函数的奇偶性与周期性专题练习
专题05 函数的奇偶性(对称性)与周期性问题(原卷版)

专题05 函数的奇偶性(对称性)与周期性问题【高考真题】1.(2022·全国乙文)若()1ln 1f x a b x=++-是奇函数,则=a _____,b =______. 2.(2022·新高考Ⅱ)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .13.(2022·全国乙理)已知函数f (x ),g (x )的定义域均为R ,且f (x )+g (2-x )=5,g (x )-f (x -4)=7.若y =g (x )的图像关于直线x =2对称,g (2)=4.则221()k f k ==∑( )A .-21B .-22C .-23D .-244.(2022·新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x + 均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭ C .(1)(4)f f -= D .(1)(2)g g -= 【常用结论】1.函数奇偶性常用结论结论1:如果函数f (x )是奇函数且在x =0处有意义,那么f (0)=0.结论2:如果函数f (x )是偶函数,那么f (x )=f (-x )=f (|x |).结论3:若函数y =f (x +b )是定义在R 上的奇函数,则函数y =f (x )关于点(b ,0)中心对称.结论4:若函数y =f (x +a )是定义在R 上的偶函数,则函数y =f (x )关于直线x =a 对称. 结论5:已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0.推论1:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (-x )+g (x )=2c .推论2:若函数f (x )是奇函数,且g (x )=f (x )+c ,则必有g (x )max +g (x )min =2c .结论6:在公共定义域内有:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶,偶()⨯÷偶=偶,奇()⨯÷偶=奇.结论7:奇函数在其定义域内关于原点对称的两个区间上具有相同的单调性;偶函数在其定义域内关于原点对称的两个区间上具有相反的单调性.结论8:偶函数在其定义域内关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在其定义域内关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.结论9:函数f (x )=a x +a -x (a >0且a ≠1)是偶函数;函数f (x )=a x -a -x (a >0且a ≠1)是奇函数;函数f (x )=a x +1a x -1(a >0且a ≠1)是奇函数; 结论10:函数f (x )=log a x -bx +b (a >0且a ≠1)是奇函数;函数f (x )=log a (1+m 2x 2±mx )(a >0且a ≠1)是奇函数.结论11:函数y =f (x )是可导的奇函数,则导函数y =f ′(x )是偶函数;函数y =f (x )是可导的偶函数,则导函数y =f ′(x )是奇函数;结论12:导函数y =f ′(x )是连续的奇函数,则所有的原函数y =f (x )都是偶函数;导函数y =f ′(x )是连续的偶函数,则原函数y =f (x )中只有一个是奇函数;2.函数的对称性(奇偶性的推广)(1)函数的轴对称定理1:如果函数y =f (x )满足f (x +a )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b 2对称.推论1:如果函数y =f (x )满足f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.推论2:如果函数y =f (x )满足f (x )=f (-x ),则函数y =f (x )的图象关于直线x =0(y 轴)对称,就是偶函数的定义,它是上述定理1的简化.(2)函数的点对称定理2:如果函数y =f (x )满足f (a +x )+f (a -x )=2b ,则函数y =f (x )的图象关于点(a ,b )对称.推论1:如果函数y =f (x )满足f (a +x )+f (a -x )=0,则函数y =f (x )的图象关于点(a ,0)对称.推论2:如果函数y =f (x )满足f (x )+f (-x )=0,则函数y =f (x )的图象关于原点(0,0)对称,就是奇函数的定义,它是上述定理2的简化.(3)两个等价关系若函数y =f (x )关于直线x =a 轴对称,则以下三式成立且等价:f (a +x )=f (a -x )⇔f (2a -x )=f (x )⇔f (2a +x )=f (-x )若函数y =f (x )关于点(a ,0)中心对称,则以下三式成立且等价:f (a +x )=-f (a -x )⇔f (2a -x )=-f (x )⇔f (2a +x )=-f (-x )(4)原函数与导函数的对称性的关系定理1:可导函数y =f (x )的图象关于直线x =a 对称的充要条件是导函数y =f ′(x )的图象关于点(a ,0)中心对称.定理2:可导函数y =f (x )的图象关于点(a ,f (a ))中心对称的充要条件是导函数y =f ′(x )的图象关于直线x =a 对称.3.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ; 结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ; 结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论10:若函数f (x )可导,并且是周期为T 的周期函数,则f ′(x )也是的周期为T 的周期函数;若函数f (x )可导,其导函数f ′(x )是周期为T 的周期函数,且f (0)=f (T ),则f (x )也是的周期为T 的周期函数结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.【同类问题】题型一 函数的奇偶性与周期性1.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=( )A .-2B .0C .2D .12.(2021·全国甲)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f ⎝⎛⎭⎫92等于( )A .-94B .-32C .74D .523.已知函数f (x )为定义在R 上的奇函数,f (x +2)是偶函数,且当x ∈(0,2]时,f (x )=x ,则f (-2 022)+f (2023)=( )A .-3B .-2C .1D .04.(多选)(2022·威海模拟)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是偶函数,则( )A .f (x )是偶函数B .f (x )是奇函数C .f (x +3)是偶函数D .f (x )=f (x +4)5.(多选)已知f (x )为奇函数,且f (x +1)为偶函数,若f (1)=0,则( )A .f (3)=0B .f (3)=f (5)C .f (x +3)=f (x -1)D .f (x +2)+f (x +1)=16.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2 022)=________.7.(多选)定义在R 上的偶函数f (x )满足f (x +2)=-f (x ),且在[-2,0]上单调递减,下面关于f (x )的判断正确的是( )A .f (0)是函数的最小值B .f (x )的图象关于点(1,0)对称C .f (x )在[2,4]上单调递增D .f (x )的图象关于直线x =2对称8.写出一个同时满足以下三个条件①定义域不是R ,值域是R ;②奇函数;③周期函数的函数解析式____________.9.函数y =f (x )对任意x ∈R 都有f (x +2)=f (-x )成立,且函数y =f (x -1)的图象关于点(1,0)对称,f (1)=4,则f (2 020)+f (2 021)+f (2 022)的值为________.题型二 函数的奇偶性与对称性10.已知f (x )是定义在R 上的偶函数,则以下函数中图象一定关于点(-1,0)成中心对称的是( )A .y =(x -1)f (x -1)B .y =(x +1)f (x +1)C .y =xf (x )+1D .y =xf (x )-111.已知函数f (x )是定义域为R 的偶函数,且f (x )的周期为2,在[-1,0]上单调递增,那么f (x )在[1,3]上( )A .单调递增B .单调递减C .先增后减D .先减后增12.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在区间[1,2]上单调递减,令a =ln 2,b =⎝⎛⎭⎫14-12,c =log 122,则f (a ),f (b ),f (c )的大小关系是( ) A .f (b )<f (c )<f (a )B .f (a )<f (c )<f (b )C .f (c )<f (b )<f (a )D .f (c )<f (a )<f (b ) 13.定义在R 上的奇函数f (x ),其图象关于点(-2,0)对称,且f (x )在[0,2)上单调递增,则( )A .f (11)<f (12)<f (21)B .f (21)<f (12)<f (11)C .f (11)<f (21)<f (12)D .f (21)<f (11)<f (12)14.写出一个满足f (x )=f (2-x )的偶函数f (x )=________.题型三 函数的周期性与对称性15.(多选)已知f (x )的定义域为R ,其函数图象关于直线x =-3对称且f (x +3)=f (x -3),当x ∈[0,3]时,f (x )=2x +2x -11,则下列结论正确的是( )A .f (x )为偶函数B .f (x )在[-6,-3]上单调递减C .f (x )的图象关于直线x =3对称D .f (2 023)=-716.已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-1)=2,则f (2 025)=________.17.已知偶函数f (x )满足f (x )+f (2-x )=0,下列说法正确的是( )A .函数f (x )是以2为周期的周期函数B .函数f (x )是以4为周期的周期函数C .函数f (x +2)为偶函数D .函数f (x -3)为偶函数18.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (1+x )=f (1-x ),当x ∈[-1,1]时,f (x )=x 3-3x ,则f (2 023)等于( )A .1B .-2C .-1D .219.已知函数f (x )满足:f (x +2)的图象关于直线x =-2对称,且f (x +2)=1f (x ),当2≤x ≤3时,f (x )=log 2⎝⎛⎭⎫x +112, 则f ⎝⎛⎭⎫2192的值为( )A .2B .3C .4D .620.设函数f (x )为定义在R 上的函数,对∀x ∈R 都有:f (x )=f (-x ),f (x )=f (2-x );且函数f (x )对∀x 1,x 2∈[0,1],x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0成立,设a =f ⎝⎛⎭⎫2 0232,b =f (log 43),c =f ⎝⎛⎭⎫-14,则a ,b ,c 的大小关系为________.21.(多选)已知奇函数f (x )的定义域为R ,且满足f (2+x )=f (2-x ),以下关于函数f (x )的说法正确的为( )A .f (x )满足f (8-x )=f (x )B .8为f (x )的一个周期C .f (x )=sin πx 4是满足条件的一个函数 D .f (x )有无数个零点 22.(多选)已知f (x )是定义在R 上的奇函数,f (2-x )=f (x ),当x ∈[0,1]时,f (x )=x 3,则下列结论错误的是( )A .f (2 021)=0B .2是f (x )的一个周期C .当x ∈(1,3)时,f (x )=(1-x )3D .f (x )>0的解集为(4k ,4k +2)(k ∈Z ) 题型四 抽象函数23.设函数y =f (x )的定义域为(0,+∞),f (xy )=f (x )+f (y ),若f (8)=3,则f (2)=________.24.已知定义在R 上的函数f (x )满足f (1)=1,且f (x +y )=f (x )+f (y )+1,则f (4)=________.25.(多选)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )满足( )A .f (0)=0B .y =f (x )是奇函数C .f (x )在[1,2]上有最大值f (2)D .f (x -1)>0的解集为{x |x <1}26.已知f (x )是定义在区间(0,+∞)上的增函数,且f ⎝⎛⎭⎫x y =f (x )-f (y ),f (2)=1,如果x 满足f (x )-f ⎝⎛⎭⎫1x -3≤2, 则x 的取值范围为________.。
函数的奇偶性与周期性-专项训练-2025届高三数学一轮复习(含解析)

2025高考数学一轮复习-2.3-函数的奇偶性与周期性-专项训练【A级 基础巩固】一、单选题1.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是( ) A.y=2x B.y=xC.y=|x| D.y=-x2+12.设函数f(x)=x-2x+2,则下列函数中为奇函数的是( )A.f(x-2)-1 B.f(x-2)+1C.f(x+2)-1 D.f(x+2)+13.已知函数f(x)的图象关于原点对称,且周期为4,f(-1)=-2,则f(2 025)=( )A.2 B.0C.-2 D.-44.已知函数f(x)=sin x+x3+1x+3,若f(a)=-1,则f(-a)=( )A.3 B.5C.6 D.75.已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,1]上是单调递增的,则f(-6.5),f(-1),f(0)的大小关系是( )A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)6.若函数f(x)=sin x·ln(mx+1+4x2)的图象关于y轴对称,则m=( ) A.2 B.4C.±2 D.±47.已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a-2)>f(a-1),则实数a的取值范围是( )A.(12,+∞)B.(-∞,12)C.(-∞,12)∪(34,+∞)D.(0,12)∪(34,+∞)8.已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于( )A.0 B.-1C.-2 D.2二、多选题9.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( ) A.y=f(|x|) B.y=f(-x)C.y=xf(x) D.y=f(x)+x10.已知定义在区间[-7,7]上的一个偶函数,它在[0,7]上的图象如图,则下列说法正确的有( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C.这个函数在其定义域内有最大值7D.这个函数在其定义域内有最小值-711.已知函数f(x)是定义在R上的奇函数,f(x+2)=-f(x),则下列说法正确的是( )A.f(x)的最小正周期为4B.f(x)的图象关于直线x=1对称C.f(x)的图象关于点(2,0)对称D.f(x)在(-5,5)内至少有5个零点12.已知f(x)是定义在R上的奇函数,f(2-x)=f(x),当x∈[0,1]时,f(x)=x3,则下列结论错误的是( )A.f(2 021)=0B.2是f(x)的一个周期C.当x∈(1,3)时,f(x)=(1-x)3D.f(x)>0的解集为(4k,4k+2)(k∈Z)三、填空题13.已知函数f(x)=2x-2-x lg a是奇函数,则a的值等于_________.14.已知奇函数f(x)在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f(6)+f(-3)的值为_________.15.设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=_7__.-2≤x≤0时,f(x)=_________.16.已知函数f(x),对∀x∈R满足f(1-x)=f(1+x),f(x+2)=-f(x),且f(0)=1,则f(26)=__________.17.已知定义在R上的奇函数y=f(x)在(0,+∞)内单调递增,且f(12)=0,则f(x)>0的解集为__________________.【B级 能力提升】1.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则( )A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不能确定2.(多选题)函数f(x)的定义域为R,且f(x)是奇函数,f(x+1)是偶函数,则( )B.f(x)是周期函数C.f(x+3)为奇函数D.f(x+5)为偶函数3.若定义在R上的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x -1)≥0的x的取值范围是( )A.[-1,1]∪[3,+∞) B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞) D.[-1,0]∪[1,3]4.已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则(k)=( )A.-3 B.-2C.0 D.15.已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=__________.6.函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,且f(12)=25.(1)求实数a,b,并确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数.7.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.(1)求证:f(x)是周期为4的周期函数;(2)若f(x)=x(0<x≤1),求当x∈[-5,-4]时,函数f(x)的解析式.参考答案【A级 基础巩固】1.[解析] A选项,根据y=2x的图象知该函数非奇非偶,可知A错误;B 选项,由y=x的定义域为[0,+∞),知该函数非奇非偶,可知B错误;C选项,当x∈(0,+∞)时,y=|x|=x为增函数,不符合题意,可知C错误;D选项;由-(-x)2+1=-x2+1,可知该函数为偶函数,根据其图象可看出该函数在(0,+∞)上单调递减,可知D正确.故选D.2.[解析] 化简函数f(x)=1-4x+2,分别写出每个选项对应的解析式,利用奇函数的定义判断.由题意得,f(x)=1-4x+2.对A,f(x-2)-1=-4x是奇函数;对B,f(x-2)+1=2-4x,关于(0,2)对称,不是奇函数;对C,f(x+2)-1=-4x+4,定义域为(-∞,-4)∪(-4,+∞),不关于原点对称,不是奇函数;对D,f(x+2)+1=2-4x+4,定义域为(-∞,-4)∪(-4,+∞),不关于原点对称,不是奇函数.故选A.3.[解析] 依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(-1)=-2,则f(2 025)=f(1+506×4)=f(1)=-f(-1)=2.4.[解析] 函数f(x)=sin x+x3+1x+3,f(-x)+f(x)=sin(-x)+(-x)3-1x+3+sinx+x3+1x+3=-sin x-x3-1x+sin x+x3+1x+6=6,若f(a)=-1,则f(-a)=6-f(a)=6-(-1)=7.故选D.5.[解析] 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函数f(x)的周期是2.∵函数f(x)为偶函数,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间[0,1]上是单调递增的,∴f(0)<f(0.5)<f(1),即f(0)<f(-6.5)<f(-1).6.[解析] 因为f(x)的图象关于y轴对称,所以f(x)为偶函数,又y=sin x为奇函数,所以y=ln(mx+1+4x2)为奇函数,即ln[-mx+1+4·(-x)2]=-ln(mx+1+4x2),解得m=±2.故选C.7.[解析] 显然f(x)为偶函数且在[0,+∞)上单调递增,∴f(3a-2)>f(a-1)⇔|3a-2|>|a-1|⇔(3a-2)2>(a-1)2⇔a>34或a<12,故选C.8.[解析] 因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x).又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.二、多选题9.[解析] 由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知B、D正确.10.[解析] 根据偶函数在[0,7]上的图象及其对称性,作出其在[-7,7]上的图象,如图所示.由图象可知这个函数有三个单调递增区间,有三个单调递减区间,在其定义域内有最大值7,最小值不是-7,故选BC.11.[解析] 因为f(x)是定义在R上的奇函数,且f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),即f(x+4)=f(x),所以f(x)的周期为4,但f(x)的最小正周期不一定为4,如f(x)=sin(3π2x),满足f(x)为奇函数,且f(x+2)=sin[3π2(x+2)]=sin (3π2x+3π)=-sin(3π2x)=-f(x),而f(x)=sin(3π2x)的最小正周期为43,故A错误;因为f(x)为奇函数,且f(x+2)=-f(x),所以f(x+2)=f(-x),即f(x)的图象关于直线x=1对称,故B正确;由f(x+4)=f(x),及f(x)为奇函数可知f(x+4)+f(-x)=0,即f(x)的图象关于点(2,0)对称,故C正确;因为f(x)是定义在R上的奇函数,所以f(0)=0,又f(x+2)=-f(x),f(x+4)=f(x),所以f(2)=-f(0)=0,f(4)=f(0)=0,故f(-2)=-f(2)=0,f(-4)=-f(4)=0,所以在(-5,5)内f(x)至少有-4,-2,0,2,4这5个零点,故D正确.故选BCD.12.[解析] ∵f(x)是定义在R上的奇函数,∴f(2-x)=f(x)=-f(-x),∴f(2+x)=-f(x),∴f(4+x)=-f(2+x)=f(x),∴f(x)的最小正周期是4,故B错误;f(2 021)=f(1)=1,故A错误;∵当x∈[0,1]时,f(x)=x3,f(x)是定义在R上的奇函数,∴当x∈[-1,1]时,f(x)=x3,当x∈(1,3)时,2-x∈(-1,1),f(x)=f(2-x)=(2-x)3,故C错误;易知当x∈(0,2)时,f(x)>0,∵f(x)的最小正周期是4,∴f(x)>0的解集为(4k,4k+2)(k∈Z),故D正确.三、填空题13.[解析] 由题设条件可知,可由函数是奇函数,建立方程f(x)+f(-x)=0,由此方程求出a的值.函数f(x)=2x-2-x lg a是奇函数,∴f(x)+f(-x)=0,∴2x -2-x lg a+2-x-2x lg a=0,即2x+2-x-(2x+2-x)lg a=0,∴lg a=1,∴a=10.14.[解析] 由于f(x)在[3,6]上为增函数,所以f(x)的最大值为f(6)=8,f(x)的最小值为f(3)=-1,因为f(x)为奇函数,所以f(-3)=-f(3)=1,所以f(6)+f(-3)=8+1=9.15.[解析] 因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.16.[解析] ∵f(x+2)=-f(x),∴f(x)的周期为4,∴f(26)=f(2).∵对∀x∈R有f(1-x)=f(1+x),∴f(x)的图象关于x=1对称,∴f(2)=f(0)=1,即f(26)=1.17.[解析] 由已知可构造y=f(x)的示意图象,所以f(x)>0的解集为(-12,0)∪(12,+∞).【B级 能力提升】1.[解析] 因为x1<0且x1+x2>0,所以x2>-x1>0,又因为f(x)在(0,+∞)上是减函数,且f(x)是R上的偶函数,所以f(-x2)=f(x2)<f(-x1).2.[解析] 因为f(x+1)是偶函数,所以函数f(x)的图象关于x=1对称,即f(-x)=f(2+x),又函数f(x)是定义在R上的奇函数,所以f(-x)=-f(x),f(0)=0,于是f(2+x)=-f(x),即有f(4+x)=-f(x+2)=f(x),所以函数f(x)的一个周期为4,故A错误,B正确;设g(x)=f(x+3),则g(-x)=f(-x+3)=f(-1+x)=f(x+3),即g(x)=g(-x),所以f(x+3)为偶函数,C错误;设h(x)=f(x+5),则h(-x)=f(-x+5)=f(x-3)=f(x+5),即h(x)=h(-x),所以f(x+5)为偶函数,D正确,故选BD.3.[解析] 因为定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,所以f(x)在(0,+∞)上也单调递减,且f(-2)=0,f(0)=0,所以当x∈(-∞,-2)∪(0,2)时,f(x)>0,当x∈(-2,0)∪(2,+∞)时,f(x)<0,所以由xf(x-1)≥0可得Error!或Error!或x=0.解得-1≤x≤0或1≤x≤3,所以满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].故选D.4.[解析] 因为f(1)=1,所以在f(x+y)+f(x-y)=f(x)f(y)中,令y=1,得f(x+1)+f(x-1)=f(x)f(1),所以f(x+1)+f(x-1)=f(x)①,所以f(x+2)+f(x)=f(x+1)②.由①②相加,得f(x+2)+f(x-1)=0,故f(x+3)+f(x)=0,所以f(x+3)=-f(x),所以f(x+6)=-f(x+3)=f(x),所以函数f(x)的一个周期为6.在f(x+y)+f(x-y)=f(x)f(y)中,令x=1,y=0,得f(x)+f(x)=f(x)f(0),所以f(0)=2.令x=1,y=1,得f(2)+f(0)=f(1)f(1),所以f(2)=-1.由f(x+3)=-f(x),得f(3)=-f(0)=-2,f(4)=-f(1)=-1,f(5)=-f(2)=1,f(6)=-f(3)=2,所以f(1)+f(2)+…+f(6)=1-1-2-1+1+2=0,根据函数的周期性知,(k)=f(1)+f(2)+f(3)+f(4)=1-1-2-1=-3,故选A.5.[解析] 解法一(定义法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.解法二(取特殊值检验法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f(1),所以-(a2-2)=2a-12,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.解法三(转化法):由题意知f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数.设g(x)=x3,h(x)=a·2x-2-x,因为g(x)=x3为奇函数,所以h(x)=a·2x-2-x为奇函数,所以h(0)=a·20-2-0=0,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.6.[解析] (1)若函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,则f(-x)=-ax+bx2+1=-f(x)=-ax+bx2+1解得b=0,又∵f(12)=25.∴12a(12)2+1=25,解得a=1,故f(x)=xx2+1.(2)证明:任取区间(-1,1)上的两个实数m,n,且m<n,则f(m)-f(n)=mm2+1-nn2+1=(m-n)(1-mn)(m2+1)(n2+1).∵m2+1>0,n2+1>0,m-n<0,1-mn>0,∴f(m)-f(n)<0,即f(m)<f(n).∴f(x)在(-1,1)上是增函数.7.[解析] (1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1-x),即在f(-x)=f(x+2).又函数f(x)是定义在R上的奇函数,故有f(-x)=-f(x).故f(x+2)=-f(x).从而f(x+4)=-f(x+2)=f(x),所以f(x)是周期为4的周期函数.(2)由函数f(x)是定义在R上的奇函数,有f(0)=0.当x∈[-1,0)时,即-x∈(0,1],f(x)=-f(-x)=--x.故x∈[-1,0]时,f(x)=--x.当x∈[-5,-4]时,x+4∈[-1,0],f(x)=f(x+4)=--x-4.从而,x∈[-5,-4]时,函数f(x)=--x-4.。
函数的奇偶性与周期性精选习题(含解析)

1 / 9函数的奇偶性与周期性精选习题一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7B .-9C .-11D .-132.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0B .1C .2D .43.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( ) A . B .C .D .4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-26.(利用奇偶性周期性判断方程根的个数)函数()f x 对于任意实数x ,都()()f x f x -=与2 / 9(1)(1)f x f x -=+成立,并且当01x ≤≤时,()2f x x =.则方程()02019xf x -=的根的个数是( )A .2020B .2019C .1010D .10097.(利用奇偶性周期性求字母范围)设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 20(1)a f x x a -+=>在区间(]2,6-内恰有三个不同实根,则实数a 的取值范围是( ) A.B.)2C.2⎤⎦D.2⎤⎦二、填空题8.(利用奇偶性解不等式)已知()f x 是R 上的偶函数,且当0x ≥时,()23f x x x =-,则不等式()22f x -≤的解集为___.9.(奇偶性与导函数结合)已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',对定义域内的任意x ,都有()()22f x xf x '+<成立,则使得()()22424x f x f x -<-成立的x 的取值范围为_____.10(由函数图象判断周期性求函数值)如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转.设顶点C (x ,y )滚动时形成的曲线为y =f (x ),则f (2019)=________.3 / 9函数的奇偶性与周期性精选习题解析一、选择题1.(奇偶性与反函数结合求值)已知函数()()2g x f x x =+是奇函数,当0x >时,函数()f x 的图象与函数2y log x =的图象关于y x =对称,则()()12g g -+-=( ). A .-7 B .-9C .-11D .-13【答案】C【解析】∵x >0时,f (x )的图象与函数y =log 2x 的图象关于y =x 对称; ∴x >0时,f (x )=2x ;∴x >0时,g (x )=2x +x 2,又g (x )是奇函数;∴g (﹣1)+g (﹣2)=﹣[g (1)+g (2)]=﹣(2+1+4+4)=﹣11. 故选C .2.(利用奇偶函数的对称性求值)已知函数2()cos 2121x f x x x π⎛⎫=-++ ⎪+⎝⎭,则()f x 的最大值与最小值的和为 A .0 B .1C .2D .4【答案】C【解析】对()f x 整理得,()22cos 21sin 21211x x f x x x x x π⎛⎫=-++=++ ⎪++⎝⎭ 而易知2sin 2,1xy x y x ==+都是奇函数, 则可设()()21sin 21g x f x x xx =-++=,可得()g x 为奇函数,即()g x 关于点()0,0对称所以可知()()1f x g x =+关于点()0,1对称,所以()f x 的最大值和最小值也关于点()0,1,因此它们的和为2. 故选C 项.3.(利用函数的奇偶性判断图象)函数()21sin 1xx e f x ⎛⎫=-⎪+⎝⎭的图象大致形状为( )4 / 9A .B .C .D .【答案】A【解析】()211sin sin 11x x xe xf x x e e -⎛⎫=-=⋅ ⎪++⎝⎭, ()()()()11sin sin sin 1111x x xx x xe e e x x xf x f x e e e----=⋅-=⋅---=++⋅=+, 所以()f x 为偶函数,排除CD ;()221s 202in 1e e f -=⋅<+,排除B ,故选:A4.(利用奇偶性单调性比较大小)设函数()f x 是定义在实数集上的奇函数,在区间[1,0)-上是增函数,且(2)()f x f x +=-,则有( )A .13()()(1)32f f f <<B .31(1)()()23f f f <<C .13(1)()()32f f f <<D .31()(1)()23f f f <<【答案】A【解析】Q ()f x 为奇函数,()()f x f x ∴-=-,又Q (2)()f x f x +=-11f f ,f (1)f (1)33⎛⎫⎛⎫∴=--=-- ⎪ ⎪⎝⎭⎝⎭,3112222f f f ⎛⎫⎛⎫⎛⎫=-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5 / 9又1111023--<-<-≤Q …,且函数在区间[1,0)-上是增函数, 11f (1)f f 023⎛⎫⎛⎫∴-<-<-< ⎪ ⎪⎝⎭⎝⎭,11f (1)f f 23⎛⎫⎛⎫∴-->-->-- ⎪ ⎪⎝⎭⎝⎭31(1)23f f f ⎛⎫⎛⎫∴>> ⎪ ⎪⎝⎭⎝⎭,故选A.5.(利用奇偶性周期性求函数值)已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =( )A .3B .-3C .2D .-2【答案】C【解析】由()()53f x f x +=-,得()()8f x f x +=,所以()f x 是周期为8的周期函数,当[)0,4x ∈时,()()2log 2f x x =+,所以()()()76696822f f f =⨯-=-,又()f x 是定义在R 上的偶函数所以()()222log 42f f -===.故选C 。
函数的奇偶性与周期性典型例题

函数的奇偶性和周期性
例1、 已知为定义在上的奇函数,当时,,求的
表达式.
思路点拨:().00上,这是解题的关键的解析式转化到时将<>x x f x 解:∵
为奇函数,且在处有定义0=x ∴ 当 时, ∵
为奇函数 ∴
∴ ∴()()()()⎪⎩
⎪⎨⎧<--=>-=000022x x x x x x x x f
解题回顾:若一个函数具有奇偶性,则不论这个函数是奇函数还是偶函数,它的定义域一定关于原点对称。
如果一个函数定义域不关于原点对称,那么它就失去了奇函数或是偶函数的条件,即这个函数既不是奇函数又不是偶函数。
变式:已知为定义在上的偶函数,当0≤x 时,,求的
表达式.
例2、 已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有
()()x f x f =+4,若()263=f ,求()()75f f 与的大小关系 思路点拨:解此题的关键由()()x f x f =+4知函数的周期是4. 解:对一切x R ∈,总有f (x+4)=f (x ),故函数)(x f 是周期为4的函数,因此,,2)1(=-f 又函数f (x )是定义在R 上的奇函数,所以,.2)7(,2)5(,2)1(=-=∴-=f f f )7()5(f f <∴。
变式1、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()x f x f -=+2,若()263=f ,则()()75f f 与的大小关系是
变式2、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()
x f x f 12=+,若()263=f ,求()()75f f 与的大小关系。
函数奇偶性与周期综合训练含详解

B.当 x 4,5 时, f x 2x 52
C.当 x 2,3 时, f x 单调递减
D.a 的取值范围是 0,
2 2
9.已知 f x 是定义域为 (, ) 的奇函数, f x 1是偶函数,且当 x 0,1 时,
f x x x 2 ,则( )
A. f x 是周期为 2 的函数
五、解答题 20.设 f (x) 是定义在实数集 R 上的奇函数,且对任意实数 x 恒满足 f (x 2) f (x) ,当 x [0, 2]时, f ( x) 2x x2 .
(1)求证: f (x) 是周期函数; (2)当 x [2, 4] 时,求 f (x) 的解析式; (3)计算: f (0) f (1) f (2) f (2021) .
试卷第 2页,总 3页
17.已知函数 f (x) 是定义在 R 上的奇函数,且 f x 2 f x ,则T ________,当
0 x 1时 f (x) x(x 1) ,则 f 4 f 5 等于________.
18.定义在 R 上的奇函数 f (x) 又是周期为 4 的周期函数,已知在区间[2, 0) (0, 2] 上,
15.设函数 f x 的定义域为 R, f x 1为奇函数, f x 2 为偶函数,当 x 1, 2 时,
f
(x)
ax 2
b
.若
f
0
f
3
6 ,则
f
13 3
_________.
四、双空题 16.已知函数 f (x) 是 R 上的奇函数,并且是周期为 3 的周期函数,若 f (1)=2 ,则 f (2)= ________; f (2019)= ________.
8.已知定义在 R 上的函数 f x 满足 f x f x 0 , f x 2 f x 0 ,且当
2023 届高考数学专项(函数的奇偶性与周期性)经典好题练习附答案

2023 届高考数学专项(函数的奇偶性与周期性)经典好题练习-x的图象关于()1.函数f(x)=1xA.y轴对称B.直线y=-x对称C.原点中心对称D.直线y=x对称2.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在[-1,3]上的解集为()A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-1,0)∪(0,1)3.已知定义域为R的函数f(x)在(8,+∞)上单调递减,且函数y=f(x+8)为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)4.设偶函数f(x)满足当x≥0时,f(x)=x3-8,则{x|f(x-2)>0}=()A.{x|x<-2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<-2或x>2}5.(多选)对于定义在R上的函数f(x),下列判断错误的有()A.若f(-2)>f(2),则函数f(x)在R上是增函数B.若f(-2)≠f(2),则函数f(x)不是偶函数C.若f(0)=0,则函数f(x)是奇函数D.函数f(x)在区间(-∞,0]上单调递增,在区间(0,+∞)上也单调递增,则f(x)是R上的增函数6.(多选)(2020山东淄博一模,12)已知函数y=f(x)是R上的奇函数,对于任意x∈R,都有f(x+4)=f(x)+f(2)成立,当x∈[0,2)时,f(x)=2x-1.给出下列结论,其中正确的是()A.f(2)=0B.点(4,0)是函数y=f(x)的图象的一个对称中心C.函数y=f(x)在[-6,-2]上单调递增D.函数y=f(x)在[-6,6]上有3个零点7.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是()A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)8.(2020山东潍坊临朐模拟一,14)已知定义在R 上的奇函数f (x )满足f (x+4)=f (x ),且当x ∈(0,2)时,f (x )=x 2+1,则f (7)的值为 .9.定义在R 上的函数f (x )满足f (x+6)=f (x ),当x ∈[-3,-1)时,f (x )=-(x+2)2,当x ∈[-1,3)时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 021)= .10.已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x+6)=f (x )+f (3)成立,则f (2 017)= . 11.函数f (x )=π2sinx3 |x |的最大值是M ,最小值是m ,则f (M+m )的值等于( )A.0B.2πC.πD.π212.(2020全国2,理9)设函数f (x )=ln |2x+1|-ln |2x-1|,则f (x )( ) A.是偶函数,且在 12, ∞ 上单调递增 B.是奇函数,且在 -12,12 上单调递减 C.是偶函数,且在 -∞,-12 上单调递增 D.是奇函数,且在 -∞,-12 上单调递减13.奇函数f (x )的定义域为R ,若f (x+1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( ) A.2 B.1 C.-1D.-214.已知函数f (x )是定义在R 上的偶函数,且f (x+2)=f (x ),当x ∈[0,1]时,f (x )=3x ,若12<a<34,关于x 的方程ax+3a-f (x )=0在区间[-3,2]上不相等的实数根的个数为 . 15.在下列函数中,与函数f (x )=2x-1-12x 1的奇偶性、单调性均相同的是()A.y=e xB.y=ln(x+√x 1)C.y=x 2D.y=tan x16.如果存在正实数a ,使得f (x-a )为奇函数,f (x+a )为偶函数,我们称函数f (x )为“和谐函数”.给出下列四个函数:①f (x )=(x-1)2+5;②f (x )=cos 2x-π4;③f (x )=sin x+cos x ;④f (x )=ln |x+1|.其中“和谐函数”的个数为 .参考答案1.C ∵f (-x )=-1x+x=-1x-x =-f (x ),且定义域为(-∞,0)∪(0,+∞),∴f (x )为奇函数,故f (x )的图像关于原点中心对称.故选C . 2.C f (x )的图像如图.当x ∈[-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈[0,1)时,由xf (x )>0得x ∈⌀; 当x ∈[1,3]时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).故选C .3.D 由y=f (x+8)为偶函数,知函数f (x )的图像关于直线x=8对称.又因为f (x )在(8,+∞)上单调递减,所以f (x )在(-∞,8)上单调递增.可画出f (x )的草图(图略),知f (7)>f (10),故选D .4.B f (x-2)>0等价于f (|x-2|)>0=f (2).又f (x )=x 3-8在[0,+∞)上单调递增,∴|x-2|>2,解得x<0或x>4,故选B .5.ACD 对于A,若f (-2)>f (2),则f (x )在R 上必定不是增函数,故A 错误;对于B,若函数f (x )是偶函数,则f (-2)=f (2),所以若f (-2)≠f (2),则函数f (x )不是偶函数,故B 正确;对于C,f (x )=x 2,满足f (0)=0,但不是奇函数,故C 错误;对于D,该函数为分段函数,在x=0处,有可能会出现右侧比左侧低的情况,故D 错误.故选ACD .6.AB 在f (x+4)=f (x )+f (2)中,令x=-2,得f (-2)=0,又因为函数y=f (x )是R 上的奇函数,所以f (2)=-f (-2)=0,f (x+4)=f (x ),故y=f (x )是一个周期为4的奇函数,因为(0,0)是f (x )的图像的一个对称中心,所以点(4,0)也是函数y=f (x )的图像的一个对称中心,故A,B 正确;作出函数f (x )的部分图像如图所示,易知函数y=f (x )在[-6,-2]上不具单调性,故C 不正确;函数y=f (x )在[-6,6]上有7个零点,故D 不正确.故选AB .7.C ∵f (x )是奇函数,∴当x<0时,f (x )=-x 2+2x.作出函数f (x )的大致图像如图中实线所示,结合图像可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a<1,故选C .8.-2 因为f (x+4)=f (x ),所以f (x )的周期为4.又因为f (x )是奇函数,所以f (7)=f (8-1)=f (-1)=-f (1),由题意f (1)=12+1=2,所以f (7)=-2,故答案为-2.9.337 由题意得函数的周期为6,f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,所以数列{f (n )}从第一项起,每连续6项的和为1,则f (1)+f (2)+…+f (2 021)=336×1+f (1)+f (2)+f (3)+f (4)+f (5)=337. 10.2 ∵f (x )是R 上的奇函数,∴f (0)=0.又对任意x ∈R 都有f (x+6)=f (x )+f (3),∴当x=-3时,有f (3)=f (-3)+f (3), ∴f (-3)=0,f (3)=-f (-3)=0, ∴f (x+6)=f (x ),f (x )的周期为6. 故f (2 017)=f (1)=2. 11.D 设h (x )=sinx3 |x |,则h (-x )=-h (x ),所以h (x )是一个奇函数,所以函数h (x )的最大值和最小值的和是0,所以M+m=π,所以f (M+m )=π2,故选D .12.D 由题意可知,f (x )的定义域为 x x 12,关于原点对称.∵f (x )=ln |2x+1|-ln |2x-1|,∴f (-x )=ln |-2x+1|-ln |-2x-1|=ln |2x-1|-ln |2x+1|=-f (x ), ∴f (x )为奇函数.当x ∈ -12,12时,f (x )=ln(2x+1)-ln(1-2x ),∴f'(x )=22x 1 -21-2x4(2x 1)(1-2x )>0,∴f (x )在区间 -12,12上单调递增.同理,f (x )在区间 -∞,-12, 12, ∞ 上单调递减. 故选D .13.A ∵f (x+1)为偶函数,f (x )为奇函数,∴f (-x+1)=f (x+1),f (x )=-f (-x ),f (0)=0,∴f (x+1)=f (-x+1)=-f (x-1),∴f (x+2)=-f (x ),f (x+4)=f (x+2+2)=-f (x+2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2, ∴f (4)+f (5)=0+2=2,故选A .14.5 ∵f (x+2)=f (x ),∴函数f (x )是周期为2的函数,若x ∈[-1,0],则-x ∈[0,1],f (-x )=-3x ,由题意f (-x )=f (x )=-3x.由ax+3a-f (x )=0,得a (x+3)=f (x ),设g (x )=a (x+3),分别作出函数f (x ),g (x )在区间[-3,2]上的图像如图.∵12<a<34,∴当a=12和34时,对应的直线为两条虚线,则由图像知两个函数有5个不同的交点,故方程有5个不相等的实数根. 15.B 由题意,f (-x )=2-x-1-12-x 112x 1-2x-1=-f (x ),所以f (x )为R 上的奇函数.因为2x-1和-12x 1都为R 上的增函数,所以f (x )=2x-1-12x 1为R 上的增函数.对于A,y=e x 不是奇函数,排除A;对于B,由f (-x )=ln(-x+ (-x ) 1)=ln1x x 2 1=-ln(x+√x 1)=-f (x ),所以f (x )为奇函数,由复合函数的单调性知y=ln(x+√x 1)为增函数,故B 正确;对于C,y=x 2不是奇函数,排除C;对于D,y=tan x 在R 上不是单调函数,排除D .故选B .16.1 ①中f (0)=6≠0,无论正数a 取什么值f (x-a )都不是奇函数,故不是“和谐函数”;②中f (x )=cos 2x-π2=sin 2x ,f (x )的图像向左或右平移π4个单位长度后其函数变为偶函数,f (x )的图像向左或右平移π2个单位长度后其函数变为奇函数,故不是“和谐函数”;③中f (x )=sin x+cos x=√2sin x+π4,因为f x-π4=√2sinx 是奇函数,f x+π4=√2cos x 是偶函数,故是“和谐函数”;④因为f (x )=ln |x+1|,所以只有f (x-1)=ln |x|为偶函数,而f (x+1)=ln |x+2|为非奇非偶函数,故不存在正数a 使得函数f (x )是“和谐函数”.综上可知,只有③是“和谐函数”.。
2023年数学高考复习真题演练(全国卷)07 函数的性质-单调性、奇偶性、周期性 (含详解)

专题07函数的性质——单调性、奇偶性、周期性【考点预测】 1.函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上; ②任意两个自变量1x ,2x 且12x x <; ③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. (2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质. (3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称. (2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称. (3)若()()2f x f a x =-,则函数()f x 关于x a =对称. (4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称. 4.函数的周期性 (1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期. 【方法技巧与总结】 1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <; ②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形; ③定号:判断差的正负或商与1的大小关系; ④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断. ②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 1()f x 为减函数; ④若()0f x >且()f x1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称; 函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称. (3)若奇函数()y f x =在0x =处有意义,则有(0)0f =; 偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶; 奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇. (8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-. ③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =. 注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+. ②函数()log (1)2mx a mxf x a =+-. ③函数(||)f x 类型的一切函数. ④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称. 【题型归纳目录】题型一:函数的单调性及其应用 题型二:复合函数单调性的判断 题型三:利用函数单调性求函数最值 题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值 题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性 题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性 题型十三:函数性质的综合 【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有( ) A .f (x )在R 上是增函数 B .f (x )在R 上是减函数 C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为( ). A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为( )A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-. (1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论; (2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性. 【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y = )A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-, 例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是( )A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()()2x x f x --=的单调递减区间是( )A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数; 2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e e x xx xf x ---=+;④()11e x f x -=+. 例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-. (1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明; (2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是( )①()21f x x =-+;②2()f x x =;③()2f x =;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值. 4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a . 5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b . 题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,xm m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为( )A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围( )A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数2axf x a(0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是( )A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈ ,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是( ) A .24y x x =- B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是 A .x y e -=B .3y x =C .ln y x =D .y x =例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭, ()3log 7b f =, ()30.8c f =-,则( )A .b a c <<B .c a b <<C .c b a <<D . a c b <<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则( ). A .a b c >>B .c b a >>C .c a b >>D .a c b >>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ( )A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x= B .ln y x x =-- C .3y x x =--D .3=-+y x x 例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为( )A .()sin g x x =B .()22g x x x =+C .()3g x x x =-D .()()x x g x e e -=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ) (4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性; (2)判断并证明函数()f x 在0,上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性. 题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则( )A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ( )A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a+=-为奇函数,则实数a 的值为( )A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330xxa a af x -+=-⋅≠为奇函数,则=a ______. 例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为( )A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为( )A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是( )A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =( )A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+. (1)求()1f 和()1f -的值; (2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式. 【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =+(a ,b 为实数),()3lglog 102022f =,则()lglg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=( )A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫ ⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113esin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为( ).A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为( )A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数())22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___. 【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则 (1)()()2f x f x M -+= (2)max min ()()2f x f x M += 题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则( )A .()f x 是偶函数B .()f x 的图象关于直线12x =对称 C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =( )A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是( )A .()()()3ln3e e f f f <<- B .()()()3e ln3ef f f -<< C .()()()3e e ln3f f f <-<D .()()()3ln3e e f f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f = 则(45)f =( )A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为( )A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=( )A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为( )A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为( )A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x π-=--,且函数()f x 与()cos 2g x x x π=≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y , ()22,x y ,()33,x y ,()44,x y ,则()41i i i x y =+=∑( )A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-; (2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( )A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t ≥-恒成立,则实数t 的取值范围是( ) A .(](],10,3-∞-B.((,0,3⎤-∞⎦C .[)[)1,03,-+∞D .))3,⎡⎡+∞⎣⎣例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为( )A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf xa +≤恒成立,则1a ≥ )A .1B .2C .3D .4【方法技巧与总结】 1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()()xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n n g x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为( ) A .()3,1- B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b <<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1xf x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为( )A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足: ①()01f =;xx②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++.【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数) (2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数) (3)若()()()f xy f x f y =+,则()log b f x x =(对数函数) (4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形. 题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1-B .(-C .()0,1D .(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增. 若实数a 满足212(log )(lo )g )2(1f a f f a +≤, 则a 的最小值是( )A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x x f x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是( )A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33e x x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是( )A .(,3][1,)-∞-+∞B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是( )A.)+∞ B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是( )A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为( )A .()0,∞+ B .(),e -∞- C .[]e,0- D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是( )A .1,3⎛⎤-∞ ⎥⎝⎦ B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦ 【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】 一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则( ) A .2x y <B .2x y >C .x y >D .x y <3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为( )A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为( )A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于( )A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x -=+,则曲线()y f x =在点11,22f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为( ) A .240x y ++= B .240x y -+= C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭( )A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是( )A .10,e ⎛⎫⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是( ) A .()f x 的定义域为(,2)(2,)-∞⋃+∞ B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是( )A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是( )A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lgf x x =,()212xg x =+,()()()F x f x g x =+,则( ) A .()f x 的图象关于()0,1对称 B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________. 14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ()1212xx f x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围. 18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数; (3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=. (1)求函数()f x 与()g x 的解析式; (2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+- ②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由. (2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.专题07 函数的性质——单调性、奇偶性、周期性【考点预测】 1.函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上; ②任意两个自变量1x ,2x 且12x x <; ③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. (2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质. (3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇。
高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性与周期性专题练习
一、选择题
1.(2019·肇庆三模)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( )
A.3
B.2
C.1
D.0
解析 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg
x 2-2与y = x sin x 为偶函数.
答案 B
2.(2019·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )
A.奇函数,且在(0,1)内是增函数
B.奇函数,且在(0,1)内是减函数
C.偶函数,且在(0,1)内是增函数
D.偶函数,且在(0,1)内是减函数
解析 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数,
又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数,
所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数.
答案 A
3.已知函数f (x )=x ⎝ ⎛⎭
⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A.x 1>x 2
B.x 1+x 2=0
C.x 1<x 2
D.x 21<x 22
解析 ∵f (-x )=-x ⎝ ⎛⎭
⎪⎫1e x -e x =f (x ). ∴f (x )在R 上为偶函数,
f ′(x )=e x -1e x +x ⎝ ⎛⎭
⎪⎫e x +1e x , ∴x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数,
由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),
∴|x 1|<|x 2|,∴x 21<x 22.
答案 D
4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )
A.4
B.3
C.2
D.1
解析 由已知得f (-1)=-f (1),g (-1)=g (1),则有⎩⎪⎨⎪⎧-f (1)+g (1)=2,f (1)+g (1)=4,
解得g (1)=3.
答案 B
5.(2019·西安一模)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )
A.2
B.1
C.-1
D.-2
解析 ∵f (x +1)为偶函数,
∴f (-x +1)=f (x +1),则f (-x )=f (x +2),
又y =f (x )为奇函数,则f (-x )=-f (x )=f (x +2),且f (0)=0.
从而f (x +4)=-f (x +2)=f (x ),y =f (x )的周期为4.
∴f (4)+f (5)=f (0)+f (1)=0+2=2.
答案 A
二、填空题
6.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.
解析 由于f (-x )=f (x ),
∴ln(e -3x +1)-ax =ln(e 3x +1)+ax ,
化简得2ax +3x =0(x ∈R ),则2a +3=0,
∴a =-32.
答案 -32
7.(2020·合肥质检)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析
式为f (x )=⎩⎨⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f
⎝ ⎛⎭⎪⎫416=________. 解析 由于函数f (x )是周期为4的奇函数,
所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫2×4-34+f ⎝ ⎛⎭⎪⎫2×4-76=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f
⎝ ⎛⎭⎪⎫76= -316+sin π6=516.
答案 516
8.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭
⎪⎫12=0,则满足f (x )>0的x 的集合为________.
解析 由奇函数y =f (x )在(0,+∞)上递增,且f
⎝ ⎛⎭⎪⎫12=0,得函数y =f (x )在(-∞,0)上递增,且f
⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0. 答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12
<x <0或x >12 三、解答题
9.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .
(1)判定f (x )的奇偶性;
(2)试求出函数f (x )在区间[-1,2]上的表达式.
解 (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ).
又f (x +2)=f (x ),∴f (-x )=f (x ).
又f (x )的定义域为R ,
∴f (x )是偶函数.
(2)当x ∈[0,1]时,-x ∈[-1,0],
则f (x )=f (-x )=x ;
进而当1≤x ≤2时,-1≤x -2≤0,
f (x )=f (x -2)=-(x -2)=-x +2.
故f (x )=⎩⎨⎧-x ,x ∈[-1,0],
x ,x ∈(0,1),-x +2,x ∈[1,2].
10.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,
x 2+mx ,x <0
是奇函数. (1)求实数m 的值;
(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,
所以f (-x )=-(-x )2+2(-x )=-x 2-2x .
又f (x )为奇函数,所以f (-x )=-f (x ).
于是x <0时,f (x )=x 2+2x =x 2+mx ,
所以m =2.
(2)要使f (x )在[-1,a -2]上单调递增,
结合f (x )的图象知⎩⎨⎧a -2>-1,a -2≤1,
所以1<a ≤3, 故实数a 的取值范围是(1,3].
11.(2019·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1
,则实数a 的取值范围为( ) A.(-1,4)
B.(-2,0)
C.(-1,0)
D.(-1,2) 解析 ∵f (x )是定义在R 上的周期为3的偶函数,
∴f (5)=f (5-6)=f (-1)=f (1),
∵f (1)<1,f (5)=2a -3
a +1,∴2a -3a +1<1,即a -4a +1
<0, 解得-1<a <4.
答案 A
12.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 015)+f(2 016)=()
A.0
B.2
C.3
D.4
解析y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数,
令x=-1,则f(-1+2)-f(-1)=2f(1),
∴f(1)-f(1)=2f(1)=0,即f(1)=0,
则f(x+2)-f(x)=2f(1)=0,
即f(x+2)=f(x),
则函数的周期是2,又f(0)=2,
则f(2 015)+f(2 016)=f(1)+f(0)=0+2=2.
答案 B
13.(2019·东北四市联考)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.
解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.
又f(1)=0,∴f(3)=f(5)=f(1)=0,
故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.
答案7
14.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积.
解(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f (x )是以4为周期的周期函数,
所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.
(2)由f (x )是奇函数且f (x +2)=-f (x ),
得f [(x -1)+2]=-f (x -1)=f [-(x -1)],
即f (1+x )=f (1-x ).
故知函数y =f (x )的图象关于直线x =1对称.
又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如下图所示.
当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =×⎝ ⎛⎭⎪⎫12×2×1=4.。