有理数的加减法基础知识讲解

合集下载

《有理数的加减法》课件

《有理数的加减法》课件
详细描述
有理数的减法在现实生活中有着广泛的应用,如温度的测量 和表示、海拔和潜水深度、速度和加速度等。通过这些实例 ,我们可以更好地理解有理数减法的意义和作用,并学会在 实际问题中运用所学知识。
04
有理数的加减混合运算
顺序关系
遵循从左到右的顺序
在有理数的加减混合运算中,应先进 行加法运算,再进行减法运算,且在 处理括号内的表达式时,应先进行括 号内的运算。
01
线性方程
在解决线性方程问题时,我们需要进行有理数的加减运算。例如,在解
一元一次方程时,我们需要对方程两边的项进行加减运算。
02 03
概率统计
在概率统计中,我们经常需要计算概率和统计量,这涉及到有理数的加 减法。例如,在计算期望值和方差时,我们需要进行大量的有理数加减 运算。
几何学
在几何学中,我们经常需要计算长度、面积和体积等,这涉及到有理数 的加减法。例如,在计算矩形的周长时,我们需要将矩形的长和宽相加 。
03
有理数的减法
减法转换为加法
总结词
有理数的减法可以通过加法来计算,这是有理数加减法的一个重要原则。
详细描述
在进行有理数的减法运算时,可以将减法转换为加法,即用被减数加上减数的 相反数来代替原来的减法运算。例如,计算“5 - 3”时,可以将其转换为“5 + (-3)”,这样就可以利用加法的规则来得出结果。
生物统计
在进行生物统计时,我们经常需要计算各种生物学指标并进行比较,这涉及到有理数的加 减法。例如,在比较不同种群的数量时,我们需要将各个种群的数量进行加减运算。
THANKS
感谢观看
VS
异类项的加法需要注意分母不能为零 ,即不能出现 $frac{a}{0}$ 的形式。

初一数学《有理数》04节:有理数的加减法知识点解读与提高

初一数学《有理数》04节:有理数的加减法知识点解读与提高

有理数的加减法(基础)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a 加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.类型一、有理数的加法运算.计算:(1)(+20)+(+12);(2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭;(3)(3)(+2)+(-11);(4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9);(6)(6)(-5)+0.(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)12121123236⎛⎫⎛⎫⎛⎫-+-=-+=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【变式1】计算:113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】111113333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1)(+10)+(-11);(2)⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23【答案】(1)(+10)+(-11)=﹣(11-10)=﹣1;(2)类型二、有理数的减法运算.计算:(1)(-32)-(+5);(2)(+2)-(-25).此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.法一:绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341-1+-=-1+=-1+=-22323666法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【变式】若()﹣(﹣2)=3,则括号内的数是()A.﹣1B.1C.5D.﹣5B.根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算.计算:3.8+4﹣(+6)+(﹣8)根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可解:原式=(3.8﹣6.8)+(4﹣8)=﹣3﹣4=﹣7,【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7)(2)2)324(83)65()851(43-++-+-+(1)原式=[(-3.8)+(-4.2)]+[(-2.4)+(-0.7)+(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4类型四、有理数的加减混合运算在实际中的应用.邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km,画出数轴,并在该数轴上表示出A、B、C 三个村庄的位置;(2)C 村离A 村有多远?(3)邮递员一共骑了多少千米?(1)以邮局为原点,以向北方向为正方向用1cm算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.解:(1)依题意得,数轴为:;(2)依题意得:C点与A 点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?由表看出:第一名350分,第二名150分,第五名-400分.(1)350-150=200(分)(2)350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.【巩固练习】一、选择题1.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.10℃D.6℃2.若等式0□1=﹣1成立,则□内的运算符号为()A.+B.﹣C.×D.÷3.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足()A.两个数都是正数B.两个数都是C.一个是正数,另一个是负数D.至少有一个数是零4.下列说法中正确的是A.正数加负数,和为0B.两个正数相加和为正;两个负数相加和为负C.两个有理数相加,等于它们的绝对值相加D.两个数的和为负数,则这两个数一定是负数第1组第2组第3组第4组第5组100150350-400-100本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.5.下列说法正确的是()A.零减去一个数,仍得这个数B.负数减去负数,结果是负数C.正数减去负数,结果是正数D.被减数一定大于差6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg7.-3+5的相反数是().A.2B.-2C.-8D.8二、填空题8.有理数,,a b c在数轴上对应点位置如图所示,用“>”或“<”(1)|a|______|b|;(2)a+b+c______0:(3)a-b+c______0;(4)a+c______b;(5)c-b______a.8.计算:|﹣2|+2=________.9.某月股票M开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_______.10.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________.11.数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是.12.计算(﹣3)+(﹣9)的结果为.三、解答题14.计算题(1)232(1)(1)(1.75)343-----+-(2)132.1253(5)(3.2)58-+---+(3)21772953323+---(4)231321234243--++-+(5)2312()()3255---+--+-15.已知:|a|=2,|b|=3,求a+b的值.16.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?【答案与解析】一、选择题1.【答案】C【解析】解:2﹣(﹣8)=2+8=10℃.故选C.2.【答案】B3.【答案】C【解析】举例验证.4.【答案】B【解析】举反例:如5+(-2)=+3≠0,故A 错;如:(-2)+(-3)≠|-2|+|-3|,故C错;如(+2)+(-8)=-6,故D错误.5.【答案】C【解析】举反例逐一排除.6.【答案】B【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7=0.6kg.7.【答案】B二、填空题8.【答案】<,<,>,>,>【解析】由图可知:b a c>>,且0,0b a c<<>,再根据有理数的加法法则可得答案.9.【答案】4.10.【答案】18.8元【解析】跌1.6元记为-1.6元,涨0.4元记为+0.4元,故有收盘价为20+(-1.6)+0.4-18.8.11.【答案】(1)(-2)+(-3)=-5(2)(-5)+0=-5(3)2+(-7)=-5【解析】答案不唯一.12.【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-113.【答案】-12.【解析】同号两数相加的法则是取相同的符号,并把绝对值相加.原式=﹣(3+9)=﹣12.三、解答题13.【解析】(1)原式22(1)(1.75 1.75)133=-++-+=;(2)原式131[3(3.2)][(5) 2.125]3584=+-++---=(3)原式217297719)533326=+---=-(4)原式223311()()12334422=-++-++-=-(5)原式23122312231283[()][()]32553255325530 =------=--------=----=-(6)原式=12342001200220032004-+-++-+-+15.【解析】由题意知:a=±2,b=±3,所以要分四种情况代入求值.∵|a|=2,∴a=±2,∵|b|=3,∴b=±3.当a=+2,b=+3时,a+b=(+2)+(+3)=+5;当a=+2,b=-3时,a+b=(+2)+(-3)=-1;当a=-2,b=+3时,a+b=(-2)+(+3)=+1;当a=-2,b=-3时,a+b=(-2)+(-3)=-5.16.【解析】解:根据题意得(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,(12)(34)(20032004)110021002 =-++-+++-+=⨯=55×8+(﹣3)=437元,∵437>400,∴卖完后是盈利;(2)437﹣400=37元,故盈利37元.有理数的加减法(提高)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:交换加数的位置时,不要忘记符号.要点二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.将减法转化为加法时,注意同时进行的两变,有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系,体会其中蕴含的转化的思想;3.熟练地将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并且会解决简单的实际问题.一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.类型一、有理数的加法运算.阅读下题的计算方法.计算.解:原式===0+(﹣)=﹣上面这种解题方法叫做拆项法,按此方法计算:.根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.解:原式=[(﹣2011)+(﹣)]+[(﹣2010)+(﹣)]+[4022+]+[(﹣1)+(﹣)]=[(﹣2011)+(﹣2010)+4022+(﹣1)]+[(﹣)+(﹣)++(﹣)]=0+(﹣)=﹣.【变式1】计算:(1)-721+1061;(2)(-21)+(-7.3);(3)141+(-231);(4)751+(-3.8)+(-7.2)【答案】(1)原式=11112(107)(97)(1)262623+-=-+-=;(2)原式=(0.57.3)7.8-+=-;(3)(3)原式=111(21)13412--=-;(4)原式=7.27.2 3.80 3.8 3.8--=-=-【变式2】计算:11511236⎛⎫-++- ⎪⎝⎭1151151151111(11)1236236236⎡⎤⎛⎫⎛⎫⎛⎫-++-=--++-=-++-++-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦【变式3】计算:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+-⎪ ⎪⎝⎭⎝⎭解法一:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+-⎪ ⎪⎝⎭⎝⎭11(6)(3)(0.3)(8)(6)(3.3)(6)(16)644⎡⎤⎡⎤⎛⎫⎛⎫=++++++++++++-+-+-+-⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦→同号的数一起先加(23.55)(31.55)8=++-=-.本题考查了有理数的加法,拆项法是解题关键.解法二:11(6)(3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)6[(3.3)(3)(0.3)][(6)(6)][(16)(8)]44⎡⎤⎛⎫⎛⎫=++++-+-+++++-+++-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加000(8)8=+++-=-.类型二、有理数的减法运算.(1)2-(-3);(2)0-(-3.72)-(+2.72)-(-4);(3)41373⎛⎫+- ⎪⎝⎭.此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5(2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2733721+-=--=-类型三、有理数的加减混合运算.计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17;(3)1113.76395684.7621362--+--+(4)51133.464 3.872 1.54 3.376344+---+++(5)1355354624618-++-;(6)132.2532 1.87584+-+(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便.解:-3.72-1.23+4.18-2.93-1.25+3.72=(-3.72+3.72)+(4.18-2.93-1.25)-1.23=0+0-1.23=-1.23(2)把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.7639568 4.7621362--+--+111(3.76 4.76)(521)(3968)362=-+--++-+1(6)2922=-+-+=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13-易于通分,把它们分为一组;124-与34同分母,把它们分为一组.算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.解:51133.464 3.872 1.54 3.376344+---+++5113(3.46 1.54)(3.873.37)(4)(2)6344=++-++-+-+115(0.5)4(1) 4.537.522=+-++-=+=(5)先把整数分离后再分组.解:1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-1827301036-++-=+2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322-=--.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+-+(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=【变式】5.6+[0.9+4.4﹣(﹣8.1)].解:原式=5.6+0.9+4.4+8.1=19.类型四、有理数的加减混合运算在实际中的应用.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.本题考查了有理数加法,熟知“九宫图”的填法是解题的关键.【变式】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.【巩固练习】一、选择题1.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A﹣10℃B.10℃C.14℃D.﹣14℃2.比﹣1小2015的数是()A.﹣2014B.2016C.﹣2016D.20143.如果三个数的和为零,那么这三个数一定是().A.两个正数,一个负数B.两个负数,一个正数C.三个都是零D.其中两个数之和等于第三个数的相反数4.若0,0a b ><,a b <,则a 与b 的和是()A.B.C. D..5.下列判断正确的是()A.两数之差一定小于被减数.B.若两数的差为正数,则两数都为正数.C.零减去一个数仍得这个数.D.一个数减去一个负数,差一定大于被减数.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg 二、填空题7.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |;(2)(2)a +b +c ______0:(3)a -b +c ______0;(4)a +c ______b ;(5)c -b ______a .8.小明存折中原有450元,取出260元,又存入150元,现在存折中还有______元.9.若a ,b 为整数,且|a-2|+|a -b|=1,则a+b=________.10.某地的冬天,半夜的温度是-5︒C,早晨的温度是-1︒C,中午的温度是4︒C.则(1)早晨的温度比半夜的温度高________度;(2)早晨的温度比中午的温度低________度.11.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是______________12.数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是.三、解答题13.计算题(1)3401(1)(5)|4|77⎡⎤⎛⎫⎛⎫+-----+--+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)2121 02133434⎛⎫⎛⎫⎛⎫-++---+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)44444 999999999999999 55555 ++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值.(5)11111 8244880120 ++++;(6)2312()() 3255 ---+--+-14.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.15.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?【答案与解析】一、选择题1.【答案】B.2.【答案】C【解析】解:根据题意得:﹣1﹣2015=﹣2016,故选C.3.【答案】D【解析】若0a b c++=,则a b c+=-或b c a+=-或a c c+=-,所以D正确.4.【答案】D【解析】(a b+)的符号与绝对值较大的b一致为负的,并用较大的绝对值减去较小的绝对值,即有()b a--.5.【答案】D【解析】A错误,反例:2-(-3)=5,而5>2;B不对,反例:2-(-3)=5,而-3为负数;C错误,0-2=-2,0-(-2)=2,所以零减去一个数得这个数的相反数.6.【答案】B【解析】因为最低重量为24.7kg,最大重量为25.3kg,故质量最多相差25.3-24.7=0.6kg.星期一二三四五每股涨跌/元+0.4+0.45﹣0.2+0.25﹣0.4二、填空题7.【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案.8.【答案】340【解析】450﹣260+150=290+150=340(元).9.【答案】2,6,3或5【解析】当|a-2|=1,|a -b|=0时,得:a+b=6或2;当|a-2|=0,|a -b|=1时,得:a+b=3或5;10.【答案】(1)4(2)5【解析】(1)-1-(-5)=4(2)-1-(+4)=-511.【答案】2:00【解析】15:00+(-13)=2:00.12.【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1三、解答题13.【解析】(1)原式341[15]45(5)1077=--+-++=--=(2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21212133434=-++-2211213213183344⎛⎫⎛⎫=-++-=-+=- ⎪ ⎪⎝⎭⎝⎭(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)111109=+-=.(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100=[1+(-2)+(-3)+4]+[5+(-6)+(-7)+8]+…+[97+(-98)+(-99)+100]=0+0++…+0=0.(5)111111111182448801202446688101012++++=++++⨯⨯⨯⨯⨯111111*********()()22446688101012221224=-+-+-+-+-=-=(6)原式23122312231283[()][()]32553255325530=------=--------=----=-14.【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.15.【解析】解:(1)根据题意得:11.2+0.4+0.45+(﹣0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(﹣0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.。

有理数的加减法(共44张PPT)

有理数的加减法(共44张PPT)

总结词
整数和小数相加或相减时,先将整数和 小数都转换为小数,再进行加减运算。
VS
详细描述
在进行整数和小数的混合加减法时,先将 整数转换为小数,再进行小数的加减法运 算。例如,将整数1和0.5相加得到1.5,将 整数2和-0.8相加得到1.2。同样地,在进 行混合减法时,先将整数转换为小数,再 进行小数的减法运算。例如,将整数2和 0.6相减得到1.4,将整数1和-0.4相减得到 0.6。
异号数的加减法规则
总结词
异号数相加或相减,取绝对值较大数的符号,并用较大的绝对值减去较小的绝 对值。
详细描述
当两个有理数符号不同时,结果的符号取绝对值较大的数的符号。同时,结果 的绝对值是较大的绝对值减去较小的绝对值。例如,+3和-5相加得到-2,-7和 +4相加得到-3。
整数和小数的混合加减法规则
06
习题和练习
基础习题
总结词
针对有理数加减法的基本概念和规则进行练习。
详细描述
包括正数、负数和零的加法运算,减法运算转化为加法运算,以及整数、分数和 小数的混合运算。
进阶习题
总结词
在掌握基础习题的基础上,进一步提高解题技巧和思维能力 。
详细描述
涉及更复杂的运算,如多步运算、分数的约分、有理数的乘 除法等,以及解决实际问题中的数学模型。
计算 (-5) + (-3):首先确定符号为 负,然后计算绝对值5和3,最后相 加得到结果-8。
示例2
计算 (-7) - (-4):首先确定符号为 负,然后计算绝对值7和4,最后相 减得到结果-3。
运算技巧和策略
利用分配律简化运算
例如,a + (b + c) = (a + b) + c 和 a - (b - c) = (a - b) + c。

专题03 有理数的加减法(解析版)

专题03 有理数的加减法(解析版)

第3讲有理数的加减法有理数的加法知识点1、有理数的加法1.有理数加法法则(1)同号两数相加:取相同的符号,并把绝对值相加。

(2)异号两数相加:绝对值值相等时和为0,绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

(3)一个数同0 相加,仍得这个数。

2.加法运算律2.加法交换律加法结合律a +b =b +a(a +b) +c =a + (b +c)1.计算:(1)|﹣7|+|﹣9|(2)(﹣7)+(﹣3)(3)(+4.85)+(﹣3.25)(4)(﹣7)+(+10)+(﹣1)+(﹣2)(5)(﹣2.6)+(﹣3.4)+(+2.3)+1.5+(﹣2.3)(6).【解答】解:(1)原式=7+9=;(2)原式=﹣7﹣3=﹣==﹣;(3)原式=4.85﹣3.25=1.6;(4)原式=﹣7+10﹣1﹣2=0;(5)原式=﹣2.6﹣3.4+2.3+1.5﹣2.3=﹣4.5;(6)原式=,=﹣3.36+[7.36+]=﹣3.36+7.36+=1+4=5.2.计算:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004)(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004.【解答】解:(1)1+(﹣2)+3+(﹣4)+5+…+2001+(﹣2002)+2003+(﹣2004),=(﹣1)×1002,=﹣1002;(2)1+(﹣2)+(﹣3)+4+5+(﹣6)+(﹣7)+8+…+2001+(﹣2002)+(﹣2003)+2004,=(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+(2001﹣2002﹣2003+2004),=0×501,=0.有理数的减法知识点2 有理数减法法则减去一个数,等于加上这个数的相反数。

3.计算(1)(﹣3﹣5)﹣(6﹣10)(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87.【解答】解:(1)(﹣3﹣5)﹣(6﹣10)=﹣8+4=﹣4;(2)(﹣32)﹣[(﹣27)﹣(﹣72)]﹣87=﹣32﹣45﹣87=﹣77﹣87=﹣164.4.计算下列各式.(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15);(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75);(3)(﹣1)﹣(+1)﹣(﹣2)﹣2.【解答】解:(1)(﹣32)﹣(﹣12)﹣5﹣(﹣15)=﹣32+12﹣5+15=﹣20+10=﹣10.(2)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+7+2﹣2.75=4.(3)(﹣1)﹣(+1)﹣(﹣2)﹣2=﹣1﹣1+2﹣2=﹣3﹣1+2=﹣4+2=﹣2.有理数的混合运算知识点3有理数加减混合运算一般统一成加法运算,从左到右的顺序,利用加法交换律和结合律简化运算。

有理数的加减法讲义

有理数的加减法讲义

初一数学讲义(三)有理数的混合运算姓名成绩知识要点:1、有理数加减混合运算中,减法可以根据减法法则转化成加法,统一成只含有加法运算的和式.例如:(-5)+(-3)-(-7)-(+2)可转化为:(-5)+(-3)+(+7)+(-2)2、在一个和式里,通常把各个加数的括号和它前面的加号省略不写,如上式可写成:-5-3+7-23、省略加号的和式的读法有两种如-5-3+7-2,其意义表示-5,-3,+7,-2的和,只不过加号省略未写,因此,它可读作“-5,-3,+7,-2的和”;第二种读法是按习惯读作:“负5减3加7减2”。

第一种读法有利于用加法运算律简化运算.4、在运用加法交换律和结合律时,要注意连同前面的符号一起移动,如计算-5-3+7-2时,先交换成-5-3-2+7,再进行结合为(-5-3-2)+7,无论交换加数的位置,还是进行结合,都应连同符号移动,当省略“+”号的首项移到后面时,应补上“+”,如5-7+3=-7+5+3,事实上,代数和中符号应看作数的一部分.5、有理数加减混合运算的步骤(1)把算式中的减法转化成加法;(2)省略加号与括号写成代数和的形式;(3)用加法法则计算,尽可能运用运算律简便计算.例1:把(-36)-(-28)+(+125)+(-4)-(+53)-(-40)写成省略加号的和的形式并把它读出来.例2、计算-8+(-11)-2003.12-9-(-9)-(+2)-(-2003.12).例3、已知a=13,b=-12.1,c=-10,d=25.1求a-b-(c+d)的值综合练习一、判断题1.一个数的相反数一定比原数小;()2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等;()3.|-2.7|>|-2.6|; ( )4.若a+b=0,则a,b互为相反数。

( )二.选择题1.相反数是它本身的数是()A. 1B. ﹣1C. 0D.不存在2.下列语句中,正确的是()A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是()A、-=6 B、=-6 C、-=-1D、=-3.145、在数轴上表示的数8与-2这两个点之间的距离是()A、6B、10C、-10 D-66、一个有理数的绝对值等于其本身,这个数是()A、正数B、非负数C、零D、负数三、填空题1. |-4|-|-2.5|+|-10|=________;2. 最大的负整数是___ ___;最小的正整数是____________3. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个4. 数轴三要素是__________,___________,___________5. 若上升6米记作+6米,那么-8米表示。

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)

有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。

有理数加减法知识点归纳

有理数加减法知识点归纳

一、有理数的加法1、两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加..2、有理数的加法法则1同号两数相加;取相同的符号;并把绝对值相加;2绝对值不相等的异号两数相加;取绝对值较大的加数符号;并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;3一个数同0相加;仍得这个数..注:①有理数的加法和小学学过的加法有很大的区别;小学学习的加法都是非负数;不考虑符号;而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时;首先要判断两个加数的符号;是同号还是异号是否有零接下来确定用法则中的哪一条;③法则中;都是先强调符号;后计算绝对值;在应用法则的过程中一定要“先算符号”;“再算绝对值”..3、有理数加法的运算律1加法交换律:a+b=b+a;2加法结合律:a+b+c=a+b+c..根据有理数加法的运算律;进行有理数的运算时;可以任意交换加数的位置;也可以先把其中的几个数加起来;利用有理数的加法运算律;可使运算简便..4、有理数减法的意义有理数的减法的意义与小学学过的减法的意义相同..已知两个加数的和与其中一个加数;求另一个加数的运算;叫做减法..减法是加法的逆运算..5、有理数的减法法则设;则;.因此;.有理数的减法法则:减去一个数等于加上这个数的相反数.例5、计算1;2;3;4.分析根据有理数的加法法则;先定符号;再算绝对值.解:1原式=;2原式;3原式;4原式.例6、计算:1;2;3.分析适当运用运算律.解:1原式2原式3原式小结1尽量把正数分成一组;负数分成一组分别计算;2遇到分数运算时;尽量把异通分的分为一组.例7、计算1; 2; 3.分析把减法转化为加法.解:1原式;2原式;3原式.例8、计算:;解:原式。

浙教版初中数学七年级上册有理数的加减法(基础)知识讲解

浙教版初中数学七年级上册有理数的加减法(基础)知识讲解

有理数的加减法(基础)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.要点诠释:交换加数的位置时,不要忘记符号.【:有理数的加减 382681 有理数的减法】要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1) (+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666类型二、有理数的减法运算2.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.举一反三:【变式】(2015•泰安)若( )﹣(﹣2)=3,则括号内的数是( )A . ﹣1B . 1C . 5D . ﹣5【答案】B .根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.类型三、有理数的加减混合运算3.(2016春•浦东新区期中)计算:3.8+4﹣(+6)+(﹣8)【思路点拨】根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可.【答案与解析】解:原式=(3.8﹣6.8)+(4﹣8)=﹣3﹣4=﹣7,【总结升华】本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.举一反三:【:有理数的加减 382681 简便方法计算】【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4.(2014秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加减法基础知识讲解
【学习目标】
1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;
2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;
3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.
【要点梳理】
要点一、有理数的加法
1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.
2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;
(3)一个数同0相加,仍得这个数.
要点诠释:利用法则进行加法运算的步骤:
(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.
(2)确定和的符号(是“+”还是“-”).
(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).
3.运算律:
算律
加法
结合
律文字语言
三个数相加,先把前两个数相加,或者先把后两个数相加,
和不变
符号语言
(a+b)+c=a+(b+c)
要点诠释:交换加数的位置时,不要忘记符号.
要点二、有理数的减法
1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.
要点诠释:(1)任意两个数都可以进行减法运算.
(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.
2.法则:减去一个数,等于加这个数的相反数,即有:()
a b a b
-=+-.
要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:
要点三、有理数加减混合运算
将加减法统一成加法运算,适当应用加法运算律简化计算.
【典型例题】
类型一、有理数的加法运算
1.计算:
(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.
【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.
(1)(+20)+(+12)=+(20+12)=+32=32;
(2) (3)(+2)+(-11)=-(11-2)=-9
(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9
(5)(-2.9)+(+2.9)=0;
(6)(-5)+0=-5.
【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.
举一反三:
【变式1】计算: 【答案】 【变式2】计算:(1) (+10)+(-11); (2) 【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;
(2) 1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭
12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭
111113333433
412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
12-1+-23⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1212341-1+-=-1+=-1+=-22323666
类型二、有理数的减法运算
2. 计算:(1)(-32)-(+5); (2)(+2)-(-25).
【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.
【答案与解析】法一:
法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27
【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.
举一反三:
【变式】(2020•泰安)若( )﹣(﹣2)=3,则括号内的数是( )
A . ﹣1
B . 1
C . 5
D . ﹣5
【答案】B .
根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.
类型三、有理数的加减混合运算
3.计算,能用简便方法的用简便方法计算.
(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)
(3) (4)
⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭
(5) (6) 【答案与解析】
(1) 26-18+5-16
=(+26)+(-18)+5+(-16) →统一成加法
=(26+5)+[(-18)+(-16)] →符号相同的数先加
= 31+(-34)=-3
(2)(+7)+(-21)+(-7)+(+21)
=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加
=0
(3) →同分母的数先加 (4) →统一成加法 →整数、小数、分数分别加 (5) 132.2532 1.87584
+-+1355354624618
-++-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
21111-1+1++7+-2+-832432⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224
()()⎡⎤=⎢⎥⎣
⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭
113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭
11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦
312128544⎛⎫=++-= ⎪⎝⎭
132.2532 1.87584
+-+
→统一同一形式(小数或分数),把可凑整的放一起
(6) →整数,分数分别加 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换.
举一反三:
【变式】用简便方法计算:
(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)3
24(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2
(2)原式=(2-1-4)+(34-58-56+38-23
)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用
4. (2020秋•香洲区期末)邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.
(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;
(2.25 2.75)(3.125 1.875)=-++0.55 4.5=-+=1355354624618
-++-1355354624618
=--++++--1355(3546)()24618
=-++-+-++-182********
-++-=+2936
=
(2)C村离A村有多远?
(3)邮递员一共骑了多少千米?
【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm表示1km,按此画出数轴即可;
(2)可直接算出来,也可从数轴上找出这段距离;
(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和.
【答案与解析】
解:(1)依题意得,数轴为:

(2)依题意得:C点与A点的距离为:2+4=6(千米);
(3)依题意得邮递员骑了:2+3+9+4=18(千米).
【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.
举一反三:
【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:
(1)第一名超过第二名多少分?
(2)第一名超过第五名多少分?
【答案】由表看出:第一名350分,第二名150分,第五名-400分.
(1) 350-150=200(分)
(2) 350-(-400)=350+400=750(分)
答:第一名超过第二名200分;第一名超过第五名750分.
【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:
197,202,197,203,200,196,201,198.
计算出售的粮食总共多少千克?
【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6
200×8+(-6)=1594(千克)
答:出售的粮食共1594千克.
法二:197+202+197+203+200+196+201+198=1594(千克)
答:出售的粮食共1594千克.。

相关文档
最新文档