第2章 递归与分治策略(2)
第2章 递归与分治_作业答案讲解

具体执行过程:求最大值
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5 0 1 2 3 4 5 6 24 -13 29 113 87 65 -9 0 1 2 3 24 -13 29 113 0 1 24 -13 2 3 29 113 4 5 6 87 65 -9 7 8 9 10 11 12 13 36 14 76 44 83 67 5 7 8 9 10 36 14 76 44 7 8 36 14 7 36 9 10 76 44 11 12 13 83 67 5 11 12 83 67 11 83 12 67 13 5
课后练习
• 练习2:分析如下时间函数的复杂度,并说明 原因。 1. 利用递归树说明以下时间函数的复杂度:
O(1) T ( n) 3T ( n ) O( n) 4 n1 n1
2. 利用主定理说明以下时间函数的复杂度:
T(n) = 16T(n/4) + n
T(n) = T(3n/7) + 1
课后练习
• 练习1:给定数组a[0:n-1], 1. 试设计一个分治法算法,找出a[0:n-1]中元素最 大值和最小值; 2. 写出该算法时间函数T(n)的递推关系式; 3. 分析该算法的时间复杂度和空间复杂度。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5
• 递归公式:
– 设n个元素的集合可以划分为F(n,m)个不同的由 m个非空子集组成的集合。 F(n,m) = 1, when n=0, n=m, n=1, or m=1 F(n,m) = 0, when n<m 否则 F(n,m)=F(n-1,m-1)+m*F(n-1,m)
递归和分治法

递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。
它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。
下面,我们来详细了解一下递归和分治法。
1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。
递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。
主函数负责将问题分解,子函数负责解决子问题。
2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。
(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。
3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。
分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。
4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。
分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。
总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。
算法设计与分析课程教学大纲

算法设计与分析课程教学大纲【适用专业】计算机科学与技术【课时】理论课时:32【学分】 2【课程性质、目标和要求】《算法设计与分析》是计算机科学与技术专业的专业课。
无论是计算科学还是计算实践,算法都在其中扮演着重要角色。
本课程的教学目的是讲授在计算机应用中常常遇到的实际问题的解法,讲授设计和分析各种算法的基本原理、方法和技术,培养学生对算法复杂性进行正确分析的能力。
课程基本要求是⑴掌握算法分析的基本概念和理论。
⑵掌握算法设计技术和分析算法以及算法复杂性。
【教学时间安排】本课程计 2 学分,理论课时32, 学时分配如下:【教学内容要点】第一章算法引论一、学习目的要求1.了解算法的计算复杂性分析方法2.理解算法分析的基本理论3.掌握算法分析的基本概念二、主要教学内容1. 算法的基本概念2. 表达算法的抽象机制3. 采用Java语言与自然语言相结合的方式描述算法的方法4. 算法的计算复杂性分析方法第二章递归与分治策略一、学习目的要求1.理解典型范例中递归与分治策略应用技巧2.掌握递归与分治策略3.掌握数学归纳法证明算法正确性方法二、主要教学内容1. 递归的概念2. 分治法的基本思想3. 二分搜索技术4. 大整数的乘法5. Strassen阵乘法6. 棋盘覆盖7. 合并排序8. 快速排序9. 线性时间选择10. 最接近点对问题11. 循环赛日程表第三章动态规划一、学习目的要求1.理解典型范例中动态规划算法的设计思想2.掌握动态规划算法的基本要求以及算法的设计要点二、主要教学内容1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 最大子段和5. 凸多边形最优三角剖分6. 多边形游戏7. 图像压缩8. 电路布线9. 流水作业调度10. 0—l背包问题11. 最优二叉搜索树12. 动态规划加速原理三、课堂讨论选题1. 最长公共子序列2. 0—l背包问题第四章贪心算法一、学习目的要求1.了解贪心算法的理论基础及基本要素2. 理解典型范例中贪心算法的设计思想3. 掌握贪心算法的设计要点二、主要教学内容1. 活动安排问题2. 贪心算法的基本要素3. 最优装载4. 哈夫曼编码5. 单源最短路径6. 最小生成树7. 多机调度问题8. 贪心算法的理论基础三、课堂讨论选题1. 最优装载2. 单源最短路径第五章回溯法一、学习目的要求1.理解回溯法的效率分析方法2.掌握回溯法的算法框架和应用技巧二、主要教学内容1. 回溯法的算法框架2. 装载问题3. 批处理作业调度4. 符号三角形问题5. n后问题6. 0—l背包问题7. 最大团问题8. 图的m着色问题9. 旅行售货员问题10. 圆排列问题11. 电路板排列问题12. 连续邮资问题13. 回溯法的效率分三、课堂讨论选题1. 0—l背包问题2. 图的m着色问题第六章分支限界法一、学习目的要求1.理解分支限界法的基本思想2.掌握典型范例中分支限界法的应用技巧二、主要教学内容1. 分支限界法的基本思想2. 单源最短路径问题3. 装载问题4. 布线问题5. 0-1背包问题6. 最大团问题7. 旅行售货员问题8. 电路板排列问题9. 批处理作业调度三、课堂讨论选题1. 0-1背包问题2. 批处理作业调度第七章概率算法一、学习目的要求1.理解概率算法的基本思想2.掌握典型范例中概率算法的应用技巧二、主要教学内容1. 随机数2. 数值概率算法3. 舍伍德算法4. 拉斯维加斯算法5. 蒙特卡罗算法第八章 NP完全性理论一、学习目的要求1.了解P类与NP类问题2.了解典型的NP完全问题二、主要教学内容1. 计算模型2. P类与NP类问题3. NP完全问题4. 一些典型的NP完全问题第九章近似算法一、学习目的要求1.掌握近似算法的基本思想2.掌握常用近似算法的应用二、主要教学内容1. 近似算法的性能2. 顶点覆盖问题的近似算法3. 旅行售货员问题近似算法4. 集合覆盖问题的近似算法5. 子集和问题的近似算法第十章算法优化策略一、学习目的要求1.掌握算法优化策略2.掌握算法优化的基本方法二、主要教学内容1. 算法优化策略的比较与选择2. 动态规划加速原理3. 问题的算法特征4. 优化数据结构5. 优化搜索策略【教学(实验)内容要点】算法设计与分析实验是算法设计与分析课的一个实践性教学环节。
《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
计算机算法设计与分析(第4版)[王晓东][电子教案]第2章
![计算机算法设计与分析(第4版)[王晓东][电子教案]第2章](https://img.taocdn.com/s3/m/6ef58047f7ec4afe04a1df38.png)
2.1 递归的概念
例5 整数划分问题 前面的几个例子中,问题本身都具有比较明显的递归关系,因 而容易用递归函数直接求解。 在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关 系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个 数记作q(n,m)。可以建立q(n,m)的如下递归关系。
A(1,0) 2 A(0, m) 1 m0 A(n,0) n 2 n2 A(n, m) A( A(n 1, m), m 1) n, m 1
2.1 递归的概念
例3 Ackerman函数 前2例中的函都可以找到相应的非递归方式定义:
n! 1 2 3 (n 1) n
T(n)
n/2
=
n/2
n
n/2 n/2
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
算法总体思想
将求出的小规模的问题的解合并为一个更大规模的问 题的解,自底向上逐步求出原来问题的解。
1 q ( n, n ) q ( n, m ) 1 q (n, n 1) q ( n, m 1) q (n m, m)
正整数n的划分数p(n)=q(n,n)。
n 1, m 1 nm nm n m 1
2.1 递归的概念
例6 Hanoi塔问题 设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这 些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号 为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍 按同样顺序叠臵。在移动圆盘时应遵守以下移动规则: 规则1:每次只能移动1个圆盘; 规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上; 规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中 任一塔座上。
信息工程系课程的介绍XXXX专业宣讲会

文库贡献者物理与电子信息工程学院信息工程系课程介绍2013年11月目录1. 《算法设计与分析》课程介绍 (1)2. 《离散数学》课程介绍 (2)3. 《计算机组成原理》课程介绍 (3)4. 《网络应用终端开发》课程介绍 (4)5. 《数据结构》课程介绍 (5)6. 《面向对象程序设计(Java)》课程介绍 (6)7. 《嵌入式操作系统基础》课程介绍 (8)8. 《数据结构》课程介绍 (9)9. 《操作系统A》课程介绍 (11)10. 《多媒体技术A》课程介绍 (12)11. 《ARM原理与应用》课程介绍 (13)12. 《ERP系统实施及二次开发技术》课程介绍 (14)13. 《Internet开发基础(JSP)》课程介绍 (15)14. 《IP统一通信技术》课程介绍 (17)15. 《IT项目管理》课程介绍 (18)16. 《嵌入式系统软件开发》课程介绍 (19)17. 《面向对象程序设计A》课程介绍 (20)18. 《Web应用开发》课程介绍 (22)19. 《Xml与Web Service》课程介绍 (24)20. 《编译原理》课程介绍 (26)21. 《数据库原理与应用》课程介绍 (27)22. 《电子商务概论》课程介绍 (28)23. 《企业运作模拟》课程介绍 (29)24. 《信息系统分析与设计》课程介绍 (31)25. 《管理学原理》课程介绍 (32)26. 《会计学原理》课程介绍 (34)27. 《数字电路与逻辑设计》课程介绍 (35)28. 《程序设计基础》课程介绍 (36)29. 《计算机网络》课程介绍 (38)30. 《计算机网络安全》课程介绍 (39)31. 《计算机网络规划与设计》课程介绍 (40)32. 《路由与交换技术》课程介绍 (41)33. 《企业管理与ERP》课程介绍 (43)34. 《软件工程B》课程介绍 (44)35. 《软件质量与测试基础》课程介绍 (45)36. 《网络协议分析与设计》课程介绍 (46)37. 《物流与供应链管理》课程介绍 (47)38. 《网络性能测试与分析》课程介绍 (48)39. 《信息系统分析与设计》课程介绍 (49)40. 《现代通信技术》课程介绍 (50)41. 《计算机网络基础》课程介绍 (51)42. 《计算机组成与体系结构》课程介绍 (53)43. 《运筹学B》课程介绍 (54)44. 《大型数据库系统基础》课程介绍 (55)1.《算法设计与分析》课程介绍2)教学目的和要求算法设计与分析是计算机科学与技术专业的专业课程,在计算机科学与应用的理论研究中具有重要的地位。
《算法设计与分析》(全)

1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章递归与分治策略(2/2)
2.10 最接近点对问题
问题:给定平面上的n个点,找出其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。
严格地,最接近点对可能不止一对,为简单起见,只要求找出其中的一对点作为问题的解。
问题似乎很简单,只需将每一个点与其它各点间的距离算出(注意避免重复计算),再比较找出距离最短的点对即可。
计算步骤可以是:
先求第1个点与其余1-
n个点的距离;
再求第2个点与其余2
-
n个点的距离(避免再算2–1点间距离);
再求第3个点与其余3
-
n个点的距离(避免再算3–1点和3–2点间距离);
…………………………………………
再求第1-
n个点与其余1个点的距离;
可见,采用这种原始方法解平面上n个点的最接近点对问题时,
需要计算
2)1
(
1
2
)2
(
)1
(-
=
+
+
+
-
+
-
n n
n
n 个两点间的距离。
这种方法的时间复杂性为)
(2n
O,效率太低。
一个较好的方案就是采用分治法来求解该问题:将所给平面上n
个点的集合S划分成点数大致相等的两个子集
1
S和2S,然后在每个子集中递归地求最接近点对。
这里,问题的难点是如何实现分治法中的合并步骤?即如何通过
1S 上的最接近点对和2S 上的最接近点对合并得到S 的最接近点对?
如果组成S 最接近点对的两个点都在1S 中或都在2S 中,则问题很好解决,但如果组成S 最接近点对的两个点一个在1S 中另一个在2S 中,则问题变得复杂。
为便于理解,先分析一维情形下的最接近点对问题,再推广到二维情形。
在一维情形下,集合S 中的n 个点退化为x 轴上的n 个实数1x ,2x ,
3x ,…,n x 。
最接近点对即为这n 个实数中相差最小的2个实数。
我
们显然可以先将1x ,2x ,3x ,…,n x 排好序,然后,用一次线性扫描就可以找出最接近点对。
但这样的处理方式无法推广到二维情形。
对这种一维的简单情形,我们尝试用分治法来求解,并希望能推广到二维的情形。
假设我们用x 轴上某个点m 将S 划分为两个子集1S 和2S ,使得
{}m x S x S ≤∈=1;{}m x S x S >∈=2。
这样一来,对于任一1S p ∈和2S q ∈都
有q p <。
图1 一维情形的分治法
递归地在1S 和2S 上找出其最接近点对{}21,p p 和{}21,q q ,并设
{}2121,min q q p p --=δ,S 中的最接近点对或者是{}21,p p ,或者是
{}21,q q ,或者是某个{}33,q p ,其中13S p ∈且23S q ∈。
如图1所示。
如果S 上的最接近点对是{}33,q p ,则必有:δ<-33q p ,进一步一定有:δ<-m p 3,δ<-m q 3,也就是说:(]m m p ,3δ-∈,(]δ+∈m m q ,3。
由于{}2121,min q q p p --=δ,则(]m m ,δ-中至多包含S 中的一个点,
(]δ+m m ,中也至多包含S 中的一个点。
(否则必有两点距离小于δ)
由图1可以看出,如果(]m m ,δ-中有点,则此点必是1S 中最大点,如果(]δ+m m ,中有点,则此点必是2S 中最小点。
因此,我们用线性时间就能找到区间(]m m ,δ-和(]δ+m m ,中的点,即3p 和3q 。
从而我们用线性时间就可以将1S 的解和2S 的解合并成为S 的解。
分割点的选取采用分治法中“平衡子问题”的方法加以解决。
即:
2/)]min()[max(S S m +=。
这个算法看上去比“排序+扫描”算法复杂,却可以向二维推广。
下面我们来考虑二维的情形。
此时S 中的点为平面上的点,这些点都有两个坐标值x 和y 。
为了将平面上点集S 分割为大致相等的两个子集1S 和2S ,我们选取一垂直线m x l =:来作为分割直线(m 为S 中各点x 坐标的中位数)。
由此将S 分割为{}m p x S p S ≤∈=)(1和{}m p x S p S >∈=)(2,从而使1
S
和2S 分别位于直线l 的左侧和右侧,且21S S S =。
由于m 为S 中各点x 坐标的中位数,因此1S 和2S 中的点数大致相等。
递归地在1S 和2S 上解最接近点对问题,我们分别得到1S 和2S 中的最小距离1δ和2δ,并设),min(21δδδ=。
若S 的最接近点对为),(q p ,则δ<),(q p d ,且p 和q 必分属于1S 和
2S 。
不妨设1S p ∈,2S q ∈,那么p 和q 距直线l 的距离均小于δ。
因此,
我们若用1P 和2P 分别表示直线l 的左边和右边的宽为δ的2个垂直长条,则1S p ∈和2S q ∈如图2所示:
图2 距直线l 的距离小于δ的所有点
分析p ,q 的位置特点:如图2,1P 中所有点与2P 中所有点,它们构成的点对均为最接近点对的候选者。
在最坏情况下,有4/2n 对这样的候选者。
为什么?最坏情况下,直线l 的左边有2/n 个点,直线l 的右边也有2/n 个点,左边的每一个点都可以和右边的每一个点构成点对,这样就有4/2n 种情况值得考
虑。
考虑
P中任意一点p,它若与2P中的点q构成最接近点对的候选
1
者,则必有δ
)
,
(q
p
d这个条件的q点有多
<
)
<
,
(q
p
d。
固定p点,满足δ
少个呢?容易看出这样的q点一定落在一个δ
δ2
⨯的矩形R中,如图3所示。
图3 包含点q的δ
δ2
⨯的矩形R
由δ的意义可知,
P中任何2个S中的点的距离都不小于δ,由
2
此可以推出矩形R中最多只有6个S中的点,这种极端情形要求6个点恰好位于正方形角上。
因此,对于
P中任意一点p,2P中最多只有6个点与它构成最接
1
近点对的候选者。
因此,在分治法的合并步骤中,我们最多只需要检查n
6=
⨯对候选者,而不是4/2n对候选者。
2/
n3
现在,我们只知道对于
P中每一点p,最多只需要检查2P中最多
1
只有6个点,但是我们并不确切地知道要检查哪6个点。
为了解决这个问题,我们可以将p和
P中所有2S的点投影到垂直线l上。
由于能
2
与p点一起构成最接近点对候选者的
S中点一定在矩形R中,所以它
2
们在直线l上的投影点距p在l上投影点的距离小于δ。
由上面的分析可知,这种投影点最多只有6个。
因此,若将
P和2P中所有S的点按
1
其y坐标排好序,则对
P中所有点p,对排好序的点列作一次扫描,
1
就可以找出所有最接近点对的候选者,对
P中每一点最多只要检查2P
1
中排好序的相继6个点。
至此,我们可以给出用分治法求二维最接近点对的算法。