高考物理 33与现代科技相关的带电粒子在电磁场中的运动精解分析
高三物理备考资料——带电粒子在电磁场中运动的应用实例分析

带电粒子在电磁场中运动的应用1、电视机电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区。
磁场方向垂直于圆面。
磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧运动,如图所示,圆心为O ′,半径为R 。
以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电量,则221mv eU = R mv evB 2= Rr tg =2θ 由以上各式解得 221θtg e mU r B = 2、电磁流量计电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。
当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A. )(ac bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(abc R B I ρ+ 答案: A3、质谱仪下图是测量带电粒子质量的仪器工作原理示意图。
设法是某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。
分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。
(完整版)高考物理带电粒子在磁场中的运动解析归纳

难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
带电体在电磁场中的受力分析和运动分析

带电粒子在电磁场中的受力分析和运动分析一、带电粒子在电场中的受力分析和运动分析1、静电场中的平衡问题静电场中的“平衡”问题,是指带电粒子的加速度为零的静止或匀速直线运动状态,都属于“静力学”的范畴,我们只是在分析带电粒子所受的重力、弹力、摩擦力等力时,还需多加一种电场力而已。
解题的一般程序为:明确研究对象;将研究对象隔离出来,分析其所受的全部外力,其中电场力,要根据电荷的正负及电场的方向来判断;根据平衡条件0=合F 或0,0x ==Y F F 列出方程;解方程求出结果。
2、电场中的加速问题带电粒子在匀强电场中的加速问题,一般属于粒子受到恒力(重力一般不计)作用的运动问题。
处理的方法有两种:根据牛顿第二定律和运动学公式结合求解;根据动能定理与电场力做功结合运动学公式求解。
在非匀强电场中的加速问题,一般属于物粒子受变力作用的运动问题。
处理的方法只能根据动能定理与电场力做功,结合运动学公式求解。
3、电场中的偏转问题受力及运动分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类平抛运动如1(设极板间的电压为U ,两极板间的距离为d ,极板长度为L )。
运动特点分析:在垂直电场方向做匀速直线运动 0v v x = ,t v x 0=在平行电场方向,做初速度为零的匀加速直线运动at v y =,221at y =, dmUq m Eq a == 通过电场区的时间:0v L t = 粒子通过电场区的侧移距离:2022mdv UqL y = 图1粒子通过电场区偏转角:20mdv UqL tg =θ 带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。
所以侧移距离也可表示为:θtg L y 2= 。
4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。
广东高考物理带电粒子在磁场中的运动精确解析

【例题2】已知S1、S2为电场、磁场的分界线. 其间距 为d,电势差为U,匀强磁场的磁感应强度为B.一带正 电的粒子质量为m,电荷量为q,其重力不计,在S1边 界附近的P点由静止开始运动.忽略变化场的感应效应 和粒子运动的相对论效应. 【3问】如图所示,已知 B E S1、S2边界的电势差大小 不变,但极性周期性改 变.若使粒子每次进入S1、 P S2的电场区域时,粒子总 + 是被电场加速,那么粒子 的运动轨迹怎样?粒子在 电场中加速n次的总时间 U - + S1 d S 2 是多少?在磁场中旋转n圈 的总时间又是多少?
M B A Q
M
B
A Q
M
B A Q
N
N
N “滚钱币、钢圈”
如图所示, 真空室内存在匀强磁场, 磁场方向垂直于纸 面向里, 磁感应强度的大小 B=0.60T, 磁场内有一块平 面感光板 ab, 板面与磁场方向平行, 在距 ab 的距离 l= 16cm处, 有一个点状的 放射源 S, 它向各个方向发射 粒子, 粒子的速度都是 v=3.0×106m/s, 已知每个 粒 子的电荷与质量之比 q/m=5.0×107C/kg, 现只考虑在 图纸平面中运动的 粒子, 求 ab 上被 粒子打中的区 M 域的长度. B a b O2 P2 l A Q v v O1 S P1 N
垂直
A N
v v+Δv B
归 纳
【例题1】 如图所示,质量为m,电荷量为q,重力不 计的带正电粒子,以速度v从A点垂直射入匀强磁场, 磁场的磁感应强度大小为B,方向垂直于纸面向里. 【5问】 在发射点A右侧距离A点为d(d<2r)处设置一块 足够长的挡板,若粒子以A点为中心,可在垂直磁场的 平面内向任意方向发射,但速度大小一定为v,那么, 粒子能射到挡板上的范围为多大? M M M B P2 B B O2 P2 P2 v A A A Q Q Q v v v v v O1 P1 P1 P1 N N N
带电粒子在电磁场中的运动分析

带电粒子在电磁场中的运动分析摘要:粒子轨道理论适用于稀薄等离子体,对于稠密等离子体也可以提供某些描述,但由于没有考虑集体效应,局限性很大。
粒子轨道理论基本方法是求解粒子的运动方程。
利用粒子轨道运动来描述等离子体的行为的前提是假定磁场和电场是预先确定的,不会受到带电粒子运动的影响。
本文主要研究带电粒子在电磁场中的运动分析。
关键词:带电粒子;电磁场;运动;分析一、引言金属中的电子气和半导体中的载流子以及电解质溶液也可以看作是等离子体。
在地球上,等离子体物质远比固体、液体、气体物质少。
在宇宙中,等离子体是物质存在的主要形式,占宇宙中物质总量的99%以上,如恒星(包括太阳)、星际物质以及地球周围的电离层等,都是等离子体。
物质的三态(固态、液态和气态)人们早已司空见惯,可是被称为物质第四态的等离子体,尽管占宇宙中可见物质的99%,可是我们对它的认识依然很少。
二、理论概述实际上,认识等离子体的运动规律是人类认识自然界,认识地球空间环境,进而冲出地球,走向太空的必要条件。
看似神秘的等离子体其实广泛存在于我们的这个世界,从炽热的恒星、灿烂的气态星云、浩瀚的星际间物质,到多变的电离层和高速的太阳风,都是等离子体的天下。
21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。
最常见的等离子体是高温电离气体,如电弧、霓虹灯和日光灯中的发光气体,又如闪电、极光等。
简单的将等离子体分类,可以认为等离子体是由电子、离子以及未电离的中性粒子组成,宏观上呈现准中性。
单粒子轨道运动作为描述等离子体运动状态中最简单的一种,即在给定的电磁场中的运动,我们只考虑单个粒子在场中的运动,而忽略离子间的相互作用以及粒子对场的反作用。
粒子轨道理论适用于稀薄等离子体,对于稠密等离子体也可以提供某些描述,但由于没有考虑集体效应,局限性很大。
粒子轨道理论基本方法是求解粒子的运动方程。
利用粒子轨道运动来描述等离子体的行为的前提是假定磁场和电场是預先确定的,不会受到带电粒子运动的影响。
带电粒子在电磁场中的运动-高中物理专题(含解析)

带电粒子在电磁场中的运动-高中物理专题(含解析)引言本文将讨论带电粒子在电磁场中的运动,涉及到相关的物理概念和解析。
我们将从基本的概念开始,逐步深入探讨。
电磁场的基本概念电磁场是由电荷和电流所产生的。
对于静电场而言,电磁场的作用是通过电荷之间的相互作用传递力;而对于电流产生的磁场来说,电磁场的作用是通过磁力线的变化传递力。
在电磁场中,带电粒子受到电磁力的作用而运动。
带电粒子在电磁场中的运动方程带电粒子在电磁场中的运动方程可以由洛伦兹力得出。
洛伦兹力是指带电粒子在电磁场中所受的力,其方向垂直于粒子速度和磁场方向的平面。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度有关。
带电粒子在电磁场中的运动方程可以表示为:F = q(E + v × B)其中,F是带电粒子所受的力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。
带电粒子在电磁场中的运动类型带电粒子在电磁场中的运动类型有很多种。
根据粒子速度和磁场方向的关系,可以将其分为以下几种情况:1. 带电粒子在电磁场中做匀速直线运动。
2. 带电粒子在电磁场中做匀速圆周运动。
3. 带电粒子在电磁场中做螺旋运动。
实例解析下面我们通过一个实例来解析带电粒子在电磁场中的运动。
假设我们有一个带正电荷的粒子,处于一个均匀磁场和一个均匀电场中。
该粒子以速度v在电场和磁场的交叉方向上运动。
根据洛伦兹力公式,该粒子在电磁场中所受的合力为:F = q(E + v × B)其中q为粒子的电荷量,E为电场强度,B为磁场强度。
根据合力的方向,我们可以确定粒子在电磁场中的运动类型。
具体的运动轨迹可通过求解运动方程得到。
结论带电粒子在电磁场中的运动是由洛伦兹力所驱动的。
根据粒子速度和磁场方向的关系,带电粒子可以做匀速直线运动、匀速圆周运动或螺旋运动。
通过解析带电粒子在电磁场中的运动,我们可以更好地理解电磁场对粒子的影响,为相关领域的研究和应用提供基础知识。
(完整word版)专题三:带电粒子在电磁场中的运动(全国卷高考真题版)要点

专题三:带电粒子在电磁场中的运动(全国卷高考真题版)1、(2011年全国卷,25题,19分)★★★★如图,与水平面成45°角的平面MN 将空间分成I 和II 两个区域。
一质量为m 、电荷量为q (q >0)的粒子以速度0v 从平面MN 上的0p 点水平右射入I 区。
粒子在I 区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在II 区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里。
求粒子首次从II 区离开时到出发点0p 的距离。
(粒子的重力可以忽略。
)00221()mv v l q E B=+2、(2011年全国新课标卷,25题,19分)★★★★如图,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d ≤x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面。
一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向。
已知a 在离开区域Ⅰ时,速度方向与x 轴正方向的夹角为30°;因此,另一质量和电荷量均与a 相同的粒子b 也从p 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的1/3。
不计重力和两粒子之间的相互作用力。
求:(1)粒子a 射入区域I 时速度的大小;(2)当a 离开区域II 时,a 、b 两粒子的y 坐标之差。
(1)2dqB m (2)23(3-2)d3、(2012年全国大纲版,24题,16分)★★如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘清线悬挂于O 点。
先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。
再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。
求第二次充电使电容器正极板增加的电荷量。
Q=2Q ∆4、(00年全国卷21题,13分)★★★如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a 、b 、c 和d ,外筒的外半径为r 0。
高考物理 30带电粒子在电场中加速在磁场中偏转精解分析

高考题精解分析:30带电粒子在电场中加速在磁场中偏转 高频考点:带电粒子在电场中加速、在磁场中的偏转动态发布:2009重庆理综第25题、2009山东理综第25题命题规律:带电粒子在电场中加速、在磁场中的偏转是带电粒子在电磁场中运动的重要题型,是高考考查的重点和热点,带电粒子在电场中加速、在磁场中的偏转常常以压轴题出现,难度大、分值高、区分度大。
命题分析考查方式一 考查带电粒子在恒定电场中加速、偏转、在匀强磁场中的偏转【命题分析】带电粒子在恒定电场中加速后进入偏转电场、然后进入匀强磁场中的偏转是高考常考题型,此类题过程多,应用知识多,难度大。
例1(2009重庆理综第25题)如图1,离子源A 产生的初速为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO=d ,HS=2d ,∠MNQ =90°.(忽略粒子所受重力)(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ;(2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ上的正离子的质量范围.【标准解答】:(1)正离子在加速电场加速,eU 0=mv 12/2,正离子在场强为E 0的偏转电场中做类平抛运动,2d= v 1t ,d =at 2/2,eE 0=ma ,联立解得 E 0= U 0/d.由tan φ= v 1/ v ⊥,v ⊥=at ,解得φ=45°.(2)正离子进入匀强磁场时的速度大小v =221⊥+v v图1离子在匀强磁场中运动,洛伦兹力提供向心力,evB=mv 2/R ,联立解得质量为m 的离子在磁场中做圆周运动的半径R =220eB mU (3)将质量4m 和16m 代人R 的表达式,得 R 1=420eB mU ,R 2=820eBmU . 由图1JA 中几何关系得△s=()21222R R R ---R 1联立解得:△s =4(13-)20eBmU . 对于打在Q 点的正离子,由上图的几何关系得R ’2=(2R 1)2+(R ’— R 1)2,解得R ’=5 R 1/2.;对于打在N 点的正离子(如图1JB 所示),其轨迹半径为R 1/2=R ,对应的正离子质量为m ,由R 1/2<r<5 R 1/2,得能打在NQ 上的正离子的质量m x 的范围m<m x <25m.考查方式二 考查带电粒子在交变电场中加速、在匀强磁场中的偏转【命题分析】带电粒子在交变电场中加速后进入匀强磁场中偏转一般难度较大,常常作为压轴题,考查学生的综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考题精解分析:33与现代科技相关的带电粒子在电磁场中的运动 高频考点:与现代科技相关的带电粒子在电场磁场中的运动
动态发布: 2011重庆理综卷第25题、2010天津理综物理第12题
命题规律:与现代科技相关的带电粒子在电场磁场中的运动电学的重要题型,是高考考查的重点和热点,带电粒子在与现代科技相关的带电粒子在电场磁场中的运动常常以压轴题出现,难度大、分值高、区分度大。
命题分析
考查方式一 用电场和磁场来控制带电粒子的运动
【命题分析】 此类题一般与科技实际结合紧密,情景新颖,难度较大,分值较高,一般作为压轴题。
例1(2011重庆理综卷第25题)某仪器用电场和磁场来控制电子
在材料表面上方的运动,如图4所示,材料表面上方矩形区域
PP'N'N 充满竖直向下的匀强电场,宽为d ;矩形区域NN'M'M 充满
垂直纸面向里的匀强磁场,磁感应强度为B ,长为3s ,宽为s ;NN'
为磁场与电场之间的薄隔离层。
一个电荷量为e 、质量为m 、初速为零的电子,从P 点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M'N'飞出。
不计电子所受重力。
(1)求电子第二次与第一次圆周运动半径之比;
(2)求电场强度的取值范围;
(3)A 是M N ''的中点,若要使电子在A 、M '间垂直于A M '飞出,求电子在磁场区域中运动的时间。
【解析】(1)设圆周运动的半径分别为R 1、R 2、···R n 、R n+1、···,第一和第二次圆周运动速率分别为v 1和v 2,动能分别为E k1和E k2。
由E k2=0.81 E k1,R 1= 1mv Be ,R 2= 2mv Be , E k1=12mv 12,E k2=12mv 22 解得R 2∶R 1=0.9
(2)设电场强度为E ,第一次到达隔离层前的速率为v’。
由:eEd =12mv ’2,0.9×12mv ’2=12
mv 12,R 1≤s,
解得E≤
22
5
9
B es md。
又由R n=0.9 n-1 R1,
2 R1(1+0.9+0.92+···+0.9n+···)>s
解得:E>
22 80
B es md。
所以电场强度的取值范围为
(1)设一个质量为m0、电荷量为q0的正离子以速度v0沿O’O的方向从O’点射入,板间不加电场和磁场时,离子打在屏上O点。
若在两极板间加一沿y
+方向场强为E的匀强电场,求离子射到屏上时偏离O点的距离y0;
(2)假设你利用该装置探究未知离子,试依照以下实验结果计算未知离子的质量数。
上述装置中,保留原电场,再在板间加沿y
-方向的
匀强磁场。
现有电荷量相同的两种正离子组成的离子流,
仍从O’点沿O’O方向射入,屏上出现两条亮线。
在两线
上取y坐标相同的两个光点,对应的x坐标分别为3.24mm
和3.00mm,其中x坐标大的光点是碳12离子击中屏产生
的,另一光点是未知离子产生的。
尽管入射离子速度不完
全相等,但入射速度都很大,且在板间运动时O’O方向的分速度总是远大于x方向和y方向
的分速度。
【标准解答】(1)离子在电场中受到的电场力0y F q E = ①
离子获得的加速度 0y
y F a m = ②
离子在板间运动的时间 00
L t v = ③ 到达极板右边缘时,离子在+y 方向的分速度 0y y v a t = ④
离子从板右端到达屏上所需时间 00
D t v '= ⑤ 离子射到屏上时偏离O 点的距离 00y y v t '=
由上述各式,得 00200
q ELD y m v = ⑥
(2)设离子电荷量为q ,质量为m ,入射时速度为v ,磁场的磁感应强度为B ,磁场对离子的洛伦兹力
x F qvB = ⑦
已知离子的入射速度都很大,因而离子在磁场中运动时间甚短,所经过的圆弧与圆周相比甚小,且在板间运动时,O O '方向的分速度总是远大于在x 方向和y 方向的分速度,洛伦兹力变化甚微,故可作恒力处理,洛伦兹力产生的加速度x qvB a m
= ⑧。