基于混沌映射和DCT变换的图像加密解密算法(英文)

合集下载

一种基于混沌映射的快速图像加密算法优化

一种基于混沌映射的快速图像加密算法优化

一种基于混沌映射的快速图像加密算法优化乔建平;邓联文;贺君;廖聪维【摘要】为了解决现有图像加密算法存在随图像尺寸变大导致加密时间迅速增加的问题,采用基于logistic和Arnold映射的改进加密算法实现了快速图像加密算法的优化.该算法基于两种混沌映射对原文图像进行像素置乱和灰度值替代,像素置乱是按图像大小选择以H个相邻像素为单位进行,通过适当调整H的取值实现加密时间优化;灰度值替代是利用Arnold映射产生混沌序列对置乱图像进行操作而得到密文图像.结果表明,对于256×256的Lena标准图像,加密时间降低到0.0817s.该算法具有密钥空间大和加密速度快等优点,能有效抵抗穷举、统计和差分等方式的攻击.%In order to solve the rapid increase of the encryption time because of the increasing image size in the existing image encryption algorithm , the optimized encryption algorithm based on logistic and Arnold mapping was used to achieve the optimization of the fast image encryption algorithm.The algorithm was based on two kinds of chaotic maps to the original image , pixel scrambling and gray value substitution.Pixel scrambling was to select the H adjacent pixels according to the image size , appropriately adjust the H value and realize the encryption time optimization.Gray value substitution is to generate chaotic sequences by Arnold mapping , operate the scrambling image and get the cipher image.The results show that , for 256 ×256 Lena standard images, the encryption time is reduced to 0.0817s.The algorithm has advantages of large key space and fast encryption speed, and can effectively resist the attack of exhaustive , statistical, and differential means.【期刊名称】《激光技术》【年(卷),期】2017(041)006【总页数】7页(P897-903)【关键词】图像处理;图像加密;混沌映射;Lena图像【作者】乔建平;邓联文;贺君;廖聪维【作者单位】中南大学物理与电子学院超微结构与超快过程湖南省重点实验室,长沙410083;中南大学物理与电子学院超微结构与超快过程湖南省重点实验室,长沙410083;中南大学物理与电子学院超微结构与超快过程湖南省重点实验室,长沙410083;中南大学物理与电子学院超微结构与超快过程湖南省重点实验室,长沙410083【正文语种】中文【中图分类】TP309.7近年来,随着互联网、多媒体以及通信技术的快速发展和普及,信息的安全传输显得尤为重要。

基于图像相关性的混沌图像加密算法

基于图像相关性的混沌图像加密算法

收稿日期:2010-11-20基金项目:国家自然科学基金资助项目(60872040);辽宁省自然科学基金资助项目(20082037);辽宁省高等学校优秀人才支持计划;中央高校基本科研业务费专项资金资助项目(N100604007)#作者简介:张 伟(1983-),男,天津人,东北大学博士研究生;朱志良(1962-),男,辽宁沈阳人,东北大学教授,博士生导师#第32卷第4期2011年4月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 132,No.4Apr.2011基于图像相关性的混沌图像加密算法张 伟1,朱志良2,于 海2(1.东北大学信息科学与工程学院,辽宁沈阳 110819; 2.东北大学软件学院,辽宁沈阳 110819)摘 要:利用图像相邻像素间的相关性,提出了一种将4个相邻的像素点/分而治之0的方法,对传统混沌加密框架中的置乱过程进行改进#首先对相邻的像素点进行分离,对分离后的4组像素点使用4组不同参数的/猫映射0进行置乱,最后再进行组合和扩散操作#模拟结果表明,该算法在保证加密算法安全性的前提下,减少了加密算法中置乱操作的次数,从而有效地减少了加密时间#关 键 词:混沌理论;图像加密;明文相关性;图像置乱;图像扩散中图分类号:T P 309.7 文献标志码:A 文章编号:1005-3026(2011)04-0496-05A Chaotic Image Encryption Algorithm Based on Image CorrelationZ H AN G Wei 1,ZH U Zhi -liang 2,YU H ai2(1.School of Info rmation Science &Engineer ing ,No rtheastern U niv ersity,Shenyang 110819,China; 2.School of Software,N ortheastern U niv ersity,Shenyang 110819,China.Corr esponding author:ZHU Zh-i liang ,E -mail:zzl @)Abstract :Considering the high correlation among adjacent pix els,a /divide and conquer 0algorithm w as proposed for four adjacent pixels to improve the permutation phase of traditional chaotic encry ption schemes.Adjacent pix els w ere first separated,and then the four groups of separated pixels w ere permutated using /cat maps 0of the four groups having different parameters,followed by reconstruction and diffusion.Simulations results indicated that,when security of the encryption algorithm could be guaranteed,permutation and encryption time decreased.Key words:chaos theory;imag e encryption;plain -image correlation;image permutation;image diffusion混沌系统由于其对初始值极端敏感性,以及有界遍历性和伪随机性,使得对混沌密码系统及其分析的研究成为了近期的研究热点[1-7]#基于混沌系统的典型图像加密框架分别由两个步骤来完成,即置乱阶段和扩散阶段[3]#在置乱阶段,加密方案改变所有像素点的位置#在扩散阶段,将图像从一个二维数组转换成一维数组,通过混沌序列改变每一个像素点的值#在此基础上,一种由这种加密框架简化而来的单置乱加密框架在近期成为了研究的热点[8-9]#在这种加密系统中,没有扩散阶段,仅通过置乱操作进行加密#通常来说,扩散操作比置乱操作更加消耗时间,因此单置乱加密框架在速度上更具有优势#文献[8]提出了一种以像素点为单位的比特移位置乱算法,文献[9]提出了一种基于8个像素点组成的比特矩阵的置乱加密算法#文献[10]对文献[8-9]提出的算法进行了分析,提出几种可行的分析方法,证明单置乱加密算法是不安全的#本文采用经典的置乱扩散框架,利用图像的相关性,提出了一种将相邻像素点/分而治之0的方法#在保证安全性的同时,减少了算法的执行时间#1 图像的相关性及置乱操作基于置乱扩散框架的加密算法需要进行若干轮的加密过程,且每一轮加密过程又分别包括若干轮的置乱和扩散,从而达到比较安全的加密效果#通常来说,明文具有较高相关性,表现为相邻像素点的灰度值的差值均在一个较小范围的邻域内#置乱操作的作用之一就是降低像素点之间的相关性#在传统的置乱过程中,将所有像素点看成一个集合,然后使用二维混沌映射对这个集合进行置乱操作#在进行置乱操作中,若只进行一次置乱操作,在得到的中间密文中很多原始相邻的像素点依然相邻,具有较高的相关性,这样往往需要多轮迭代才能有效地降低图像的相关性,进而达到理想的效果#通常这样的方法往往需要更多的运算时间#为此,本文提出一种将4个相邻的像素点/分而治之0的思想进行置乱#对于相邻像素点先进行分离,然后再进行置乱,置乱之后再组合,有效地减少了单轮加密操作中的置乱轮数,从而减少了加密时间#定义1 对于一个长和宽均为w 的256级灰度图像,设图像中所有像素点p (i ,j )的集合为P ={p (i,j )|0[i [w -1,0[j [w -1}#若P 上存在一个一一映射f ,满足p (i,j )fSub A (i/2,j /2),P i mod2=0且j mod2=0;Sub B (i/2,j /2),P i mod2=0且j mod2=1;Sub C (i /2,j /2),P i mod2=1且j mod2=0;Sub D (i/2,j /2),P i mod2=1且j mod2=1#即f 使得P 中的所有元素分别映射到Sub A ,Sub B ,Sub C 和Sub D 子集合,则称f 为分离映射#如图1所示,分离映射f 可以将原始集合中相邻的4个像素点被分离到4个子集中的对应位置#图1 分离映射及其逆映射示意图F i g.1 Separation mapping and its reverse mapping定义2 对于集合P 上的分离映射f ,一定存在一个f 的逆映射f -1:Sub A (i,j )Sub B (i,j )Sub C (i,j )Sub D (i,j )f -1p (2i ,2j )p (2i ,2j +1)p (2i +1,2j )p (2i +1,2j +1),则逆映射f -1定义了4个子集中的像素点与原始像素点集合中相应位置的对应关系#设存在一个集合S (i,j ),表示4个子集Sub A ,Sub B ,Sub C 和Sub D 中具有相同位置的4个像素点的集合,即P i,j I (0,õw /28),S (i,j )=Sub A (i,j )G Sub B (i ,j )GSub C (i,j )G Sub D (i,j )#则在上述定义的基础上,设计一个置乱操作:1)分离映射f 将明文的像素点集合映射到4个子集中#对4个子集像素点使用不同的参数进行置乱,得到4种不同的置乱效果;2)利用随机序列控制4个子集对应位置像素点S (i ,j )进行旋转操作,即对Sub A (i,j ),Sub B (i,j ),Sub C (i,j )和Sub D (i,j )4个像素点进行位置旋转置换#随机旋转规则如图2所示#对子集中所有像素点进行旋转操作之后,可以使用f -1将4个子集中的像素点映射到原始像素点集合中,结束置乱操作#Sub A (i ,j )Sub B (i,j )Sub C (i,j )Sub D (i,j )(a )Sub D (i ,j )Sub C (i,j )Sub B (i,j )Sub A (i,j )(c )Sub C (i,j )Sub A (i,j )Sub D (i,j )Sub B (i ,j )(b )Sub D (i,j )Sub C (i ,j )Sub B (i,j )Sub A (i,j )(d )图2 随机旋转规则F i g.2 Random r otate rule(a))旋转1次;(b))旋转2次;(c))旋转3次;(d))旋转4次#为了对比传统置乱操作和上述置乱操作的效果,使用512@512的Lena 图进行实验对比#对于传统的置乱方法,以参数为(3,3)的Cat M ap 对测试图进行一轮置乱操作,结果如图3b 所示#图3c 为使用本文提出的置乱方法进行一轮置乱操作的效果#分别使用参数为(1,6),(2,7),(3,8)和(4,9)的Cat M ap 对4个子集置乱后,进行对应位置像素点的旋转操作#控制旋转的随机序列由Log istic 映射生成,参数选择x 0=011234001234323,A =4#使用2种方法得到的置乱图像的相关性系数如表1所示#497第4期 张 伟等:基于图像相关性的混沌图像加密算法图3传统置乱方法和本文置乱方法Fig.3Traditional permutati on and permutati on inpropos ed scheme(a))明文;(b))传统方法;(c))本文算法#表1相关性系数分析Table1Correlati on coeffici ents analysis方法水平垂直倾斜传统0.9115310.7499450.817904本文0.0165980.0096090.010053从表1可以看出,同样进行一轮置乱操作,由本文提出的置乱方法得到的置乱图像的相关性系数远远低于传统置乱方法得到的相关性系数#2加密算法设计本文采用图4所示的经典加密框架,整个加密过程分为置乱阶段和扩散阶段#图4经典加密框架Fig.4C l assic encrypti on fr am ework2.1置乱阶段在置乱阶段,使用Cat M ap对特定的像素点集进行置乱,Cat M ap如式(1)所示#x c y c =1pq p q+1@xy(mod N)#(1)其中p,q为Cat M ap的控制参数#第1步将原始图像的像素集根据分离映射f映射到4个像素子集中#它们分别为Sub A, Sub B,Sub C和Sub D#第2步对4个像素点子集Sub A,Sub B, Sub C和Sub D以不同的参数使用Cat M ap进行置乱,对应的Cat Map参数分别为(127,234), (99,111),(233,55),(27,222)#设得到4个子集为Sub A c,Sub B c,Sub C c和Sub D c#第3步使用如式(2)所示的Logistic M ap 生成混沌序列f(k),k I[0,65535]#式(2)中A=410,x0=011234001234323#f(x n)=A x n-1(1-x n-1)#(2)根据式(3),对f(k)进行量化操作,使生成的新的随机序列rand-cs(k)的元素的值域为[0,3]# rand-cs(k)=(f(k)@1014)mod4#(3)第4步设置乱后的像素点集的相对位置如图5所示#Sub A c(i,j)Sub B c(i,j)Sub C c(i,j)Sub D c(i,j)图54个子集中对应位置像素点相对位置Fig.5Relati ve pos i tions of4pixels with the sameindex accordi ng to the4pixels s ubsets 对4个子集中对应位置的像素点进行旋转操作#即对Sub A c(i,j),Sub B c(i,j),Sub C c(i,j)和Sub D c(i,j)4个像素点顺时针旋转rand-cs(k)次,如图2所示#设旋转后得到的4个像素点子集为Sub A d(i,j),Sub B d(i,j),Sub C d(i,j)和Sub D d(i,j)#第5步根据定义2,将Sub A d(i,j),Sub B d (i,j),Sub C d(i,j)和Sub D d(i,j)映射到原始图像大小的像素点集合中,设其为permuted(m, n),其中0[m[w-1,0[m[w-1,置乱阶段结束#2.2扩散阶段从安全性考虑,通常要求扩散过程对于明文的微小变化要足够的敏感并且能够将这种微小的变化扩散到其他像素点中去#即当前像素值的变化需要与前面像素值相关,使得每一个微小的变化都可以影响到后续的像素点#然后通过置乱操作,将所有变化分散到像素点集的不同位置#由此,本文采取一种改进的Log istic映射进行扩散操作:c0=p0Ý(d-key@103)mod256,c i+1=p i+1ÝA@c i1000@1-c i1000@1000mod256#(4)式中:d-key为扩散阶段的密钥,这里设d-key= 011772345342424;A=4为Log istic映射的控制参数;p i为置乱后的第i个像素点;c i是扩散后的第i个像素点#通过式(4)c i+1和c i的关系被建立起来,即当前处理的像素点总是和前一个像素点的值相关,从而使其对于像素点值的变化具有较高的敏感性#3实验结果实验环境为为Intel2.5GHz CPU,2GB内存#操作系统为Windows XP,编译环境为Visual C++ 6.0#498东北大学学报(自然科学版)第32卷3.1 柱状图分析柱状图显示了测试图像的像素值的分布信息#加密后图像的柱状图应该是均匀平滑的,本文采用Lena 图作为测试图,测试结果如图6所示#图6 柱状图分析Fig.6 Histogram analys i s(a))明文;(b))明文柱状图;(c))密文;(d))密文柱状图#3.2 相关性分析为了对本文提出的算法进行相关性分析,试验中相关性系数的计算按照文献[1]所提出的方法#计算得到的明文和密文的相关性系数如表2所示#通过表2可以看出,密文的3个方向的相关性系数在0的一个微小邻域内,相对明文减少很多#图7为明文和密文的相关性散点图#表2 相关性系数Table 2 Correlation coefficients 方向明文密 文第一轮密 文第二轮密 文第三轮水 平0.971616-0.0003670.0014670.000183垂 直0.9849310.0007340.0022010.004030对角线0.9683480.0062440.0018320.002747图7 明文和密文相关性散点图F i g.7 Correlation plot of adjacent pixels(a))明文水平;(b))密文水平;(c)-明文垂直;(d))密文垂直;(e))明文倾斜;(f))密文倾斜#3.3 差分攻击分析好的加密算法应该对明文的1b 改变有两种准则判断这种敏感性,它们是NPCR 和UACI [11]#以Lena 图为例,将原始的明文和在明文的右下像素点改变1b 的图像进行测试对比,即把像素点a[511][511]从/011011000改为/011011010#本算法和文献[4]的NPCR 和UACI 的信息如表3所示#从表3看出,本算法在第4轮NPCR 可以达到9916%,UACI 在第3轮可以达到3314%的理表3 N PCR 和U ACI 分析Table 3 NPCR and U ACI analysi s轮N PCR 本算法文献[4]U ACI本算法文献[4]10.0023990.0003350.0007740.00008820.4932590.0332830.1665880.00798430.9932370.7992900.3342090.21856340.9961810.9950640.3352970.322368499第4期 张 伟等:基于图像相关性的混沌图像加密算法想值[11]#本算法需要更少的轮数就可以达到更高的安全状态#3.4速度分析本算法在每一轮加密中,只需要一次置乱操作和一次扩散操作#对于512@512大小、256级灰度的Lena图来说,只需要2118ms#4结论本文提出了一种基于混沌的图像加密算法,利用图像相邻像素点具有较高相关性,对传统置乱扩散加密框架进行了改进#本文提出的算法只需要一次置乱操作和一次扩散操作#在保证算法安全性的前提下,有效地减少了加密时间#参考文献:[1]Chen G,M ao Y,Chui C K.A symmetric image encryptionbased on3D chaoti c cat maps[J].Chaos,S olitons&Fractals,2004,21(3):749-761.[2]朱志良,张志强,高健,等#一类选择性图像加密方案的安全性分析[J]#东北大学学报:自然科学版,2010,31(3):342-345#(Zhu Zh-i liang,Zhang Zh-i qiang,Gao Jian,et al.Securityanalysis of a class of selective image encryption scheme[J].Jour nal of N orthe aster n Univ ersity:Natur al S cience,2010,31(3):342-345.)[3]Fridrich J.Symmetric ciphers based on two-dimensionalchaotic maps[J].I nter national Jou rnal of Bif urcation andChaos,1998,8(6):1259-1284.[4]蒋本铁,刘嘉辉,徐彬#一种基于混沌和Fi bonacci伪随机数列的加密方法[J]#东北大学学报:自然科学版,2005,26(9):864-866#(Jiang Ben-tie,Liu Jia-hui,Xu Bin.An encryption methodbased on chaos and Fibonacci pseudo-random sequences[J].Jour nal o f Northeastern University:Natu ral S cience,2005,26(9):864-866.)[5]Lian S G,Sun J,Wang Z.Security analysis of a chaos-basedimage en cryption algori thm[J].Physica A,2005,351(2):645-661.[6]Xi ao D,Liao X F,Wei P C.Analysis an d improvement of achaos-based image encryption algorithm[J].Chaos,Solitons&Fractals,2009,40(5):2191-2199.[7]Lian S G,Sun J,Wang Z.A block ciph er based on a sui tableuse of the chaotic standard map[J].Chaos,Solitons&Fractals,2005,26(1):117-129.[8]Yen J C,Guo J I.Design of a new signal securi ty system[C]M Proc IEEE International S ymposium on Circuits andSystem.Scottsdale:IEEE,2002:121-124.[9]Chen H C,Guo J I,H uang L C,et al.Design andreali zation of a new signal security system for multimedia datatransmission[J].E URA SIP Jour nal on App lie d S ig nalProc essing,2003,13:1291-1305.[10]Li C Q,Li S J,Chen G R,et al.Cryptanalysis of a newsignal security s ystem for multimedi a data transmission[J].E URA SIP Jour nal on App lied Sig nal Processing,2005,8:1277-1288.(上接第495页)[7]Li W,Chen M,Cheng S X,et al.An improved QRD-Malgorithm in M IM O communications[C]M GlobalT elecommunications Conference.Washington D C:IE EE,2007:4380-4384.[8]Kim B S,Choi K,A very low complexity QRD-M algorithmbased on limited tree search for M IM O systems[C]MProceedings of the67th IEEE Veh i cular TechnologyConference.Singapore:IE EE,2008:1246-1250.[9]Baek M S,You Y H,S ong H bined QRD-M andDFE detection technique for simple and efficient si gnaldetection in M IM O-OFDM systems[J].IEEE Tra nsactionson W irele ss Commu nication,2009,8(4):1632-1638. [10]Choi J B,Hong Y,Yuan J H.An approximate M AP-basediterative receiver for M IM O channels using modified spheredetection[J].IEEE T ran on W ireless Commu nications,2006,5(8):2119-2126.[11]Wang R Q,Giannakis G B.Approaching M IM O channelcapaci ty w i th soft detection based on hard sphere decoding[J].IEEE Trans on Comm unications,2006,54(4):587-590.[12]M a W K,S u C C,Jalden J,et al.T he Equivalence ofsemidefinite relaxati on M IM O detectors for higher-orderQAM[J].IEEE Journal o f S elected T opics in S ig nalPr ocessing,2009,3(6):1038-1052.[13]孙艳华,张延华,龚萍,等#几种M IM O最大似然检测算法性能与复杂度比较及改进[J]#电路与系统学报,2008,13(3):93-97#(Sun Yan-hua,Zhang Yan-hua,Gong Ping,et al.Performance complexity comparison and improvement ofseveral M L detectors for M IM O sys tem[J].Journal ofCircuits and Systems,2008,13(3):93-97.)500东北大学学报(自然科学版)第32卷。

基于DCT变换的数字图像加密技术研究

基于DCT变换的数字图像加密技术研究

基于DCT变换的数字图像加密技术研究数字图像加密技术已经成为了当今信息安全保护的必要手段之一,具体来说通过加密对原始数据进行转换和混淆,让第三方无法直接获取到原始数据,从而确保安全性。

而基于DCT变换的数字图像加密技术,是其中一种高效可靠的加密方案。

首先,我们需要了解DCT变换的基本概念。

DCT是离散余弦变换(Discrete Cosine Transform)的缩写。

它是一种基于余弦函数的变换方法,主要用于信号和图像压缩、提取特征等方面。

在数字图像加密方面,可以使用DCT变换来对原始图像进行变换,从而达到加密的目的。

在DCT变换的基础上,数字图像加密技术主要包括以下几个步骤:第一步,对原始图像进行分块处理。

由于数字图像是由像素点组成的,因此我们需要将原始图像分块处理,以便对每个块进行加密。

第二步,对每个块进行DCT变换。

将每个块进行DCT变换,得到其频域信息。

第三步,对DCT系数进行加密。

根据加密算法对DCT系数进行加密,可以采用对称加密算法,非对称加密算法或者混合加密算法等,以提高加密安全性。

第四步,对加密后的DCT系数进行反变换。

对加密后的DCT 系数进行逆DCT变换,可以得到加密后的图像块。

第五步,对加密后的图像块进行重组。

将加密后的图像块进行组合,可以得到完整的加密图像。

在数字图像加密技术中,对DCT系数进行加密是最关键的一步。

一般采用对称加密算法,通过密钥将DCT系数进行加密。

对称加密算法加密速度快、加密强度高,但密钥管理较为困难,需注意保密性。

而非对称加密算法则涉及到公钥和私钥的管理,虽然密钥管理较为容易,但加密效率低。

因此,在实际应用中可以采用对称与非对称加密算法的混合方案,以最大程度上保证加密效率和安全性。

总之,基于DCT变换的数字图像加密技术是目前应用较为广泛和有效的加密方案。

虽然其在一定程度上能够保护图像的安全性,但仍需注意在实际应用中密钥的管理和保密以及加密算法的选择等问题。

基于混沌映射的压缩图像加密算法

基于混沌映射的压缩图像加密算法

基于混沌映射的压缩图像加密算法邱劲;王平【期刊名称】《计算机科学》【年(卷),期】2012(039)006【摘要】We proposed an encryption scheme for the compressed image. In the scheme, the image data is first encrypted in space domain and then is encrypted in frequency domain. The proposed scheme can not only achieve high security but also guarantee the efficiency of the compression algorithm.%在分析现有DCT系数加密算法安全性的基础上,提出了一个空域加密和频域加密相结合的JPEG压缩图像加密算法.理论分析与计算机仿真实验表明,该算法具有很好的加密效果,对压缩算法的压缩效率影响很小,能充分满足压缩图像加密算法的要求.【总页数】3页(P44-46)【作者】邱劲;王平【作者单位】重庆大学计算机学院重庆 400044;西南大学计算机与信息科学学院重庆 400715;西南大学计算机与信息科学学院重庆 400715【正文语种】中文【中图分类】TN918【相关文献】1.基于混沌映射和DNA编码的彩色图像加密算法 [J], 师婷;高丽2.基于二维Logistic混沌映射与DNA序列运算的图像加密算法 [J], 方鹏飞;黄陆光;娄苗苗;蒋昆3.基于量子混沌映射和Chen超混沌映射的图像加密算法 [J], 张晓宇;张健4.基于混沌映射的彩色图像多层交互加密算法 [J], 李蓝航;丘森辉;王文仪;肖丁维;罗玉玲5.基于L-P混沌映射和AES的图像加密算法 [J], 王海珍;廉佐政;谷文成因版权原因,仅展示原文概要,查看原文内容请购买。

基于Hyperhenon映射的数字图像DCT域加密技术

基于Hyperhenon映射的数字图像DCT域加密技术

基于Hyperhenon映射的数字图像DCT域加密技术
李鹏;张雪锋;田东平
【期刊名称】《计算机工程与设计》
【年(卷),期】2008(29)9
【摘要】结合混沌序列提出了一种新的图像加密算法.首先应用Hyperhenon映射产生混沌序列,对图像在时域上做加密预处理;然后对预处理的结果图像进行DCT变换,应用Logistic映射产生的混沌序列对DCT变换的系数矩阵进行魔方变换置乱,同时给出了图像加密效果的评价指标.实验结果表明,该方法的安全性和加密效果良好.
【总页数】3页(P2212-2214)
【作者】李鹏;张雪锋;田东平
【作者单位】西安邮电学院信息与控制系,陕西,西安,710061;西安邮电学院信息与控制系,陕西,西安,710061;西安电子科技大学电子工程学院,陕西,西安,710071;西安邮电学院信息与控制系,陕西,西安,710061
【正文语种】中文
【中图分类】TP309
【相关文献】
1.基于DCT域的增益不变量化的数字图像水印算法 [J], 汤永利;高玉龙;于金霞;叶青;闫玺玺;张亚萍
2.基于DCT域的数字图像隐写术分析 [J], 潘洋;郑紫微;杨任尔
3.基于加密技术的DCT域图像公开水印算法 [J], 杨志疆
4.基于DCT域的数字图像隐写容量归一化方法 [J], 吴煌;李凯勇
5.基于BCH码的DCT域数字图像水印算法 [J], 吴庆涛;曹再辉;施进发
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于混沌和置乱的DCT域图像数字水印算法

一种基于混沌和置乱的DCT域图像数字水印算法

一种基于混沌和置乱的DCT域图像数字水印算法王洪兰【期刊名称】《微计算机信息》【年(卷),期】2012(000)009【摘要】文章提出了一种基于混沌和置乱的DCT(离散余弦变换)域图像数字水印算法。

该算法是利用Arnold变换将水印图像进行置乱,然后利用logistic混沌技术生成混沌序列,加入到Arnold置乱后的水印图像中形成密文,最后嵌入到原始图像中的数字水印算法。

实验结果表明此算法使水印的嵌入达到了较好的鲁棒性和不可见性。

%A method based on chaos and scrambling DCT(Discrete cosine transform) domain image watermarking algorithm is proposed.This algorithm is using Arnold transform scrambling watermark image,then using logistic chaotic technology produces chaos sequence,join after Arnold scrambling watermark image formation in the ciphertext,finally is embedded into the original image watermarking algorithm is proposed.Experiment results show that this algorithm make embedding achieved good robustness and not visible.【总页数】3页(P399-400,444)【作者】王洪兰【作者单位】湖南大学计算机与通信学院【正文语种】中文【中图分类】TP399【相关文献】1.一种基于混沌加密的DCT域数字图像水印算法 [J], 郑融;金聪;魏文芬;李蓓2.一种基于DCT域与图像置乱的数字水印算法研究 [J], 李红艳;蔡翔云3.基于混沌置乱的DCT域彩色图像自适应水印算法 [J], 唐世福;苏理云;马洪;余勇4.一种混沌置乱的DCT域数字水印算法 [J], 刘新;王英5.基于混沌置乱和混沌加密的DCT域数字水印算法 [J], 邹长华;谭世恒;林土胜因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于双混沌映射的DCT域图像加密算法




结合混沌序列易生成、 对初始条件敏感 、 类似 白噪声的统计特 性等特点 , 出一种基 于双 混沌 的 D T域 图像加 密算 提 C
法。算法先利用 A nl rod变换对 图像 8× 8分块进行置乱 , 由 l i i 再 o sc映射对 D T分块 内系数进行调制 , gt C 最后对各调制 D T分 C
加密 方 案 , 该 方 法 是 在 全 局 D T域 进 行 图像 加 但 C
20 0 8年 7月 1 日收到 湖 南省 教 育 厅 科 研 基 金 ( 8 0 8 和 湖 南 7 0C 1)
式( ) 1 中的 A o 映射通过改变图像象素的位 ml d
置 达到 置乱 的 目的 , 而不 改 变 图像 象 素 值 , 就 不 也
体现在 所有 的象 素 点 中 。相对 于 空 域算 法 , 域 算 频
法加 密效率 比较 高 。
发现的。A l 映射就是一种典 型的混沌映射 , mo d J
如 公式 ( ) 示 。 1所
, ㈩
单 华宁 , 等 通 过分 别 对 小波 变 换 域低 频 系 数 和高频 系数进 行混 沌 猫 映 射实 现 图像加 密 , 由于 猫
映射 只是改变 系数 位 置 而 不改 变 系 数本 身 , 图像 加 密效果 不是 很 好 。王 银 花 , 等 结 合 混 沌 映 射 , 提
。 6
出了一种分数 傅立 叶变 换 域 图像 加 密算 法 , 得 了 取

( ) 中 Y 1式 是大 小 为 N xN 的 图像 置换 前
数 学 家 Ma h w t e s提 出 了把 混 沌 系统 用 于数 据 加 密 t
密, 与现 有 图像 压 缩 编码 系统 不 一 致 。现 利用 双 混 沌映射 , 以实 现 一 种 基 于 分 块 D T的 图 像 加 密 算 C

图像加密英文翻译 译文

编号:毕业设计(论文)英文翻译(译文)学院:数学与计算科学学院专业:信息与计算科学学生姓名:覃洁文学号: 1000710222指导教师单位:数学与计算科学学院姓名:王东职称:副教授2014年 6 月7 日Parallel image encryption algorithm based on discretized chaotic mapAbstractRecently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms.1. IntroductionIn recent years, there is a rapid growth in the transmission of digital images through computer networks especiallythe Internet. In most cases, the transmission channels are not secure enough to prevent illegal access by malicious listeners. Therefore the security and privacy of digital images have become a major concern. Many image encryption methods have been proposed, of which the chaos-based approach is a promising direction [1–9].In general, chaotic systems possess several properties which make them essential components in constructingcryptosystems:(1) Randomness: chaotic systems generate long-period, random-like chaotic sequence ina deterministic way.(2) Sensitivity: a tiny difference of the initial value or system parameters leads to a vast change of the chaoticsequences.(3) Simplicity: simple equations can generate complex chaotic sequences.(4) Ergodicity: a chaotic state variable goes through all states in its phase space, and usually those states are distributeduniformly.In addition to the above properties, some two-dimensional (2D) chaotic maps are inherent excellent alternatives forpermutation of image pixels. Pichler and Scharinger proposed a way to permute the image using Kolmogorov flow mapbefore a diffusion operation [1,2]. Later, Fridrich extended this method to a more generalized way [3]. Chen et al. proposedan image encryption scheme based on 3D cat maps [4]. Lian et al. proposed another algorithm based on standardmap [5]. Actually, those algorithms work under the same framework: all the pixels are first permuted with a discretizedchaotic map before they are encrypted one by one under the cipher block chain (CBC) mode where the cipher of the current pixel is influenced by the cipher of previous pixels. The above processes repeat for several rounds and finally thecipher-image is obtained.This framework is very effective in achieving diffusion throughout the whole image. However, it is not suitable forrunning in a parallel computing environment. This is because the processing of the current pixel cannot start until theprevious one has been encrypted. The computation is still in a sequential mode even if there is more than one processingelement (PE). This limitation restricts its application platform since many devices based on FPGA/CPLD or digital circuitscan support parallel processing. With the parallel computing technique, the speed of encryption is greatly accelerated.Another shortcoming of chaos-based image encryption schemes is the relatively slowcomputing speed. The primaryreason is that chaos-based ciphers usually need a large amount of real number multiplication and division operations,which cost vast of computation. The computational efficiency will be increase substantially if the encryption algorithmscan be executed on a parallel processing platform.In this paper, we propose a framework for parallel image encryption. Under such framework, we design a secure andfast algorithm that fulfills all the requirements for parallel image encryption. The rest of the paper is arranged as follows. Section 2 introduces the parallel operating mode and its requirements. Section 3 presents the definitions and propertiesof four transformations which form the encryption/decryption algorithm. In Section 4, the processes ofencryption, decryption and key scheduling will be described in detail. Experimental results and theoretical analysesare provided in Sections 5 and 6, respectively. Finally, we conclude this paper with a summary.2. Parallel mode2.1 Parallel mode and its requirementsIn parallel computing mode, each PE is responsible for a subset of the image data and possesses its own memory.During the encryption, there may be some communication between PEs (see Fig. 1).To allow parallel image encryption, the conventional CBC-like mode must be eliminated. However, this will cause anew problem, i.e. how to fulfill the diffusion requirement without such mode. Besides, there arise some additional requirements for parallel image encryption:1. Computation load balance The total time of a parallel image encryption scheme is determined by the slowest PE, since other PEs have to waituntil such PE finishes its work. Therefore a good parallel computation mode can balance the task distributed to each PE.2. Communication load balance There usually exists lots of communication between PEs. For the same reason as of computation load, the communication load should be carefully balanced.3. Critical area management When computing in a parallel mode, many PEs may read or write the same area of memory (i.e. critical area) simultaneously,which often causes unexpected execution of the program. It is thus necessary to use some parallel techniquesto manage the critical area.2.2 A parallel image encryption frameworkTo fulfill the above requirements, we propose a parallel image encryption framework, which is a four-step process: Step 1: The whole image is divided into a number of blocks. Step 2: Each PE is responsible for a certain number of blocks. The pixels inside a block are encrypted adequately witheffective confusion and diffusion operations. Step 3: Cipher-data are exchanged via communication between PEs to enlarge the diffusion from a block to a broaderscope. Step 4: Go to step 2 until the cipher image reaches the required level of security.In step 2, diffusion is achieved, but only within the small scope of one block. With theaid of step 3, however, suchdiffusion effect is broadened. Note that from the cryptographic point of view, data exchange in step 3 is essentially apermutation. After several iterations of steps 2 and 3, the diffusion effect is spread to the whole image. This means thata tiny change in one plain-image pixel will spread to a substantial amount of pixels in the cipher-image. To make theframework sufficiently secure, two requirements must be fulfilled:1. The encryption algorithm in step 2 should be sufficiently secure with the characteristic of confusion and diffusion aswell as sensitivity to both plaintext and key.2. The permutation in step 3 must spread the local change to the whole image in a few rounds of operations.The first requirement can be fulfilled by a combination of different cryptographic elements such as S-box, Feistel-structure,matrix multiplications and chaos map, etc., or we can just use a conventional cryptographic standard suchas AES or IDEA. The second one, however, is a new topic resulted from this framework. Furthermore, such permutationshould help to achieve the three additional goals presented in Section 2.1. Hence, the permutation operation isone of the focuses of this paper and should be carefully studied.Under this parallel image encryption framework, we propose a new algorithm which is based on four basic transformations. Therefore, we will first introduce those transformations before describing our algorithm.3. Transformations3.1 A-transformationIn A-tran sformation, …A‟ stands for addition. It can be formally defined as follow: a+b=c ,where a,b,cϵG,G=GF(28), and the addition is defined as the bitwise XOR operation. The transformation A has three fundamental properties:(2.1)a+a=0(2.2)a+b=b+a (2)(2.3)(a+b)+c=a+(b+c)3.2 M-transformationIn M-transformation, …M‟ stands for mixing of data. First, we introduce the sum transformation: sum:m×n→Gthensum(I) is defined as: sum(1)= a(ij)Now we give the definition of M-transformation as follows: M:m×n→m×nLet M(I)=C I= a(ij)C=(c(ij)(3) c(ij)=a(ij)+sum(I)It is easy to prove the following properties of the M-transformation:(5.1)M(M(I))=I(5)(4) (5.2)M(I+J)=M(I)+M(J)(5.3)M(kj)=kM(I),where kI=1,k∈NIt should be noted that all the addition operations from are the A-transformation indeed.3.3 S-transformationIn S-transformation, …S‟ stands for S-box substitution. There are lots of ways to constructan S-box, among whichthe chaotic approach is a good candidate. For example, Tang et al presented a method to design S-box based on discretized logistic map and Baker map [10]. Following this work, Chen et al. proposed another method to obtain an S-box,which leads to a better performance [11]. The process is described as follows:Step 1: Select an initial value for the Chebyshev map. Then iterate the map to generate the initial S-box table.Step2: Pile up the 2D table to a 3D one.Step 3: Use the discretized 3D Baker map to shuffle the table for many times. Finally, transform the 3D table back to2D to obtain the desired S-box. Experimental results show that the resultant S-box is ideal for cryptographic applications. The approach is alsocalled …dynamic‟ as different S-boxes are obtained when the initial value of Chebyshev map is changed. However,for the sake of simplicity and performance, we use a fixed S-box, i.e. the example given in [11] (see Table 1).3.4 K-transformationIn K-transformation, …K‟ stands for Kolmogorov flow, which is often called generalized Baker map [3]. The applicationof Kolmogorov flow for image encryption was first proposed by Pichler and Scharinger [1,2]. The discrete version of K-flow is given by :whered = (n1,n2, . . . ,nk), ns is an positive integer, and ns divide N for all s, = 1/ns, while Fsis still the leftbound of the vertical strip s:Note that the Eq. (6) can be interpreted by the geometrical transformation shown in Fig.2. The N ·N image is firstdivided into vertical rectangles of height N and width ns. Then each vertical rectangle is further divided into boxes ofheight psand width ns. After K-transformation, pixels from the same box are actually mapped to a single row.Table 1The proposed S-box is the example given in [11]161 85 129 224 176 50 207 177 48 205 68 60 1 160 117 46130 124 203 58 145 14 115 189 235 142 4 43 13 51 52 19152 153 83 96 86 133 228 136 175 23 109 252 236 49 167 92106 94 81 139 151 134 245 72 172 171 62 79 77 231 82 32238 22 63 99 80 217 164 178 0 154 240 188 150 157 215 232180 119 166 18 141 20 17 97 254 181 184 47 146 233 113 12054 21 183 118 15 114 36 253 197 2 9 165 132 204 226 64107 88 55 8 221 65 185 234 162 210 250 179 61 202 248 247213 89 101 108 102 45 56 5 212 10 12 243 216 242 84 111143 67 93 123 11 137 249 170 27 223 186 95 169 116 163 25174 135 91 104 196 208 148 24 251 39 40 31 16 219 214 74140 211 112 75 190 73 187 244 182 122 193 131 194 149 121 76156 168 222 34 241 70 255 229 246 90 53 225 100 30 37 237103 126 38 200 44 209 42 29 41 218 71 155 78 125 173 28128 87 239 3 191 158 199 138 227 59 69 220 195 66 192 2304 MASK–aparallel image encryption scheme4.1.Outline of the proposed encryption schemeAssume the N·Nimage is encrypted by nPEssimultaneously, we describe the parallel encryption schemeas follows:1.Each PE is responsible for some fixe drow so fpixelsin the image.2. PixelsofeachrowareencryptedusingtransformationM,A,S,respectively.3. Permuteall the pixelsaccording to transformation Ktohavefur the rdiffusion.4. Goto step 2 forano the rroun do fencryptio nuntilthecip her issufficiently secure.Thereforeboththepermutationmapanditsparametersmustbecarefullychosen.Inouralgorithm ,disaconstantvectorwithlengthq,whereq=N/n.Eachelementofthevectorisequalton Each PE is responsible for q consecutive rows, or more specifically, the ith PE is responsible for rows from (i-1) * qto i* q-1. This algorithm can fulfil all the requirements for parallel encryption, as analyzed below.1.Diffusion effect in the whole imageAssume that the operations in step 2 are sufficiently secure. After step 2, a tiny change of the plain pixel will diffuse tothe whole row of N pixels. If we choose d according to Eq. (7), it is easy to prove that those N cipher pixels will bepermuted to different q rows with the help of K-transformation in step 3. In the same way, after another round ofencryption, the change is spread to q rows, and after the third round, the whole cipher image is changed. Consequently,in our scheme, the smallest change of any single pixel will diffuse to the whole image in 3 rounds.2.Balance of communication loadIf the parameter d of (6) is chosen as (7), it is easy to prove that the data exchanged between two PEs are constant,i.e., equal to 1/q2 of the total number of image pixels. For each PE, this quantity becomes (q _ 1)/q2. Therefore, inour scheme, the communication load of each PE is equivalent, and there is no unbalance of communication load forthe PEs at all.3. Balance of computation loadThe data to be encrypted by each PE is equally q rows of pixels; hence computation load balance is achievednaturally.4. Critical area managementIn our scheme, under no circumstances would two PEs read from or write to the same memory. Therefore, we do notneed to impose any critical area management technique in our scheme as other parallel computation schemes oftendo.The above discussions have shown that the proposed scheme fullfil all the requirements for parallel image encryption ,which is mainly attributed to the chaotic Kolmogorov map and the choice of its parameters.4.2 CipherThe cipher is made up of a number of rounds. However, before the first round, the image is pre-processed with a K-transformation.Then in each round, the transformation M, A, S, K is carried out, respectively. The final round differsslightly from the previous rounds in that the S-transformation is omitted on purpose. The transformations M, A, Soperate on one row of pixels by each PE, while the transformation K operates on the whole image which necessarilyinvolves communicationbetween PEs. The cipher is described by the pseudo-code listed in Fig. 3.4.3 Round key generationAmong the four transformations, only transformation A needs a round key. For an 8-bit grey level image of N ·Npixels, a round key containing N bytes should be generated for transformation A in each round.Generally speaking, the round keys should be pseudo-random and key-sensitive. From this point of view, a chaotic map is a good alternative. In our scheme, we use the skew tent map to generate the required round keys.x/μ,0<x<μx(1)=(1−x)/(1−u) ,μ<x<1 (8) The chaotic sequence is determined by the system parameter l and initial state x0 of the chaotic map either of whichis a real number between 0 and 1. Although the chaotic map equation is simple, it generates pseudo-random sequencesthat are sensitive to both the system parameter and the initial state. This property makes the map an ideal choice for keygeneration.When implemented in a digital computer, the state of the map is stored as a floating point number. The first 8 bits ofeach state are extracted as one byte of the round key. Accordingly, we need to iterate the skew tent map for N times ineach round.4.4 DecipherIn general, the decryption procedures are composed of a reversed order of the transformations performed in encryption. This property also holds in our scheme. However, with careful design, the decryption process of our scheme canhave the same, rather than the reversed, order of transformations as the cipher. This impressive characteristic attributesto two properties of the transformations:(1)Transformation-S and transformation-K are commutable. Transformation-S substitutes only the value of eachpixel and is independent of its position. On the other hand, transformation-K changes only a pixel‟s position with It‟s value unchanged. Consequently, the relation between the twotransformations can be expressed in (9):K(S(I))=S(K(I))(2) Transformation-Mis a linear operation according to (5). Moreover, the addition defined in (5.2) is actually transformationA. Thus the relation between the two transformations can be expressed in (10):M(A(I,J))=A(M(I),M(J)In short, either transformations S and K, or transformations M and Acan interchange their computation order withno influence on the final result. Table 2 illustrates how these two properties affect the order of the transformations ofdecipher in a simple example of 2-round cipher.It is easy to observe that for a cipher composed of multiple rounds, the decipher process still has the same sequenceof transformations as the cipher. Hence, both the cipher and decipher share the same framework. However, there are still some slight differences between the encryption and decryption processes:(1)The round keys used in decipher is in a reversed order of that in cipher, and those keysshould be first applied thetransformation M.(2)The transformation K and S in decipher should use their inversetransformations.However, since transformation K and S can both be implemented by look-up table operations, their inverse transformationsdiffer just in content of look-up tables. Consequently, all above difference in computations can be translatedinto difference in data.The symmetric property makes our scheme very concise. It also reduces lots of codes for a computer system implementingboth the cipher and decipher. For hardware implementation, this property results in a reduction of cost forboth devices.Table 2 The process of equivalent decipher in 2-round encryptionThe remarkable structure of our scheme looks more concise and saves a lot of codes during implementation. This isdefinitely an advantage when compared with other chaos-based ciphers5 Experimental resultsIn this section, an example is given to illustrate the effectiveness of the proposed algorithm. In the experiment, a greylevel image …Lena‟ of size 256 * 256 pixels, as shown in Fig. 4a, is chosen as the plain-image. The number of PEs is chosenas 4. The key of our system, i.e. the initial state x0 and the system parameter l are stored as floating point numberwith a precision of 56-bits. In the example presented here, x0 = 0.12345678, and l = 1.9999.When the encryption process is completed, the cipher-image is obtained and is shown in Fig. 4b. Typically, weencrypt the plain-image for 9 rounds as recommended.5.1 HistogramHistogram of the plain-image and the cipher-image is depicted in Figs. 4c and d, respectively. These two figures showthat the cipher-image possesses the characteristic of uniform distribution in contrast to that of the plain-image.5.2 Correlation analysis of two adjacent pixelsThe correlation analysis is performed by randomly select 1000 pairs of two adjacent pixels in vertical, horizontal,and diagonal direction, respectively, from the plain-image and the ciphered image. Then the correlation coefficientof the pixel pair is calculated and the result is listed in Table 3. Fig. 5 shows the correlation of two horizontally adjacentpixels. It is evident that neighboring pixels of the cipher-image has little correlation.5.3 NPCR analysisNPCR means the change rate of the number of pixels of the cipher-image when only one pixel of the plain-image ismodified. In our example, the pixel selected is the last pixel of the plain-image. Its value is changed from (01101111)2 to (01101110)2. Then the NPCR at different rounds are calculated and listed in Table 4. The data show that the performanceis satisfactory after 3 rounds of encryption. The different pixels of the two cipher-images after 9 rounds are plottedin Fig. 6. Fig. 4.(a) Plain-image, (b) cipher-image, (c) histogram of plain-image, (d) histogram of cipher-image. Table 3 Correlation coefficient of two adjacent pixels in plain-image and cipher-image. Fig.5. Correlation of two horizontally adjacent pixels of (a) plain image; (b) cipher image, x-coordinate and y-coordinate is the greylevel of twoneighbor pixels, respectively. Table 4 NPCR of two cipher-images at different rounds.5.4 UACI analysisThe unified average changing intensity (UACI) index measures the average intensity of differences between twoimages. Again, we make the same change as in Section 5.3 and calculate the UACI between two cipher-images. Theresults are in Table 5. After three rounds of encryption, the UACI is converged to 1/3. It should be noticed thatthe average error between two random sequences uniformly distribution in [0, 1] is 1/3 if they are completely uncorrelatedwith each other. Fig. 6.Difference between two ciphered images after 9 rounds. White points (about 1/256 of the total pixels) indicate the positionswhere pixels of the two cipher-images have the same values. Table 5 UACI of two cipher-images.6 Security and performance analysis6.1 DiffusionThe NPCR analysis has revealed that when there is only 1 bit of the plain pixel changed, almost all the cipher pixelsbecome different although there is still a low possibility of 1/256 that two cipher pixels are equal. This diffusion firstattributes to transformation S since change of any bit of the input to the S-box influences all the output bits at a changerate of 50%. Then, the diffusion is spread out to the whole row by transformation M. Finally, transformation K helps toenlarge the diffusion to 25% of the image in 2 rounds, and to the whole image in 3 rounds.6.2 ConfusionThe histogram and correlation analyses of adjacent pixels both indicate that our scheme possesses a good propertyof confusion. This mainly results from the pseudo-randomness of the key schedule and transformations M and A. Theywork together to introduce the random-like effect to the cipher image. Transformation K is also helpful in destroyingthe local similarity of the plain-image.6.3 Brute-force attackThe proposed scheme uses both the initial state x0 and the system parameter l as the secret key whose total number of bits is 112. It is by far very safe for ordinary business applications. Therefore, our scheme is strong enough to resistbrute-force attack. Moreover, it is very easy to increase the number of bits for both x0 and μ.6.4 Other security issuesSomeone may argue that, in our scheme, transformation K is not governed by any key. However, this reduces littlesecurity of our scheme. As a matter of fact, most conventional encryption algorithms such as DES and AES use publicpermutations. There are at least two reasons for it. First, permutations governed by key slow down the speed of encryption,for it costs time to generate those permutations from the key. Secondly and the foremost, weak permutations maybe generated from some keys, which harm to the security of the system. Actually, a permutation that helps to achievediffusion and confusion is a better alternative.More specifically, in a parallel encryption system, if the permutationhelps to achieve computation and communication load balance, it is a good alternative. From this point of view, transformationK is a proper choice.6.5 Performance analysisThe proposed algorithm runs very fast as there are only logical XOR and table lookup operations in the encryptionand decryption processes. Although multiplications and divisions are required in transformation K, the transformationis fixed once the number of PE is fixed. Hence, they can be pre-computed and stored in a lookup table. More accurately,there are only 3 XOR operations (2 for transformation M and 1 for transformation A) and 2 lookup table operations (1 for transformation S and 1 for transformation K) for each pixel in each round. On the contrary, for the simplest logisticmap with 56-bit precision state variable, one multiplication costs about 28 additions in average. In our keyschedule,multiplications are also required in the skew tent map. However, there are only N such multiplications in each round ,and hence an average of 1/N multiplications for each pixel per round. Furthermore, when the algorithm runs on a parallel platform, the performance can increase nearly n times than ordinary sequential image encryption scheme. Therefore, as far as the performance is concerned, our scheme is superior than existing ones.7 ConclusionIn this paper, we introduced the concept of parallel image encryption and presented several requirements for it. Thena framework for parallel image encryption was proposed and a new algorithm was designed based on this framework. The proposed algorithm is successful in accomplishing all the requirements for a parallel image encryption algorithmwith the help of discretized Kolmogorov flow map. Moreover, both the experimental results and theoretical analysesshow that the algorithm possesses high security. The proposed algorithm is also fast; there are only a couple ofXOR operations and table lookup operations for each pixel. Finally, the decryption process is identical to that ofthe cipher. Taking into account all the virtues mentioned above, the proposed algorithm is a good choice for encryptingimages in a parallel computing platform.References[1] Pichler F, Scharinger J. Ciphering by Bernoulli shifts in finite Abelian groups. Contributions togeneralalgebra. Proc. Linzconference1994. p. 465–76.[2] Scharinger J. Fast encryption of image data using chaotic Kolmogorov flows. J Electron Image1998;7(2):318–25.[3] Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. I J Bifur Chaos1998;8(6):1259–64.[4] Chen G, Mao Y, Chui C. Symmetric image encryption scheme based on 3D chaotic cat maps. Chaos,Solitons& Fractals2004;21(3):749–61.[5] Lian S, Shun J, Wang Z. A block cipher based on a suitable use of the chaotic standard map. Chaos,Solitons& Fractals2005;26(1):117–29.[6] Guan Z, Huang F, Guan W. Chaos-based image encryption algorithm. PhysLett A 2005;346(1–3):153–7.[7] Zhang L, Liao X, Wang X. An image encryption approach based on chaotic maps. Chaos, Solitons&Fractals 2005;24(3):759–65.[8] Gao H, Zhang Y, Liang S, Li D. A new chaotic algorithm for image encryption. Chaos, Solitons&Fractals 2006;29(2):393–9.[9] Pareek NK, Patidar V, Sud KK. Image encryption using chaotic logistic map. Image Vision Comput2006;24(9):926–34.[10] Tang Guoping, Liao Xiaofeng, Chen Yong. A novel method for designing S-boxes based on chaoticmaps. Chaos, Solitons&Fractals 2005;23:413–9.[11] Chen G, Chen Y, Liao X. An extended method for obtaining S-boxes based on three-dimensionalchaotic Baker maps. Chaos,Solitons& Fractals 2007;31(3):571–9Digital Image Processing1 IntroductionMany operators have been proposed for presenting a connected component n a digital image by a reduced amount of data or simplied shape. In general we have to state that the development, choice and modi_cation of such algorithms in practical applications are domain and task dependent, and there is no \best method". However, it is interesting to note that there are several equivalences between published methods and notions, and characterizing such equivalences or di_erences should be useful to categorize the broad diversity of published methods for skeletonization. Discussing equivalences is a main intention of this report.1.1 Categories of MethodsOne class of shape reduction operators is based on distance transforms. A distance skeleton is a subset of points of a given component such that every point of this subset represents the center of a maximal disc (labeled with the radius of this disc) contained in the given component. As an example in this _rst class of operators, this report discusses one method for calculating a distance skeleton using the d4 distance function which is appropriate to digitized pictures. A second class of operators produces median or center lines of the digital object in a non-iterative way. Normally such operators locate critical points _rst, and calculate a speci_ed path through the object by connecting these points.The third class of operators is characterized by iterative thinning. Historically, Listing [10] used already in 1862 the term linear skeleton for the result of a continuous deformation of the frontier of a connected subset of a Euclidean space without changing the connectivity of the original set, until only a set of lines and points remains. Many algorithms in image analysis are based on this general concept of thinning. The goal is a calculation of characteristic properties of digital objects which are not related to size or quantity. Methods should be independent from the position of a set in the plane or space, grid resolution (for digitizing this set) or the shape complexity of the given set. In the literature the term \thinning" is not used .in a unique interpretation besides that it always denotes a connectivity preserving reduction operation applied to digital images, involving iterations of transformations of speci_ed contour points into background points. A subset Q _ I of object points is reduced by a de_ned set D in one iteration, and the result Q0 = Q n D becomes Q for the next iteration.。

毕业设计-英文翻译、译文--一种混沌图像加密并行算法-英译中附英文原文【范本模板】

附件C :译文基于离散混沌映射的图像加密并行算法摘要:最近,针对图像加密提出了多种基于混沌的算法。

然而,它们都无法在并行计算环境中有效工作。

在本文中,我们提出了一个并行图像加密的框架.基于此框架内,一个使用离散柯尔莫哥洛夫流映射的新算法被提出.它符合所有并行图像加密算法的要求.此外,它是安全、快速的。

这些特性使得它是一个很好的基于并行计算平台上的图像加密选择。

1. 介绍最近几年,通过计算机网络尤其是互联网传输的数字图像有了快速增长。

在大 多数情况下,传输通道不够安全以防止恶意用户的非法访问。

因此,数字图像的安全性和隐私性已成为一个重大问题.许多图像加密方法已经被提出,其中基于混沌的方法是一种很有前途的方向[1-9].总的来说,混沌系统具有使其成为密码系统建设中重要组成部分的几个属性:(1)随机性:混沌系统用确定的方法产生长周期、随机的混沌序列。

(2)敏感性:初始值或系统参数的微小差异导致混沌序列的巨大变化. (3)易用性:简单的公式可以产生复杂的混沌序列。

(4)遍历性:一个混沌状态的变量能够遍历它的相空间里的所有状态,通常这些状态都是均匀分布的.除了上述性能,有些二维(2D )的混沌映射是图像像素置换天生的优良替代者。

Pichler 和Scharinger 提出一种在扩散操作[1,2]之前使用柯尔莫哥洛夫流映射的图像排列方式.后来,Fridrich 将此方法扩展到更广义的方式[3].陈等人提出基于三维猫映射的图像加密算法[4]l 。

Lian 等人提出基于标准映射的另一种算法[5]。

其实,这些算法在相同的框架下工作:所有的像素在用密码分组链接模式(CBC)模式下的加密之前首先被用离散混沌映射置换,当前像素密文由以前的像素密文影响。

上述过程重复几轮,最后得到加密图像.这个框架可以非常有效的实现整个图像的扩散。

但是,它是不适合在并行计算环境中运行。

这是因为当前像素的处理无法启动直到前一个像素已加密.即使有多个处理元素(PE),这种计算仍然是在一个串行模式下工作.此限制了其应用平台,因为许多基于FPGA / CPLD或者数字电路的设备可以支持并行处理。

新型浑沌映射及其在图像加密和压缩中的应用

新型浑沌映射及其在图像加密和压缩中的应用引言随着信息化大发展的速度越来越快,图像加密和压缩技术成为了越来越受人青睐的方向。

新型浑沌映射作为一种新兴的动力学系统,有着非常广泛的应用,对于解决复杂的图像加密和压缩问题具有诸多优点,是非常值得研究的方向。

本文将从原理、优点、与其他加密压缩算法的比较以及未来发展等方面,对新型浑沌映射及其在图像加密和压缩中的应用进行阐述。

第一章原理浑沌映射(Chaos Mapping)是指一种描述混沌动力学系统的数学模型,而其加密和压缩算法则是基于该混沌动力学系统的痕迹,定义其状态转移函数,并利用其随机性对待处理图像或信息进行加密和压缩。

新型浑沌映射算法比传统的浑沌映射算法加入了更多的随机性,增加了随机波动因素,从而提高了加密的难度。

新型浑沌映射与传统的浑沌系统相比具有以下特点:1. 天生随机性强,对信息加密和保护有很好的效果。

2. 在传输信息的同时,因具备类似加密的过程,进一步提高隐私保护等级。

3. 不受信息长度的限制,适用于对技术指标或者理论等敏感数据传输。

第二章优点新型浑沌映射算法在图像加密和压缩方面具有几点重要的优点:1. 安全性高:新型浑沌映射算法是基于混沌动力学的高阶混沌序列的加密方法,安全性高,抗攻击性强。

2. 可扩展性强:新型浑沌映射算法兼容性强,容易与其他算法进行组合使用。

3. 计算速度快:新型浑沌映射算法的转换速度很快,且受信息长度的限制很少,可以应用于大数据加密和压缩。

4. 压缩效果好:新型浑沌映射算法在压缩时可以在一定范围内获得比较好的压缩效果。

第三章与其他加密压缩算法的比较在进行加密或者压缩方案选择时,除了了解该方案的优点外,还需要了解其是否与其他方案具有相似或者相反的特点。

新型浑沌映射算法与其他加密压缩算法相比有以下特点:1. 对称式加密算法:新型浑沌映射算法与简单的对称式加密算法相比,可以在更短的时间内完成加密过程,而且保护级别更高。

2. 非对称式加密算法:新型浑沌映射算法相对于非对称式加密算法的方法要更加直接、简便且高效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程论文学位类型:专业型学科、领域:计算机应用技术研究方向:智能检测和自动控制导师姓名:张凌涛学生姓名:曾照成学号:20141200022入学时间:2014年9月授课教师:车生兵课程名称:高级人工智能基于混沌映射和DCT 变换的图像加密解密算法曾照成1(20141200022)(中南林业科技大学 计算机与信息工程学院 长沙 410004)Image Encryption and Decryption Algorithm Based on Chaotic Mapping and DCT Transform Zeng Zhao Cheng (College of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China)Abstract: Image confidential transmission in the protection of private information and trade secrets has wide application space.In this paper, we get the address of the image scrambling transformation code by using the Logistic chaotic map, then the encryption operation for the original color is done through the ranks scrambling, After the feature is extracted by carrier image with the blocked DCT transform, some three-dimensional encrypt images will be directly embedded into it, which are displayed as the carrier image. Extracting the encrypt images has just the inverse process to the embedded one. Finally we made a scrambling again according to the key after extracting the information, which will be a close to the original image, with the Peak Signal to Noise Ratio 27.37.Key words: L ogistic chaotic mapping ; sort transformation; DCT transform; key摘 要: 图像的保密传输在保护私人信息和商业秘密等方面具有广泛的应用空间。

本文利用Logistic 混沌映射得到图像置乱的地址变换码,通过行列置乱直接实现对原始彩色图像的加密操作,再对载体图像利用分块DCT 变换提取特征后直接嵌入三维加密图像信息,嵌入信息后的图像显示为载体图像。

提取加密图像信息的过程是嵌入过程的逆过程,提取信息后再根据密钥进行反置乱,即可恢复出接近原始图像的还原图像,该图像与原始图像的峰值信噪比为27.37。

关键词:Logistic 映射;排序变换;DCT 变换;密钥1 IntroductionWith the continuous development of information network technology, it can be convenient for people to pass every digital information (such as music, video, film and television) to all over the world, and secrecy transmission in fields like private information protection and commercial privacy is widely applied. Secrecy transmission includes first encryption with the objective information, and then transmission after concealing, aiming at improving the security during the whole transmission process, meanwhile, the receiver could get exactly the original information with a key after extracting the encryption information. Information hiding technology takes use of the insensitivity of humans’ sense organs, considers the fact that multi -media digital signals have much redundance, it conceals the private information into a carrier, making it uneasy to be noticed, in the mean time, it should not affect the effect of the carrier so as to hide the information we want to transmit. In order to improve the transmission security, we tend to encrypt the hidden information.2 chaotic encryption algorithm based on the Logistic mappingLogistic map is a kind of power system which is very simple but widely researched, its definition is as follows:)1(1k k k x x x -=+μIn the equation, 40<<μ is named branch parameter, )1,0(0∈x , when 4..3.5699456.<<μ, By the initial conditions under the action of Logistic mapping sequence are generated by the cycle, convergence and is sensitive to the initial value of chaotic sequence. 1 作者简介: 曾照成(1990-),男,湖南邵阳人,在读硕士研究生,主要研究领域为智能检测与自动控制.For size to encrypt color image, this paper use Logistic mapping to iteration length and width of the two respectively, and chaotic sequence, and the two sequences are ascending order, in ascending sequence of elements in the original position in the sequence index sequence as the address of the image scrambling transformation code, and then to the ranks of image scrambling, so as to realize the original image encryption operation. After the test, the model has high security, when the key has a faint difference, will make the chaotic sequence has great changes, thus unable to decode the original image information. The same initial value and different parameter values for the encryption key. Because the image data can be represented by R, G , B three primary colors of three contains eight matrix representation of binary elements, so the matrix operation can greatly simplify the implementation of the algorithm.Fig.1 original image Fig.2 encrypt imageCryptographic operations after encryption image is shown in figure 2, the image is embedded into the carrier image in the image, and for the encrypted image, only three encryption key. That is to say, as long as you know the three keys can be fully restored to the original image, the algorithm of three keys respectively are 58.3,57.3,78.0210===μμx .3 Encryption image hiding algorithm based on DCT transform DCT (discrete cosine transform) is a kind of real number domain image orthogonal transformation. By DCT transformation image space can be the information on the transformation to the frequency domain, it is a good use of the characteristics of human visual system, on the premise of keep the image quality, a better implementation of image compression. The 2-d DCT transform formula is as follows:]2)12(cos[]2)12(cos[),()()(),(1010N q q M p m n m f q a p a q p F M m N n ππ++=∑∑-=-= 1,,1,0;1,,1,0-⋅⋅⋅=-⋅⋅⋅=N q M p , , The DCT transformation formula is as follows:∑∑-=-=++=1010]2)12(cos[]2)12(cos[),()()(),(M p N q N q n M p m q p F q a p a n m f ππ m=0,1,...,M-1; n=0,1,...,N-1,In the above two formulas, a(p) and a(q) are defined as follows:⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧-===1,...,2,1,20,1)(,1,...,2,1,20,1)(N q N q N q a M p M p M p a This paper mainly using DCT transform for image feature extraction, which can use the encrypted image data to replace the image of the data on the characteristics of a information, in order to realize the purpose of data hiding. For the carrier image, firstly the carrier image sub-block is divided into several nonoverlapping pixels (often is the subblock pixel size, sub-block image boundary position may be, do not need to supplement for), for each sub-block DCT transform, in order to get the frequency of the coefficient matrix, for example, the matrix with coordinates (0, 0) corresponding to the value of the largest, known as DC DC coefficient, the remaining 63 mostly close to zero frequency coefficient of plus or minus floating point Numbers, all call communication coefficient of AC, DC coefficient of DC represents apiece of the average brightness, the greater the value the more representative image brightness; And the high frequency part of AC AC component coefficient can reflect the image texture complexity, high frequency AC power small region corresponding to the image smoothing, larger value represents the complex texture area, most of the image.Fig.3 carrier image before the hiding informationFig.4 carrier image after the hiding informationEncryption sub-block image data and image data sub-block size difference, the greater the modified information is less, the better the embedded, but these methods tend to amplify the carrier image, also will appear different degrees of Mosaic effect, but also wastes a lot of can embed information of characteristics of the data bits. Based on this, the paper gives a kind of information embedding method. First change the size of the image, that of the encrypted image size,then according to the sub-block size of carrier image, and encryption image segmentation at the same time, For each sub-block image DCT transform, then each coefficient until the first two decimal places, and retain only the secret image data processing at the same time,Each element is not greater than 0.01 form the solid type decimals, added to the carrierfor block DCT coefficient matrix on the corresponding element, embed the encrypted image data. And then to the embedded data after DCT transformation, hides the encrypted information carrier image. Figure 5, figure 6 show the information carrier of before and after the embedded images.Fig.5 carrier image before the hiding informationFig.6 carrier image after the hiding informationVisible by the method of embedding the image resulting from the encrypted message with the original image slightly difference on colour, no Mosaic effect, visual effect is much better.Due to encrypt the image and the image sub-block size is consistent, in the process of implementation is simpler than the previous algorithm. In the process of the simulation running time is less than the previous algorithm.The former method takes 17.033543 s, the algorithm takes 4.457294 s.4 extraction and decryption of encryption image information Encryption image to hide information extraction process and the embedding process, on the other hand, by the carrier of the embedded hidden information by corresponding sub-block picture of DCT coefficient matrix, the matrix element is hidden by the fractional portion of a coded messages, reduction treatment after extraction of the information is converted into RGB image data, the data is encrypted image data of the hidden information. Decryption operation is to encrypt the inverse operation, through the key, can easily get the address of the data encryption transform code, and then to the scrambling of the encrypted data, you can get after reduction of the image. Figure 7 and figure 8 shows the original image and the image after reduction.Fig.7 original image Fig.8 reduction image5. Measurement algorithm based on pixel effect This is a method of quantitative test results with it is not dependent on the subjective evaluation. It allows between different methods are compared, and a fair amount of Distortion in the most used in visual information processing or quality metrics are belong to Difference measure method (Difference Distortion Measures).Now most used in the field of image video coding compression distortion quantity of metrics is SNR Signal to Noise the wire Peak signal-to-noise Ratio (SNR) and Peak Signal to Noise the wire (PSNR).They are usually in dB dB, peak signal to noise ratio of the image to a certain extent, reflects the changes of the image before and after data processing, the response is a statistical average image data change, the higher the value of the peak signal to noise ratio, the better. Peak signal to noise ratio PSNR are defined as follows:)(log 1010PMSE PSNR ⨯-=PMSE represents the peak mean square error of the image,[]2311123),(),(1An m g n m f MN PMSE K N n M m k k ⨯-=∑∑∑=== ),(n m f k means the original image in pixels (m, n) the first k elements on the color component values, ),(n m g k is after restore image in pixels (m, n) the first k elements on the color component values. A is the maximum value of ),(n m g k (k=1,2,3, m=1,2,...,M, n=1,2,...,N). Conclusion can be made by calculation for the image, the hidden information before and after the peak signal to noise ratio is 57.74, the effect is better, and the original image and restore the image of the peak signal to noise ratio is 27.37, meanwhile the difference mainly appear in the image color changes, with a dense texture is relatively complex.参考文献[1]陆大兴,廖晓峰,韩洁,李明.基于Logistic映射与排序变换的图像加密算法[J].计算机技术与发展.2007,vol(17):No(12).[2]刘禾.数字图像处理及应用[M].北京:中国电力出版社,2005.[3]路林吉,吕新荣.用于数字监控的图像压缩技术[M].上海交通大学电子信息学院pdf资料.[4]Zhu J K,Mang V,Peng M.Gabor Wavelets Transform and Extended Nearest Feature Space Classifier for Face Recognition. Proceeding of the Third InternationalConference on Image and Graphics,2004.[5]Kim T K, Kim H W, Hwang W J, Independent component analysis in a facial local residue space. Proc. Of IEEE Conf. on Computer Vision and Pattern Recognition,2003,1:233~231.[6]Deng C, Xiaofei H, and Jiawei H, Document Clustering using Locality Preserving Indexing, IEEE Transactions on Knowledge and Data Engineering, 2005,17(12):1624~1637.[7]Rabiner L R, A tutorial on hidden markov models and selected application in speech recognition. Proceedings of the IEEE, 1989,77(2):257~286.[8]Guoqin C, Wen G, Support vector machines for face recognition with two-layer generated virtual data, Proceeding of International Conference on PatternRecognition,2004,3:570~573.[9]Turk M,Pentland A.Eigenfaces for Recognition[J].Cognitive NeuroscienceJ.1991,3(1):71~86 .[10]齐兴敏.基于PCA的人脸识别技术的研究.武汉理工大学硕士学位论文,2007.[11]徐仲,张凯院,陆全.矩阵论简明教程.科学出版社,2004,51:118~123.[12]边肇祺,张学工.模式识别(第二版).清华大学出版社,2000:223~22.。

相关文档
最新文档