杨氏模量测定实验报告
杨氏模量实验报告实验原理(3篇)

第1篇一、实验背景杨氏模量(Young's Modulus)是材料力学中的一个重要物理量,它表征了材料在受力时抵抗形变的能力。
在工程实践中,杨氏模量是衡量材料刚度的重要指标之一,对材料的选择和结构设计具有重要意义。
本实验旨在通过实验方法测定金属材料的杨氏模量,并掌握相关实验原理和操作步骤。
二、实验原理1. 杨氏模量的定义杨氏模量(E)是指材料在弹性变形范围内,单位面积上所承受的应力与相应的应变之比。
其数学表达式为:E = σ / ε其中,σ为应力,ε为应变。
应力(σ)是指单位面积上的力,其数学表达式为:σ = F / A其中,F为作用在材料上的力,A为受力面积。
应变(ε)是指材料形变与原始长度的比值,其数学表达式为:ε = ΔL / L其中,ΔL为材料形变的长度,L为原始长度。
2. 胡克定律在弹性变形范围内,杨氏模量与应力、应变之间存在线性关系,即胡克定律:σ = Eε该定律表明,在弹性变形范围内,材料的应力与应变成正比。
3. 实验原理本实验采用拉伸法测定金属材料的杨氏模量。
具体实验步骤如下:(1)将金属样品固定在实验装置上,使其一端受到拉伸力F的作用。
(2)测量金属样品的原始长度L0和受力后的长度L。
(3)计算金属样品的形变长度ΔL = L - L0。
(4)根据胡克定律,计算应力σ = F / A,其中A为金属样品的横截面积。
(5)计算应变ε = ΔL / L0。
(6)根据杨氏模量的定义,计算杨氏模量E = σ / ε。
三、实验仪器1. 拉伸试验机:用于施加拉伸力F。
2. 样品夹具:用于固定金属样品。
3. 量具:用于测量金属样品的原始长度L0、受力后的长度L和形变长度ΔL。
4. 计算器:用于计算应力、应变和杨氏模量。
四、实验步骤1. 将金属样品固定在实验装置上,确保其牢固。
2. 调整拉伸试验机,使其施加一定的拉伸力F。
3. 测量金属样品的原始长度L0。
4. 拉伸金属样品,使其受力后的长度L。
杨氏模量测量实验报告

杨氏模量测量实验报告【实验名称】:杨氏模量测量实验【实验目的】:1.了解杨氏模量的定义和物理意义;2.掌握用实验方法测量杨氏模量的原理和步骤;3.熟练掌握实验仪器的使用方法和注意事项;4.学会分析处理实验数据,计算出被测物体的杨氏模量。
【实验仪器】:万能试验机、游标卡尺、数显卡尺、电子天平等。
【实验原理】:杨氏模量是描述物体抗拉性质的一个重要指标,它可以衡量物体在受到拉伸或压缩作用下的刚性程度。
在实验中,我们采用悬挂法来测量杨氏模量,具体步骤如下:1. 将被测物体悬挂在两个支点之间,保持水平,使其自由悬挂;2. 加上一定的负荷,在达到恒定的应力状态后,记录物体的长度变化量;3. 根据胡克定律,计算出物体所受的拉力大小,并根据形变和拉力的关系求出物体的杨氏模量。
【实验步骤】:1.准备工作(1)清洗被测物体表面,去除污垢和氧化层。
(2)使用游标卡尺或数显卡尺等测量被测物体的直径、长度等尺寸参数,并记录下来。
(3)悬挂被测物体到万能试验机的上夹具,保证其自由悬挂并水平。
2.实验操作(1)在万能试验机上加负荷,使被测物体达到恒定的应力状态。
(2)记录被测物体的长度变化量,并计算出拉力大小。
(3)根据拉力和形变的关系,求出被测物体的杨氏模量。
3.数据处理(1)根据实验所得数据,绘制出应力-应变曲线。
(2)通过斜率法或者曲线拟合法,求出被测物体的杨氏模量。
4.实验注意事项(1)掌握好实验仪器的使用方法,严格按照实验流程进行操作,以免发生意外。
(2)保持被测物体的表面光滑干净,避免影响实验结果。
(3)在实验过程中,需要注意对温度、湿度等因素的控制,以保证实验结果的准确性。
【实验结果】:本实验所测得被测物体的杨氏模量为XXX。
根据计算结果和应力-应变曲线,可以看出所测物体具有较好的抗拉性能和刚性特性。
杨氏模量测量实验报告

杨氏模量测量实验报告引言:杨氏模量是材料力学性能的重要指标之一,能够描述材料在受力后变形程度的大小。
测量杨氏模量是材料力学实验中常用的一种方法。
本实验旨在通过弹性力学实验,测量不同材料样品的杨氏模量,并分析材料的弹性性质。
本实验采用三点弯曲法进行杨氏模量的测量。
实验设备与方法:1. 设备:实验所需设备包括:弯曲试验机、样品夹持器、测量卡尺、金属样品。
2. 方法:1) 准备工作:a. 清洁金属样品,确保表面平整无明显瑕疵。
b. 调整弯曲试验机的夹具位置,使其水平平衡。
2) 安装样品:a. 使用样品夹持器夹持金属样品。
b. 调整夹持器位置,使样品在试验过程中能够受到均匀的力。
3) 开始试验:a. 将夹持器固定在弯曲试验机上。
b. 调整弯曲试验机上的载荷读数器,使其能够读取力的大小。
c. 开始施加载荷,在每个载荷下测量样品的变形程度。
d. 逐渐增加载荷,持续测量样品的变形情况,直至样品破断。
4) 数据处理:a. 根据测量结果计算出样品的弹性应变和应力。
b. 绘制应变-应力曲线,通过线性拟合确定斜率,即杨氏模量。
实验结果与分析:根据我们的实验数据,我们绘制了不同金属样品的应变-应力曲线,并通过线性拟合确定了斜率,也即杨氏模量。
样品1:钢材应变(ε)应力(σ)0.001 20 MPa0.002 40 MPa0.003 60 MPa0.004 80 MPa通过上述数据,我们得到钢材的杨氏模量为200 GPa。
样品2:铝材应变(ε)应力(σ)0.001 10 MPa0.002 20 MPa0.003 30 MPa0.004 40 MPa通过上述数据,我们得到铝材的杨氏模量为100 GPa。
通过以上实验结果,我们可以看出钢材的杨氏模量是铝材的两倍,说明钢材具有更高的刚度和较小的变形程度。
这也符合我们对钢材和铝材的常见认知,钢材通常被用来制作承重结构,因为其强度和刚度较高。
结论:通过杨氏模量测量实验,我们成功测量了不同材料样品的杨氏模量,并分析了不同材料的弹性性质。
杨氏模量_实验报告

一、实验目的1. 了解杨氏模量的概念及其在材料力学中的应用。
2. 掌握杨氏模量的测定方法,即拉伸法。
3. 培养实验操作技能和数据处理能力。
二、实验原理杨氏模量(E)是描述材料在受到拉伸或压缩时抵抗形变的能力的物理量。
根据胡克定律,在弹性限度内,材料的相对伸长(或压缩)量与外力成正比,即:ΔL/L = F/S E其中,ΔL为材料的伸长量,L为材料的原始长度,F为施加在材料上的外力,S为材料的横截面积,E为杨氏模量。
本实验采用拉伸法测定杨氏模量,通过测量材料在拉伸过程中产生的伸长量,结合材料的原始长度和横截面积,计算出杨氏模量。
三、实验仪器与材料1. 杨氏模量测定仪(包括:拉伸仪、光杠杆、望远镜、标尺)2. 螺旋测微器3. 游标卡尺4. 钢直尺5. 金属丝(直径约为0.5mm)四、实验步骤1. 将金属丝一端固定在杨氏模量测定仪的拉伸仪上,另一端连接到重物托盘。
2. 调整螺栓,使金属丝处于铅直状态。
3. 使用游标卡尺测量金属丝的直径,并记录数据。
4. 将望远镜和标尺放置在光杠杆前方约1.2m处。
5. 调节望远镜和标尺,使标尺铅直,光杠杆平面镜平行于标尺。
6. 观察望远镜中的标尺像,记录初始像的位置。
7. 挂上重物,使金属丝产生一定的伸长量。
8. 观察望远镜中的标尺像,记录新的像的位置。
9. 计算金属丝的伸长量,并记录数据。
10. 重复步骤7-9,进行多次测量,取平均值。
五、数据处理与结果分析1. 计算金属丝的横截面积S,S = π (d/2)^2,其中d为金属丝直径。
2. 计算金属丝的相对伸长量ΔL/L,ΔL/L = ΔL/L0,其中L0为金属丝的原始长度,ΔL为金属丝的伸长量。
3. 根据公式E = F/S ΔL/L,计算杨氏模量E。
4. 计算多次测量的平均值,并求出标准偏差。
六、实验结果1. 金属丝直径d:0.48mm2. 金属丝原始长度L0:500mm3. 金属丝伸长量ΔL:0.5mm4. 金属丝横截面积S:0.185mm^25. 杨氏模量E:2.10×10^11 Pa七、结论通过本实验,我们成功地测定了金属丝的杨氏模量,结果为2.10×10^11 Pa。
实验报告杨氏模量测量

实验报告:杨氏模量的测定杨氏模量的测定(伸长法)【实验目的】1.用伸长法测定金属丝的杨氏模量2.学习光杠杆原理并掌握使用方法【实验仪器】伸长仪;光杆杆;螺旋测微器;游标尺;钢卷尺和米尺;望远镜(附标尺)。
【实验原理】物体在外力作用下或多或少都要发生形变,当形变不超过某一限度时,撤走外力之后形变能随之消失,这种形变叫弹性形变,发生弹性形变时物体内部将产生恢复原状的内应力。
设有一截面为S ,长度为l 的均匀棒状(或线状)材料,受拉力F 拉伸时,伸长了δ,其单位面积截面所受到的拉力S F称为胁强,而单位长度的伸长量l δ称为胁变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体胁变与它所受的胁强成正比:F E S lδ= 其比例系数E 取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
FlE S δ=(1)右图是光杠杆镜测微小长度变化量的原理图。
左侧曲尺状物为光杠杆镜,M 是反射镜,b 为光杠杆镜短臂的杆长,B 为光杆杆平面镜到尺的距离,当加减砝码时,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为l 时,从一个调节好的位于图右侧的望远镜看M 镜中标尺像的读数为0h ;而钢丝受力伸长后,光杠杆镜的位置变为虚线所示,此时从望远镜上看到的标尺像的读数变为i h 。
这样,钢丝的微小伸长量δ,对应光杠杆镜的角度变化量θ,而对应的光杠杆镜中标尺读数变化则为Δh 。
由光路可逆可以得知,h ∆对光杠杆镜的张角应为θ2。
从图中用几何方法可以得出:tg bδθθ≈=(1)tg22hBθθ∆≈=(2) 将(1)式和(2)式联列后得:2bh Bδ=∆ (3) 考虑到2=/4S D π,F mg =所以:28BmglE D b hπ=∆这种测量方法被称为放大法。
由于该方法具有性能稳定、精度高,而且是线性放大等优点,所以在设计各类测试仪器中有着广泛的应用。
杨氏模量测量实验报告

杨氏模量测量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大法测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等长度测量仪器。
4、学习数据处理和误差分析的方法。
二、实验原理1、杨氏模量杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的均匀金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 Y,其表达式为:Y =(F/S) /(ΔL/L) = FL /(SΔL)2、光杠杆放大原理光杠杆是一个附有三个尖足的平面镜,前两尖足放在平台的沟内,后尖足置于待测金属丝的测量端面上。
当金属丝伸长时,光杠杆后尖足随之下降,反射镜转动一个小角度θ,使反射光线偏转2θ。
通过望远镜和标尺可以测量出光线在标尺上移动的距离 n,从而计算出金属丝的伸长量ΔL。
设光杠杆常数(两前尖足间距离)为 b,镜面到标尺的距离为 D,则有:ΔL = nD / 2b三、实验仪器杨氏模量测量仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、待测金属丝等。
四、实验步骤1、仪器调节(1)调节杨氏模量测量仪的底座水平,使金属丝铅直。
(2)将光杠杆放在平台上,使其前两尖足位于平台的沟槽内,后尖足置于金属丝的测量端面上,调整光杠杆平面镜与平台垂直。
(3)调整望远镜和标尺的位置,使望远镜与平面镜等高,且望远镜的光轴与平面镜中心等高。
通过望远镜目镜看清十字叉丝,然后调节望远镜的焦距,直到能清晰地看到标尺的像。
2、测量金属丝的长度 L用米尺测量金属丝的有效长度 L,测量多次,取平均值。
3、测量金属丝的直径 d用螺旋测微器在金属丝的不同位置测量直径 d,测量多次,取平均值。
4、测量光杠杆常数 b用游标卡尺测量光杠杆两前尖足间的距离b,测量多次,取平均值。
5、测量望远镜到标尺的距离 D用米尺测量望远镜到标尺的距离 D。
杨氏模量测定(实验报告范例)

杨氏模量测定(横梁弯曲法)一、实验目的1. 学习用弯曲法测量金属的杨氏模量2. 学习微小位移测量方法 二、实验仪器JC-1读数显微镜 待测金属片 砝码片若干 待测金属片支撑架 可挂砝码片的刀口三、实验原理宽度为b ,厚度为a ,有效长度为d 的棒在相距dx 的1O 、2O 两点上横断面,在棒弯曲前相互平行,弯曲后则成一小角度θd ,棒的下半部分呈拉伸状态,而上半部分呈压缩状态,棒的中间有薄层虽然弯曲但长度不变。
现在来计算一下与中间层相距为y ,厚度为dy ,形变前长为dx 的一段,弯曲后伸长了θyd ,由胡克定律可计算它所到的拉力dF :ydy dx d Eb dF bdy dS dx yd E dS dF θθ=⇒⎪⎭⎪⎬⎫== 对中心薄层所产生的力矩dy y dxd EbdM 2θ= 整个横断面产生力矩为:dxd b Ea y dx d Eb dy y dxd EbM a a a θθθ32/032/2/212132=⎥⎦⎤⎢⎣⎡==⎰- 如果使得棒弯曲的外力作用在棒有效长度的中点上,那么棒的两端分别施加mg 21,才能使棒平衡。
棒上距离中点为x ,长度为dx 的一段,由于mg 21力的作用产生弯曲下降:()θd x d Z d ⎪⎭⎫⎝⎛-=∆2棒处于平衡状态时,有外力mg 21对该处产生的力矩⎪⎭⎫⎝⎛-x d mg 221应该等于该处横断面弯曲所产生的力矩。
dx x d b Ea mg d dx d b Ea x d mg ⎪⎭⎫⎝⎛-=⇒=⎪⎭⎫ ⎝⎛-2612122133θθ bEa mgd X b Ea mg dX X b Ea mg x d d x d b Ea mg Z d dd 332033202320234366226=⎥⎦⎤⎢⎣⎡==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=∆⎰⎰上式整理可得:Zb a mgd E ∆=334因此只要测定外力mg 使金属片弯曲伸长量Z ∆,金属片的有效长度d ,宽度b ,厚度a 就可以测出金属片的杨氏模量。
测量杨氏模量实验报告

测量杨氏模量实验报告一、实验目的本实验旨在通过测量材料的弹性变形,计算出杨氏模量,进一步了解材料的力学性质。
二、实验原理杨氏模量是衡量物质刚性的重要指标之一。
它表示单位截面积内受力后产生的弹性变形与所受应力之比。
其计算公式为:E=Fl/ASΔL其中,E为杨氏模量,F为施加在样品上的拉伸力,l为样品长度,A 为样品横截面积,S为应力,ΔL为伸长量。
三、实验器材和试验步骤1. 实验器材:弹簧测微计、钢丝绳、螺母卡、挂钩、样品架等。
2. 实验步骤:(1)将钢丝绳固定在试验机上,并将挂钩固定在钢丝绳上。
(2)将试件放在挂钩下方,并用螺母卡固定住。
(3)调整好仪器参数后开始施加拉伸力。
(4)记录下拉伸过程中试件长度的变化,并根据公式计算出应力和伸长量。
(5)根据得到的数据计算出杨氏模量。
四、实验结果和分析通过实验测量得到了试件在不同拉伸力下的伸长量和应力数据,进而计算出了杨氏模量。
实验结果表明,该材料的杨氏模量为XXX,符合该材料的理论值范围。
五、误差分析在实验过程中,由于试件本身的制造工艺和测量仪器的精度等因素会产生一定误差。
另外,在记录数据时也可能存在一定误差。
为减小误差,我们需要注意以下几点:(1)尽可能选择制造工艺较好、表面平整且尺寸规则的试件。
(2)在实验前要对测量仪器进行校正,并尽可能使用高精度仪器。
(3)多次重复实验,并取平均值作为最终结果。
六、结论通过本次实验,我们成功地测得了该材料的杨氏模量,并对其力学性质有了更深入的了解。
同时,在实验过程中也学会了如何正确地使用弹簧测微计等仪器来进行弹性变形测试,这对于日后从事相关领域研究具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨氏模量的测定
【实验目的】
1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】
MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】 一、杨氏弹性模量
设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即
L
L
Y
S F ∆= (1) 则
L
L S
F Y ∆=
(2) 比例系数Y 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
Y 的国际单位制单位为帕斯
卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S
4
2
d S π=
则(2)式可变为
L d FL
Y ∆=
24π (3)
可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。
二、光杠杆测微小长度变化
尺读望远镜和光杠杆组成如图2所示的测量系统。
光杠杆系统是由光杠杆镜架与尺读望远镜组成的。
光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。
三个尖足的边线为一等腰三角形。
前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。
尺读望远镜由一把竖立的毫米刻度尺和在尺旁的一个望远镜组成。
1-金属丝2-光杠杆3-平台4-挂钩5-砝码6-三角底座7-标尺8-望远镜
图1 杨氏模量仪示意图
(a ) (b)
图2光杠杆
将光杠杆和望远镜按图2所示放置好,按仪器调节顺序调好全部装置后,就会在望远镜中看到经由光杠杆平面镜反射的标尺像。
设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到望远镜处标尺刻度1s 的象。
当挂上重物使细钢丝受力伸长后,光杠杆的后脚尖1f 随之绕后脚尖32f f 下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ。
根据反射定律,从1s 处发出的光经过平面镜反射到2s (2s 为标尺某一刻度)。
由光路可逆性,从2s 发出的光经平面镜反射后将进入望远镜中被观察到。
望远记2s -
1s = Δn.
由图2可知
b L
∆=θtan D n
∆=
θtan
式中,b 为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);
D 为光杠杆镜面至尺读望远镜标尺的距离
由于偏转角度θ很小,即ΔL <<b ,Δn <<D ,所以近似地有
b
L ∆θ≈
,D
n
2∆θ≈
则
n 2D
b
L ∆∆•=
(4) 由上式可知,微小变化量ΔL 可通过较易准确测量的b 、D 、Δn ,间接求得。
实验中取D >>b ,光杠杆的作用是将微小长度变化ΔL 放大为标尺上的相应位置变化
Δn ,ΔL 被放大了 b D
2倍。
将(3)、(4)两式代入(2)有
n
F
b d LD 8Y 2
∆π•=
(5) 通过上式便可算出杨氏模量Y 。
【实验内容及步骤】 一、杨氏模量测定仪的调整
1. 调节杨氏模量测定仪三角底座上的调整螺钉,使支架、细钢丝铅直,使平台水平。
2. 将光杠杆放在平台上,两前脚放在平台前面的横槽中,后脚放在钢丝下端的夹头上适当
位置,不能与钢丝接触,不要靠着圆孔边,也不要放在夹缝中。
二、光杠杆及望远镜镜尺组的调整
1. 将望远镜放在离光杠杆镜面约为1.5-
2.0m 处,并使二者在同一高度。
调整光杠杆镜面与
平台面垂直,望远镜成水平,并与标尺竖直,望远镜应水平对准平面镜中部。
2. 调整望远镜
(1) 移动标尺架和微调平面镜的仰角,及改变望远镜的倾角。
使得通过望远镜筒上的
准心往平面镜中观察,能看到标尺的像; (2) 调整目镜至能看清镜筒中叉丝的像;
(3) 慢慢调整望远镜右侧物镜调焦旋钮直到能在望远镜中看见清晰的标尺像,并使望
远镜中的标尺刻度线的像与叉丝水平线的像重合;
(4) 消除视差。
眼睛在目镜处微微上下移动,如果叉丝的像与标尺刻度线的像出现相
对位移,应重新微调目镜和物镜,直至消除为止。
3. 试加八个砝码,从望远镜中观察是否看到刻度(估计一下满负荷时标尺读数是否够用),
若无,应将刻度尺上移至能看到刻度,调好后取下砝码。
三、测量
采用等增量测量法
1. 加减砝码。
先逐个加砝码,共八个。
每加一个砝码(1kg),记录一次标尺的位置i n ;然后
依次减砝码,每减一个砝码,记下相应的标尺位置'
i n (所记i n 和'
i n 分别应为偶数个)。
2. 测钢丝原长L 。
用钢卷尺或米尺测出钢丝原长(两夹头之间部分)L 。
3. 测钢丝直径d 。
在钢丝上选不同部位及方向,用螺旋测微计测出其直径d ,重复测量三
次,取平均值。
4. 测量并计算D 。
从望远镜目镜中观察,记下分划板上的上下叉丝对应的刻度,根据望远
镜放大原理,利用上下叉丝读数之差,乘以视距常数100,即是望远镜的标尺到平面镜的往返距离,即2D 。
5. 测量光杠杆常数b 。
取下光杠杆在展开的白纸上同时按下三个尖脚的位置,用直尺作出
光杠杆后脚尖到两前脚尖连线的垂线,再用米尺测出b 。
【数据记录及处理】
1. 金属丝的原长L = 光杠杆常数 b = 6.5cm D =185mm 下叉丝读数:8.8mm ,上叉丝读数:1
2.5mm ,则
mm 1851002
8
.8-5.12D =⨯=
3
d 下
中上=
其中i n 是每次加1kg 砝码后标尺的读数,()
'i i i n n 2
n +=(两者的平均)。
4. 用逐差法处理数据.
本实验的直接测量量是等间距变化的多次测量,故采用逐差法处理数据。
计算出每增加一个1kg 的的变化量,计算公式为:c
b d LDF
8E 2
π=。
4.1 用逐差法处理数据如下:
448c n n =-,'4'4'8c n n =- 337c n n =-,'3'3'7c n n =- 226c n n =-,'2'2'
6
c n n =- 115c n n =-,'1'1'5c n n =-
将以上四个式子叠加并求平均值
53.5-2c c c '
1
11=+= 22.5-2c c c '2
22=+= 01.5-2c c c '
3
33=+= 92.4-2
c c c '
4
44=+=
则可得到
17.5-4
c c c c c 4
321=+++=
计算中可取绝对值为
17.5c =
注:c 为增重4kg 时钢丝的伸长量。
计算结果如表2所示。
4.2 不确定度的计算
读数的不确定度:
()
=--=
∑=1
4c c S 4
1
i 2
i
n
=+=22n n S 仪∆∆
金属丝直径:
=++=
3
d d d d 下
中上
()
=--=
∑=1
3d d
S 3
1
i 2
i
d
=+=22d d S 仪∆∆
%N c n d d 2b b D D L L E E
2
2
2
2
2
=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∆∆∆∆∆∆ 代入数据可得到钢丝杨氏模量
==
c
b d LDF
8E 2
π 【作图法处理实验数据】 略
【分析与讨论】 略
【附另一参考数据】
金属丝的原长L = 光杠杆常数 b = 7.7cm D =168mm 下叉丝读数:8.62mm ,上叉丝读数:11.98mm
mm 1681002
62
.8-98.11D =⨯=
其中:
06.1-c ≈。