高中数学必修1知识点总结及题型

合集下载

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

3.1.2 表示函数的方法课程标准学习目标(1)在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数, 理解函数图象的作用。

(1)会求函数的解析式; (难点)(2)列表法表示函数(3)图象法表示函数。

知识点01 解析法把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式(也叫作函数表达式或函数关系式),解析法就是用解析式来表示函数的方法。

比如正方形周长C 与边长a 间的解析式为C =4a ,圆的面积S 与半径r 的解析式S =πr 2等.求函数解析式的方法① 配凑法 ② 待定系数法③ 换元法④ 构造方程组法 ⑤ 代入法【即学即练1】已知函数f (x )=1x ,则f (x +1)=( )A .f (x +1)=1x+1B .f (x +1)=1x―1C .f (x +1)=2x―1D .f (x +1)=2x+1知识点02 列表法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数时,想了解其图像是一直线,第一步就是列表,其实就是用表格法表示一次函数.【即学即练2】函数f(x)与g(x)的对应关系如下表.x―101x123f(x)132g(x)0―11则g(f(―1))的值为()A.0B.3C.1D.―1知识点03 图象法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.【即学即练3】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数.【题型一:解析法表示函数】例1.若函数y=f(x)对任意x∈R,均有f(x+y)=f(x)+f(y),则下列函数可以为y=f(x)解析式的是()A.f(x)=x+1B.f(x)=2x―1C.f(x)=2x D.f(x)=x2+x变式1-1.一个等腰三角形的周长为20,底边长y是一腰长x的函数,则()A.y=10―x(0<x≤10)B.y=10―x(0<x<10)C.y=20―2x(5≤x≤10)D.y=20―2x(5<x<10)变式1-2.下列函数中,对任意x,不满足2f(x)=f(2x)的是()A.f(x)=|x|B.f(x)=―2xC.f(x)=x―|x|D.f(x)=x―1变式1-3.定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(4)=8,则f()A B.2C.4D.6变式1-4.若函数f(x)满足f(a+b)=f(a)+f(b)1―f(a)f(b),且f(2)=12,f(3)=13,则f(7)=A.1B.3C.43D.83【方法技巧与总结】理解函数解析式y=f(x),仅是用一系列运算符号连接起来得到的式子,它对定义域内任何一个值都是成立的;比如①函数f(x)=x2(x>0),可取任何大于0的值进行赋值;②若函数f(x)满足f(xy)=f(x)+f(y),则x ,y 取任何实数均可使得等式成立.【题型二:求函数的解析式】方法1 待定系数法例2.若二次函数f(x)满足f(x +1)―f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=―x 2―x ―1B .f(x)=―x 2+x ―1C .f(x)=x 2―x ―1D .f(x)=x 2―x +1变式2-1.已知f(x)是一次函数,且2f(2)―3f(1)=5,2f(0)―f(―1)=3,则f(x)=( )A .3x ―2B .3x +2C .92x ―12D .4x ―1变式2-2.已知函数f(x)是一次函数,且f[f(x)―2x]=3,则f(5)=( )A .11B .9C .7D .5变式2-3.已知二次函数f (x )满足f(2)=―1,f(1―x)=f(x),且f (x )的最大值是8,则此二次函数的解析式为f(x)=( )A .―4x 2+4x +7B .4x 2+4x +7C .―4x 2―4x +7D .―4x 2+4x ―7方法2 换元法例3.已知函数f 2)=x ―,则f(x)的解析式为( )A .f(x)=x 2+1(x ≥0)B .f(x)=x 2+1(x ≥―2)C .f(x)=x 2(x ≥0)D .f(x)=x 2(x ≥―2)变式3-1.已知函数f(1―x)=1―x2x2(x≠0),则f(x)=()A.1(x―1)2―1(x≠0)B.1(x―1)2―1(x≠1)C.4(x―1)2―1(x≠0)D.4(x―1)2―1(x≠1)变式3-2.设函数f1+=2x+1,则f(x)的表达式为()A.1+x1―x (x≠1)B.1+xx―1(x≠1)C.1―x1+x (x≠―1)D.2xx+1(x≠―1)变式3-3.已知f1)=x+3,则f(x)=()A.x2―2x+2(x≥0)B.x2―2x+4(x≥1)C.x2―2x+4(x≥0)D.x2―2x+2(x≥1)方法3 方程组法例4.已知定义在(0,+∞)上的函数f(x)满足f(x)=―15x,则f(2)的值为()A.152B.154C.174D.172变式4-1.若函数f(x),g(x)满足f(x)―=3x―4x,且f(x)+g(x)=2x+6,则f(2)+g(―1)=()A.6B.7C.8D.9变式4-2.已知函数f(x)满足f(x)+2f(2―x)=1x―1,则f(3)的值为()A.―73B.―109C.―415D.―16变式4-3.已知定义在R上的函数f(x),满足f(x)+2f(―x)=2x+12.(1)求f(x)的解析式;(2)若点P(a,b)在y=f(x)图像上自由运动,求4a+2b的最小值.【方法技巧与总结】求函数解析式,可视情况而定,1 若已知函数类型,可用待定系数法;2 若求f(g(x))型函数解析式,可用换元法,此时要注意新自变量的取值范围;3 若求满足某函数方程的函数解析式,则用方程组的方法.【题型三:列表法表示函数】例5.设已知函数f(x),g(x)如下表所示:x12345f(x)54321g(x)43215则不等式f(g(x))>g(f(x))的解集为()A.{1,3}B.{5,3}C.{2,3,4}D.{5}变式5-1.已知函数f(x),g(x)分别由下表给出:则f[g(2)]的值是()x123f(x)131g(x)321A.1B.2C.3D.1和2变式5-2.观察下表:x―3―2―1123f(x)51―1―335g(x)1423―2―4则f[f(―1)―g(3)]=()A.―4B.―3C.3D.5变式5-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格或是其它形式.已知函数f(x)由下表给出,则f10f)x x≤11<x<2x≥2y123A.0B.1C.2D.3【方法技巧与总结】表格法表示函数,要注意看清楚变量数值之间的对应关系.【题型四:图象法表示函数】例6.如图所示的4个图象中,与所给3个事件最吻合的顺序为()①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③变式6-1.小明骑车上学,开始时匀速行驶,中途因车流量大而减速行驶,后为了赶时间加速行驶,与以上事件吻合得最好的图象是()A.B.C.D.变式6-2.俗话说,“一分耕耘,一分收获”.那么,在实际生活中,如果把收获看成付出的函数,它们之间的关系可以怎样描述呢?情境甲:当以匀速的方式驾驶汽车时,行驶的里程与所用的时间之间的关系;情境乙:家长过分宠爱孩子,有时还有可能付出增加会导致收获减少;情境丙:在我们学习新的知识时,可能一开始效率会比较高,单位时间的付出得到的收获会比较大,但随着付出的时间越来越多,单位时间的付出得到的收获会变少.请问依次与下面三个图象所表示的收获与付出的关系相对应的情境正确的一项是()A.甲、乙、丙B.丙、甲、乙C.甲、丙、乙D.乙、丙、甲变式6-3.已知完成某项任务的时间t与参加完成此项任务的人数x之间满足关系式t=ax+bx(a∈R,b∈R),当x=2时,t=100;当x=4时,t=53,且参加此项任务的人数不能超过8.(1)写出t关于x的解析式;(2)用列表法表示此函数;(3)画出此函数的图象.【方法技巧与总结】图象法表示函数,达到“一目了然”的效果,对于函数图象还注意函数的定义域,函数图象的上升下降趋势,增减趋势的缓急等等!一、单选题1.已知定义在[―2,2]上的函数y=f(x)表示为:x[―2,0)0(0,2]y10―2设f(1)=m,f(x)的值域为M,则()A.m=1,M={―2,0,1}B.m=―2,M={―2,0,1}C.m=1,M={y|―2≤y≤1}D.m=1,M={y|―2≤y≤1}2.函数y=g(x)的对应关系如下表所示,函数y=f(x)的图象是如图所示的曲线ABC,则g(f(3)―1)的值为()x123g(x)20230―2023A.2023B.0C.―1D.―20233.设f(x)=xx2+1,则( )A.f(x)B.―f(x)C.1f(x)D.―1f(x)4.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(A→B→O→A),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()A.B.C.D.5.已知函数f(x)=x3+ax2+bx+c,且0<f(―1)=f(―2)=f(―3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>96.已知f+1)=x+3,则f(x)的解析式为f(x)=()A.x2―2x+4B.x2+3C.x2―2x+4(x≥1)D.x2+3(x≥1)7.函数f(x)满足2f(x)―f(1―x)=x,则函数f(x)=()A.x―2B.x+13C.x―13D.―x+28.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表一市场供给量单价(元/kg)2 2.4 2.8 3.2 3.64供给量(1000kg)506070758090表一市场需求量单价(元/kg)4 3.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、多选题9.某工厂8年来某产品产量y与时间t的函数关系如图,则以下说法中正确的是()A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变10.下列说法正确的是()A.函数f(x+1)的定义域为[―2,2),则函数f(x)的定义域为[―1,3)B.f(x)=x2x和g(x)=x表示同一个函数C.函数y=1x2+3的值域为0D.定义在R上的函数f(x)满足2f(x)―f(―x)=x+1,则f(x)=x3+111.已知f(0)=12,f(x+y)=f(x)f(1―y)+f(y)f(1―x),则()A.f(1)=12B.f(x)=12恒成立C.f(x+y)=2f(x)f(y)D.满足条件的f(x)不止一个三、填空题12.下列表示函数y=f(x),则f(11)=.x0<x<55≤x<1010≤x<1515≤x≤20y234513.已知y=f(x)是二次函数,且f(0)=1,f(x+1)―f(x)=2x,则y=f(x)=.14.若正整数m,n只有1为公约数,则称m,n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,函数φ(n)以其首位研究者欧拉命名,称为欧拉函数,例如:φ(3)=2,φ(7)=6,φ(9)=6,则下列说法正确的序号是.①φ(5)=φ(10);②φ(2n―1)=1;③φ(32)=16;④φ(2n+2)>φ(2n),n是正整数.四、解答题15.下图所示为某市一天24小时内的气温变化图,根据图象回答下列问题.(1)全天的最高气温、最低气温分别是多少?(2)大约在什么时刻,气温为0°C?(3)大约在什么时刻内,气温在0°C以上?(4)变量Q是关于变量t的函数吗?16.已知f(x)=1(x∈R,且x≠―1),g(x)=x2+2(x∈R).1+x(1)求f(2),g(2)的值;(2)求f(g(2)),g(f(2))的值;(3)求f(x)和g(x―1)的值域.17.已知二次函数f(x)满足f(x)=f(2―x),且f(0)=―3,f(1)=―4.(1)求函数f(x)的解析式;(2)若g(x)=x+1,比较f(x)与g(x)的大小.18.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①a=2;②不等式f(x)>0的解集为{x|―1<x<3 };③函数f(x)的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f(x)的解析式;(2)求关于x的不等式f(x)≥(m―1)x2+2(m∈R)的解集.19.已知函数y=f(x)与y=g(x)的定义域均为D,若对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<|f(x1)―f(x2)|成立,则称函数y=g(x)是函数y=f(x)在D上的“L函数”.(1)若f(x)=3x+1,g(x)=x,D=R,判断函数y=g(x)是否是函数y=f(x)在D上的“L函数”,并说明理由;(2)若f(x)=x2+2,g(x)==[0,+∞),函数y=g(x)是函数y=f(x)在D上的“L函数”,求实数a的取值范围;(3)若f(x)=x,D=[0,2],函数y=g(x)是函数y=f(x)在D上的“L函数”,且g(0)=g(2),求证:对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<1.。

高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)一、数与式1、常数、变量和运算符号:常数是除变量外的有限定义的数量,变量是可以任意取值的量,而运算符号则是进行数学运算的符号。

2、十进制及其他进制:十进制是分别使用0~9十个数字、以及逢十进一的一种进制制度,而其他进制则有二进制、八进制、十六进制等。

3、有理数的表示及其运算:有理数可以使用两个整数的商和余数的形式来表示,其中余数可以是负数,而有理数的运算则有加减乘除求倒数等。

4、无理数及其后结果:无理数是不能用有理数恒等式表达的数,通常用∞或“无穷不等式”来表示。

结果表明,无理数不是有理数的整数倍。

5、算术表达式的因式分解:分解因式是把一个多项式拆分成几个不同的因式的过程,在因式分解得到的两个因子可以进行乘、除、幂数运算,从而继续分解多项式,直到把多项式分解成几个不可继续分解的因式。

二、等差数列1、等差数列的定义:等差数列是一系列数按照一定规律等间隔排列而成的数列,在其中数字之间的差值成等差数列,可以表示为a1,a2,…, an,an+1,…,其中,a2-a1=a3-a2=…an+1-an=d,可以看出所有数之间都是等差的。

2、等差数列的求和:求和是求等差数列所有数字的和,其求和的公式为Sn=(n)(2a1+d(n-1))/2,在给定等差数列第一项和项数的情况下,即可直接求出等差数列的求和。

三、函数与方程1、定义域和值域:所谓“定义域”是指函数中可以取什么值,而“值域”则是指函数的值能够到达的最小和最大结果。

2、函数的定义及其基本性质:函数是定义域和值域之间的关系,函数的基本性质有单调性、统一性、性质等,其中单调性指函数上升或是下降,统一性指当定义域多于值域时,将多余的值合并为一个值。

3、折线图:折线图是一种表达定义域与值域变化关系的图表,用折线就能清楚地反映函数的变化,而其反映出的变化规律可以帮助我们分析函数的特性。

4、一元一次方程的求解:一元一次方程是一个有一个未知数的一元一次方程,其求解的方法有解析解法和求根解法,在一元一次方程求解得到未知数的值之后,可以利用求根解法把它带回原方程,验算正确性。

必修一数学必考题型及答题方法

必修一数学必考题型及答题方法

必修一数学必考题型及答题方法全文共四篇示例,供读者参考第一篇示例:数学作为一门理科必修课程,对于学生来说是一个必考的科目。

必修一数学主要包括函数、导数、微分、积分等内容,其中考试题型也比较多样化。

在备考必修一数学考试时,掌握各种题型及答题方法是非常重要的。

本文将针对必修一数学的必考题型及相应的答题方法进行分析与总结。

1. 函数与极限函数与极限是必修一数学中一个非常重要的题型,通常考察的内容包括函数的性质、极限的计算以及极限存在性的判断。

在应对这类题型时,需要注意以下几点答题方法:- 对于函数的性质,需要掌握函数的定义域、值域、奇偶性等基本概念,并能够应用这些概念解决实际问题。

- 在计算极限时,需要掌握常见极限的计算方法,如利用洛必达法则、泰勒展开等方法,同时要注意极限存在性的判断。

- 针对极限存在性的判断,需要掌握夹逼定理、单调有界准则等方法,以判断函数在某点的极限是否存在。

2. 导数与微分导数与微分是必修一数学中另一个重点考察的内容,通常考察的内容包括导数的计算、导数的应用、微分的计算等。

在应对这类题型时,需要注意以下几点答题方法:- 计算导数时,要掌握基本函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算公式。

- 在导数的应用中,需要注意应用题的建模、解题过程,并掌握利用导数分析函数的单调性、凹凸性以及求取最值等问题。

- 对于微分的计算,要掌握微分的定义及微分运算规则,并能够熟练应用微分进行问题的求解。

3. 积分与定积分积分与定积分是必修一数学中另一个重要的考察内容,通常考察的内容包括积分的计算、定积分的应用、面积计算等。

在应对这类题型时,需要注意以下几点答题方法:- 对于积分的计算,要掌握不定积分的计算方法,如基本积分法、换元积分法、分部积分法等,同时要注意积分的性质和常见积分的计算结果。

- 在应用题中,要能够熟练应用定积分计算曲线下面积、旋转体的体积、物理问题中的积分应用等内容。

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型

高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示名称非负整数集(自然数集) 整数集实数集符号N N*或N+Z Q R知识点四集合的表示方法1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集定义符号语言图形语言(Venn图)子集如果集合A中的________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集________(或________)真子集如果集合A⊆B,但存在元素________,且________,我们称集合A是集合B的真子集________(或________)2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六 集合的运算 1.交集 2.并集自然语言符号语言图形语言由_________________ _________________组成的集合,称为A 与B 的并集A ∪B =_______________3.交集与并集的性质交集的运算性质并集的运算性质 A ∩B =________ A ∪B =________ A ∩A =________ A ∪A =________ A ∩∅=________ A ∪∅=________ A ⊆B ⇔A ∩B =________A ⊆B ⇔A ∪B =________4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________. 5.补集文字语言 对于一个集合A ,由全集U 中__________的所有元素组成的集合称为集合A 相对于全集U 的补集,记作________符号语言 ∁U A =________________图形语言定义符号语言图形图言 (Venn 图)集合相等 如果集合A 是集合B 的子集(A ⊆B),且________________,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等A =B自然语言符号语言图形语言由___________________ _____________________ 组成的集合,称为A 与B 的交集A ∩B =_________典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。

高中数学必修一基本初等函数知识点与典型例题总结

高中数学必修一基本初等函数知识点与典型例题总结

( a ,c ( 0 ,1 ) U ( 1 , ) ,b 0 )
c
2) 对数恒等式
a lo g a N N ( a 0 且 a 1 , N 0 )
3) 四个重要推论
①logabllggabllnnab; ②logamNnm nlogaN;
③logablog1ba;
④ lo g ab lo g bc lo g ac.
由f x是奇函数,图像关于原点对称.
所以f x在( ,- a )是增函数,
在(- a ,0)是减函数.
综上,函数 f x x a(a>0)的单调
区间是
x f x在(- a ,0),(0, a )是减函数.
在( ,- a ),( a ,+)是增函数,
单调区间的分界点为: a的平方根
5.函数f x x a (a>0)的值域
①找不到证明问题的切入口.如第(1)问,很 多考生不知道求其定义域.
②不能正确进行分类讨论.若对数或指数的 底数中含有参数,一般要进行分类讨论.
一般地,函数 y x x 是 自 变 量 , 是 常 数
叫做幂函数
y
y x, y x2, y x3,
1
y x2, y x1
的图象.
O
x
幂函数的性质
当x1x2 >a时,由x1,x2是任意的,知x1,x2可 无限接近.而x1,x2在同一个区间取值, 知x1,x2 ( a,+)时,x1x2 >a都成立. 此时,f(x2 )>f (x1). 所以x ( a,+)时,f(x)是增函数.
同时可知,x (0, a )时,f(x)是减函数.
⑵. 当x∈ (-∞,0)时,确定某单调区间

人教版高中数学必修第一册知识点及题型总结---不等关系与不等式

人教版高中数学必修第一册知识点及题型总结---不等关系与不等式

目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。

构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。

不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可以分为有限集和无限集。

有限集包含有限个元素,无限集包含无限个元素。

知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。

列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。

描述法是用集合所含元素的共同属性来表示集合的方法。

知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。

如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。

空集是任何集合的子集,任何集合都是其本身的子集。

如果A是B的子集,B是C的子集,则A是C的子集。

如果A是B的真子集,B是C的真子集,则A是C的真子集。

集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。

知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。

并集是指两个集合中所有元素构成的集合,记作A∪B。

1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。

2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结

高中一年级数学必修一知识点总结第一章:集合与函数1. 集合的概念集合的定义元素与集合的关系集合的表示法2. 集合的运算交集、并集、补集的定义和性质子集和真子集3. 函数的概念函数的定义函数的三要素:定义域、值域、对应关系函数的表示方法:解析式、图象、列表4. 函数的性质单调性奇偶性周期性5. 反函数反函数的概念反函数的求法第二章:指数函数与对数函数1. 指数函数指数函数的定义指数函数的图象和性质2. 对数函数对数函数的定义对数函数的图象和性质3. 指数与对数的运算指数运算法则对数运算法则第三章:三角函数1. 角的概念任意角象限角2. 三角函数的定义正弦、余弦、正切函数的定义3. 单位圆上的三角函数单位圆的定义单位圆上的三角函数值4. 三角函数的图象正弦、余弦函数的图象正切函数的图象5. 三角函数的性质周期性奇偶性单调性第四章:解析几何1. 平面直角坐标系坐标系的建立点的坐标2. 直线的方程直线的斜率直线的点斜式、斜截式、一般式方程3. 圆的方程圆的标准方程圆的一般方程4. 点与圆的位置关系点与圆的切线点与圆的弦第五章:不等式1. 不等式的解法代数法图形法2. 不等式的性质不等式的基本性质不等式的传递性3. 一元一次不等式组不等式组的解法求解不等式组的技巧第六章:数学思维与方法1. 归纳推理归纳推理的定义归纳推理的应用2. 演绎推理演绎推理的定义演绎推理的应用3. 数学建模数学建模的概念数学建模的步骤第七章:数学文化1. 数学在日常生活中的应用数学在决策中的作用数学在数据分析中的应用2. 数学家的故事著名数学家的生平数学家的贡献3. 数学思想的发展数学思想的历史演变数学思想在现代科技中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学讲义必修一第一章复习知识点一集合的概念1.集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素:构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集:不含任何元素的集合叫做空集,记为.知识点二集合与元素的关系1.属于:如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于:如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性_______、________、________.2.集合的分类:(1)有限集:含有_______元素的集合;(2)无限集:含有_______元素的集合.3.常用数集及符号表示1.列举法:把集合的元素______________,并用花括号“{}”括起来表示集合的方法2.描述法:用集合所含元素的________表示集合的方法称为描述法.知识点五集合与集合的关系1.子集与真子集2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A,都有________.(2)任何一个集合A都是它本身的子集,即________.(3)如果A⊆B,B⊆C,则________.(4)如果A⊆B,B⊆C,则________.3.集合相等知识点六集合的运算1.交集2.并集3.交集与并集的性质4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一 * 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。

题型二 * 验证元素是否是集合的元素 1、已知集合{}Zn Z m n m x x A ∈∈-==,,22,判断3是不是集合A 的元素。

2、集合A 是由形如()Z n Z m n m ∈∈+,3的数构成的,判断321-是不是集合A 中的元素.题型三 ** 求集合1.方程组⎩⎨⎧3x +y =22x -3y =27的解集是( )A.⎩⎨⎧x =3y =-7B .{x ,y|x =3且y =-7}C .{3,-7}D .{(x ,y)|x =3且y =-7} 2.下列六种表示法:①{x =-1,y =2};②{(x ,y)|x =-1,y =2};③{-1,2};④(-1,2);⑤{(-1,2)};⑥{(x ,y)|x =-1或y =2}.能表示方程组⎩⎨⎧2x +y =0,x -y +3=0的解集的是( )A .①②③④⑤⑥B .②③④⑤C .②⑤D .②⑤⑥题型四 ** 利用集合中元素的性质求参数1.已知集合S ={a ,b ,c}中的三个元素是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2.设a ,b ∈R ,集合{1,a +b ,a}={}0,b a ,b ,则b -a =________.3.已知P ={x|2<x <k ,x ∈N ,k ∈R},若集合P 中恰有3个元素,则实数k 的取值范围是________.4.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 的值为( )A .2B .3C .0或3D .0或2或3 题型五 ** 判断集合间的关系 1、设⎭⎬⎫⎩⎨⎧∈+==Z k k x x M,412,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214,则M 与N 的关系正确的是( )A. M=NB.N M ≠⊂ C.N M ≠⊃ D.以上都不对2.判断下列集合间的关系:(1)A ={x|x -3>2},B ={x|2x -5≥0}; (2)A ={x ∈Z|-1≤x<3},B ={x|x =|y|,y ∈A}. 题型六 ** 求子集个数1.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值构成的集合为________. 2.已知集合A ={1,2,3},写出集合A 的所有子集,非空子集,真子集,非空真子集题型七** 利用两个集合之间的关系求参数1.已知集合A={1,2,m3},B={1,m},B⊆A,则m=________.2.已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A.0 B.1 C.2 D.3题型八*** 集合间的基本运算1.下面四个结论:①若a∈(A∪B),则a∈A;②若a∈(A∩B),则a∈(A∪B);③若a∈A,且a∈B,则a∈(A∩B);④若A∪B=A,则A∩B=B.其中正确的个数为()A.1B.2 C.3 D.42.已知集合M={x|-3<x≤5},N={x|x>3},则M∪N=()A.{x|x>-3} B.{x|-3<x≤5} C.{x|3<x≤5} D.{x|x≤5}3.已知集合A={2,-3},集合B满足B∩A=B,那么符合条件的集合B的个数是()A.1 B.2 C.3 D.44.(2016·全国卷Ⅲ理,1)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=()A.[2,3] B.(-∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞)5.下列关系式中,正确的个数为()①(M∩N)⊆N;②(M∩N)⊆(M∪N);③(M∪N)⊆N;④若M⊆N,则M∩N=M.A.4 B.3 C.2 D.16.(2016·唐山一中月考试题)已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).题型九** 根据集合运算的结果求参数1.若集合A={2,4,x},B={2,x2},且A∪B={2,4,x},则x=________.2.设A={x|x2+8x=0},B={x|x2+2(a+2)x+a2-4=0},其中a∈R.如果A∩B=B,求实数a的取值范围.3.U={1,2},A={x|x2+px+q=0},∁U A={1},则p+q=________.题型十** 集合中的新定义问题1.集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A.7 B.12 C.32 D.642.当x∈A时,若x-1∉A,且x+1∉A,则称x为A的一个“孤立元素”,由A的所有孤立元素组成的集合称为A的“孤星集”,若集合M={0,1,3}的孤星集为M′,集合N={0,3,4}的孤星集为N′,则M′∪N′=()A.{0,1,3,4} B.{1,4} C.{1,3} D.{0,3}知识点一函数的有关概念知识点二两个函数相等的条件1.定义域________.2.________完全一致.知识点三区间的概念及表示1.一般区间的表示设a,b∈R,且a<b,规定如下:2.知识点四函数的表示方法函数的三种表示法:解析法、图象法、列表法.知识点五分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的________,那么称这样的函数为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的________,值域是各段值域的________. 知识点六 映射的概念设A ,B 是两个________________,如果按某一个确定的对应关系f ,使对于集合A 中的________________,在集合B 中都有________确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 知识点七 函数的单调性1.增函数、减函数:设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数;当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数.2.函数的单调性:若函数f(x)在区间D 上是增(减)函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间.3.单调性的常见结论:若函数f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数;若函数f(x)为增(减)函数,则-f(x)为减(增)函数;若函数f(x)为增(减)函数,且f(x)>0,则1f (x )为减(增)函数.知识点八 函数的最大值、最小值性质:定义在闭区间上的单调函数,必有最大(小)值. 知识点九 函数的奇偶性 1.函数奇偶性的概念2.性质(1)偶函数的图象关于y 轴对称;奇函数的图象关于原点对称,奇函数在原点有定义,则f(x)=0 (2)奇函数在对称的区间上单调性相同,偶函数在对称的区间上单调性相反.(3)在定义域的公共部分内,两个奇函数之积与商(分母不零)为偶函数;两个奇函数之和为奇函数;两个偶函数的和、积与商为偶函数;一奇一偶函数之积与商(分母不为零)为奇函数. 知识点十 函数的周期性若存在非零常数T ,对定义域内任意x ,都有()()f x T f x +=,称这样的函数为周期函数,T 叫函数的一个周期。

()如:若,则f x a f x +=-()典例精讲题型一 *** 函数的定义域1 函数f(x)=ln(x -3)的定义域为( ) A .{x|x>-3} B .{x|x>0} C .{x|x>3} D .{x|x ≥3}2.函数f(x)=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]3.函数y x=的定义域为 ( )A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-4.已知函数f(x)=12++mx mx 的定义域是一切实数,则m 的取值范围是( ) A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤45、若函数y =)(x f 的定义域是[1,4],则y =)12(-x f 的定义域是 .6、若函数y =)13(-x f 的定义域是[1,2],则y =)(x f 的定义域是 题型二 *** 函数概念的考察1 下列图象中,不可能成为函数y =f(x)图象的是( )2 下列各组函数中表示同一函数的是( )A.y=55x和xy 2=B.y=lnex和exy ln =C.()()()()3131+=-+-=x y x x x y 和 D.xx y y 001==和3 下列四组函数中,表示同一函数的是()A.2)1(1-=-=x y x y 与 B .111--=-=x x y x y 与C .2lg 2lg 4x y x y ==与 D .100lg 2lg x x y =-=与 4 已知函数y=22-x定义域为{}2,1.0,1-,则其值域为题型三 *** 分段函数的考察1、已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f =A.4B.14C.-4 D-142、已知函数f(x)=⎩⎨⎧1-12x ,x ≥0,1x ,x<0,若f(a)=a ,则实数a =________.3、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( )A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞4、已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是( )A (,1)(2,)-∞-⋃+∞B (1,2)-C (2,1)-D (,2)(1,)-∞-⋃+∞ 题型四 *** 函数图像的考察1、设0abc >,二次函数2()f x ax bx c =++的图像可能是2、函数y=2x-2x 的图像大致是3、函数x xx xe e y e e--+=-的图像大致为 ( )4、已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是 ( )A. 在1t 时刻,甲车在乙车前面B. 1t 时刻后,甲车在乙车后面C. 在0t 时刻,两车的位置相同D. 0t 时刻后,乙车在甲车前面题型五 *** 求函数的解析式A3、设)(x f 是奇函数,)(x g 是偶函数,并且x x x g x f -=-2)()(,求)(x f 。

相关文档
最新文档