x(1+x)
D .x(1+x) 答案 B
解析 当x<0时,则-x>0,∴f(-x)=(-x)(1-x).又f(-x)=-f(x),∴f(x)
=x(1-x).
6.[2018·贵阳模拟]已知函数f(x)=x3+sinx +1(x∈R),若f(a)=2,则f(-
a)的值为( )
A .3
B .0
C .-1
D .-2 答案 B
解析 设F(x)=f(x)-1=x3+sinx ,显然F(x)为奇函数,又F(a)=f(a)-1=
1,所以F(-a)=f(-a)-1=-1,从而f(-a)=0.故选B.
7.[2018·德州模拟]设偶函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不
等式>0的解集为( )
A .(-1,0)∪(1,+∞)
B .(-∞,-1)∪(0,1)
C .(-∞,-1)∪(1,+∞)
D .(-1,0)∪(0,1) 答案 A
解析 由>0,可得>0,即>0,
当x<0时,f(x)<0,即f(x)<f(-1),解得-1<x<0;
当x>0时,f(x)>0,即f(x)>f(1),解得x>1.
故不等式>0的解集为(-1,0)∪(1,+∞).
8.[2017·全国卷Ⅱ]已知函数f(x)是定义在R 上的奇函数,当x∈(-∞,0)时,
f(x)=2x3+x2,则f(2)=________.
答案 12
解析 令x>0,则-x<0.
∴f(-x)=-2x3+x2.
∵函数f(x)是定义在R 上的奇函数,
∴f(-x)=-f(x).
∴f(x)=2x3-x2(x>0).
∴f(2)=2×23-22=12.
解法二:
12.=2)2]-(+2)3-[2×(=-2)-f(=-f(2) 9.[2017·豫东十校联考]若f(x)=+a 是奇函数,则a =________.
12
答案 解析 依题意得f(1)+f(-1)=0,由此得+a ++a =0,解得a =.
10.[2018·衡水模拟]已知y =f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)
+2,则g(-1)=________.
答案 -1
解析 ∵y=f(x)+x2是奇函数,且f(1)=1,
∴f(-1)+(-1)2=-[f(1)+12],∴f(-1)=-3.
因此g(-1)=f(-1)+2=-1.
[B 级 知能提升]
1.[2018·金版创新]已知函数f(x)是定义在R 上的函数,若函数f(x +2016)为
偶函数,且f(x)对任意x1,x2∈[2016,+∞)(x1≠x2),都有<0,则( )
A .f(2019)<f(2014)<f(2017)
B .f(2017)<f(2014)<f(2019)
C .f(2014)<f(2017)<f(2019)
D .f(2019)<f(2017)<f(2014)
答案 A
解析 因为f(x)对任意x1,x2∈[2016,+∞)(x1≠x2),都有<0,所以f(x)在
[2016,+∞)上单调递减,所以f(2017)>f(2018)>f(2019).又因为f(x +2016)为偶函数,所以f(-x +2016)=f(x +2016),所以f(-2+2016)=f(2+2016),即f(2014)
=f(2018),所以f(2017)>f(2014)>f(2019).故选A.
2.若定义在R 上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex ,则g(x)=
( )
B.(ex+e-x)
A.ex-e-x
D.(ex-e-x)
C.(e-x-ex)
答案D
解析由f(x)+g(x)=ex,可得f(-x)+g(-x)=e-x.又f(x)为偶函数,g(x)为奇函数,可得f(x)-g(x)=e-x,则两式相减,可得g(x)=.选D. 3.[2018·苏州模拟]定义在R上的偶函数f(x)满足f(x+2)·f(x)=1对于x∈R
恒成立,且f(x)>0,则f(119)=________.
答案1
解析∵f(x+2)=,∴f(x+4)=f(x),∴周期T=4,f(119)=f(3).令x=-
1,f(1)f(-1)=1,
∴f(1)=1,f(3)==1. 4.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-
m)+f(1-m2)<0的实数m的取值范围.
解∵f(x)的定义域为[-2,2],
∴解得-1≤m≤.①
又f(x)为奇函数,且在[-2,0]上递减,
∴f(x)在[-2,2]上递减,
∴f(1-m)<-f(1-m2)=f(m2-1)
⇒1-m>m2-1,解得-2<m<1.②
综合①②可知-1≤m<1.
即实数m的取值范围是[-1,1).5.[2018·大同检测]函数f(x)的定义域为D={x|x≠0},且满足对任意x1,
x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明你的结论;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
解(1)∵对于任意x1,x2∈D,
有f(x1·x2)=f(x1)+f(x2),
∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.
(2)f(x)为偶函数.
证明:令x1=x2=-1,有f(1)=f(-1)+f(-1),
∴f(-1)=f(1)=0.
令x1=-1,x2=x,有f(-x)=f(-1)+f(x),
∴f(-x)=f(x),∴f(x)为偶函数.
(3)依题设有f(4×4)=f(4)+f(4)=2,
由(2)知,f(x)是偶函数,
∴f(x-1)<2⇔f(|x-1|)<f(16).
又f(x)在(0,+∞)上是增函数,
∴0<|x-1|<16,解之得-15<x<17且x≠1.∴x的取值范围是(-15,1)∪(1,17).。