高考数学一轮复习综合测试卷(含答案)
2023年新高考数学一轮复习9-5 抛物线(真题测试)含详解

专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .32.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( )A .1B .2C .D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x =D .2x =-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为1612.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4三、填空题13.(2018·北京·高考真题(文))已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C :26y x =的焦点为F ,A 为C 上一点且在第一象限,以F 为圆心,线段FA 的长度为半径的圆交C 的准线于M ,N 两点,且A ,F ,M 三点共线,则AF =______.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.16.(2021·北京·高考真题)已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为_______; MNF 的面积为_______.四、解答题17.(2017·北京·高考真题(理))已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1). (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.(2022·全国·高考真题(理))设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =. (1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.22.(2021·全国·高考真题(文))已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.专题9.5 抛物线(真题测试)一、单选题1.(2023·全国·高三专题练习)已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.2.(2023·全国·高三专题练习)抛物线21:4E y x =的焦点到其准线的距离为( ) A .18B .14C .2D .43.(2022·全国·高考真题(文))设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =( )A .2B .C .3D .故选:B4.(2021·全国·高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C.D .45.(2020·北京·高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP【详解】如图所示:.故选:B.6.(2019·全国·高考真题(文))若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( ) A .2B .3C .4D .87.(山东·高考真题(文))已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于 ,A B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( ) A .1x = B .1x =- C .2x = D .2x=-8.(2017·全国·高考真题(理))已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14C .12D .10二、多选题9.(2022·全国·高考真题)已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅> D .2||||||BP BQ BA ⋅>所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD10.(2022·全国·高考真题)已知O 为坐标原点,过抛物线2:2(0)Cy px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒33选项;由0OA OB ⋅<,0MA MB ⋅<求得,易得(,0)2p F ,由AF AM =3(4p OA OB ⋅=又(4p MA MB ⋅=-又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.11.(2022·全国·高三专题练习)已知O 为坐标原点,抛物线E 的方程为214y x =,E 的焦点为F ,直线l 与E 交于A ,B 两点,且AB 的中点到x 轴的距离为2,则下列结论正确的是( )A .E 的准线方程为116y =- B .AB 的最大值为6C .若2AF FB =,则直线AB 的方程为1y x =+D .若OA OB ⊥,则AOB 面积的最小值为16 ,联立抛物线,由2AF FB =解出A 即可求出面积最小值,即可判断D 选项.【详解】由2AF FB =得直线设直线AB 的方程为4A B x x =-.由于2AF FB =,所以22x =±,所以2124A A y x ==,直线AB 的方程为),y OA ⊥所以AOB 面积的是小值为故选:BCD.12.(2023·全国·高三专题练习)已知抛物线Γ:()220x py p =>,过其准线上的点(),1T t -作的两条切线,切点分别为A ,B ,下列说法正确的是( ) A .2p =B .当1t =时,TA TB ⊥C .当1t =时,直线AB 的斜率为2D .TAB △面积的最小值为4220x y ,故AB k C ,切线方程TA :的方程为1xt y -=-三、填空题13.(2018·北京·高考真题(文))已知直线l过点(1,0)且垂直于x轴,若l被抛物线24y ax=截得的线段长为4,则抛物线的焦点坐标为_________.14.(2023·全国·高三专题练习)已知抛物线C:26=的焦点为F,y xA为C上一点且在第一象限,以F为圆心,线段FA的长度为半径的圆交C的准线于M,N两点,且A,F,M三点共线,则AF=______.【答案】6【分析】根据圆的几何性质以及抛物线的定义即可解出.故答案为:6.15.(2020·山东·高考真题)已知抛物线的顶点在坐标原点,焦点F与双曲线22221(0,0)x ya ba b-=>>的左焦点重合,若两曲线相交于M,N两点,且线段MN的中点是点F,则该双曲线的离心率等于______.M在抛物线上,所以M在双曲线上,22cb=-故答案为:16.(2021·北京·高考真题)已知抛物线24y x=的焦点为F,点M在抛物线上,MN垂直x轴与于点N.若6MF=,则点M的横坐标为_______;MNF的面积为_______.FMNS.【FMNS=故答案为:四、解答题17.(2017·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点10,2⎛⎫⎪⎝⎭作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.故A 为线段BM 的中点.18.(2019·全国·高考真题(理))已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 利用3AP PB =可得y ()22,B x y 1252x x ∴+= 3AP PB = ∴则419AB =+⋅19.(2019·北京·高考真题(理))已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.D p,过F的直线交C于20.(2022·全国·高考真题(理))设抛物线2=>的焦点为F,点(),0:2(0)C y px pMF=.M,N两点.当直线MD垂直于x轴时,3(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.21.(2020·全国·高考真题(理))已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.)(),0F c ,的方程为x =21c=+,解得抛物线2C 的方程为24y cx =,联立24x c y cx=⎧⎨=⎩,43CD =即223c ac +01e <<,解得(2)[方法一由椭圆的第二定义知所以12-a22.(2021·全国·高考真题(文))已知抛物线2=>的焦点F到准线的距离为2.C y px p:2(0)(1)求C的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. ,则(99PQ QF ==-)09,10y ,由P 在抛物线上可得Q 的轨迹方程为的斜率0025OQ y k x ==(1,0),9=PQ QF ,所以29(1)9x y =-=-,所以的斜率为244=y x t 方法四利用参数法,由题可设()24,4(0),(,)>P t t t Q x y ,求得x,y 关于t 的参数表达式,得到直线OQ 的斜率关于t 的表达式,结合使用基本不等式,求得直线OQ 斜率的最大值.。
2023年新高考数学一轮复习4-4 导数的综合应用(真题测试)含详解

专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .12.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值D .点在曲线上3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A .B .C .D .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x x f x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭ C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( ) A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b +D .e 1a b >11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1f x ≥恒成立,则a 的取值范围是_____. 14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =___________.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________. 四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 20.(2016·全国·高考真题(文))设函数. (Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a 2()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](Ⅱ)若,函数在区间内有零点,求的取值范围(1)0f ()f x (0,1)a专题4.4 导数的综合应用(真题测试)一、单选题1.(2017·全国·高考真题(理))已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a ( ) A .12-B .13C .12D .1【答案】C 【解析】 【分析】 【详解】因为()221111()2()1()1x x x x f x x x a e e x a e e --+--+=-++=-++-,设1t x =-,则()()()21t t f x g t t a e e -==++-,因为()()g t g t =-,所以函数()g t 为偶函数,若函数()f x 有唯一零点,则函数()g t 有唯一零点,根据偶函数的性质可知,只有当0=t 时,()0g t =才满足题意,即1x =是函数()f x 的唯一零点,所以210a -=,解得12a =.故选:C. 2.(2015·陕西·高考真题(理))对二次函数(为非零整数),四位同学分别给出下列结论,其中有且仅有一个结 论是错误的,则错误的结论是 A .是的零点 B .1是的极值点 C .3是的极值 D .点在曲线上【答案】A 【解析】 【详解】若选项A 错误时,选项B 、C 、D 正确,,因为是的极值点,是的极值,所以,即,解得:,因为点在曲线上,所以,即,解得:,所以,,所以,因为,所以不是的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .3.(2022·青海·海东市第一中学模拟预测(理))已知函数()2e 2xx f x a x =-+,若有且仅有两个正整2()f x ax bx c =++a 1-()f x ()f x ()f x (2,8)()y f x =()2f x ax b ='+1()f x 3()f x ()()10{13f f '==203a b a b c +=⎧⎨++=⎩2{3b a c a =-=+()2,8()y f x =()42238a a a +⨯-++=5a =10b =-8c =()25108f x x x =-+()()()21511018230f -=⨯--⨯-+=≠1-()f x数,使得()0f x <成立,则实数a 的取值范围是( ) A .211,3e e ⎡⎫⎪⎢⎣⎭B .3291,5e e ⎡⎫⎪⎢⎣⎭C .391,5e 3e ⎡⎫⎪⎢⎣⎭D .212,2e e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】 【分析】将()0f x <转化为2(2)exx a x +<,再分别求导分析2()e x x g x =和()(2)h x a x =+的图象,再分别求得1,1g ,()()2,2g ,()()3,3g 到()20-,的斜率,分析临界情况即可 【详解】由()0f x <且0x >,得2(2)exx a x +<,设2()e x x g x =,()(2)h x a x =+, 22()exx x g x '-=,已知函数()g x 在(0,2)上单调递增,在(2,)+∞上单调递减, 函数()(2)h x a x =+的图象过点(2,0)-,(1)11(2)3e g =--,2(2)12(2)e g =--,3(3)93(2)5e g =--,结合图象,因为329115e 3e e <<,所以3915e 3ea ≤<. 故选:C4.(2014·全国·高考真题(文))已知函数,若存在唯一的零点,且,则的取值范围是( ) A . B . C . D .【答案】C 【解析】 【详解】试题分析:当时,,函数和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,32()31f x ax x =-+()f x 0x 00x >a ()2,+∞()1,+∞(),2-∞-(),1-∞-0a =2()31f x x =-+()f x 0a >2()36f x ax x '=-()0f x '=0x =2x a =(,0)x ∈-∞()0f x '>2(0,)x a ∈()0f x '<2(,)x a∈+∞()0f x '>(0)0f >(,0)x ∈-∞0a <2(,)x a∈-∞;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C .5.(2022·青海·海东市第一中学模拟预测(理))若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭【答案】D 【解析】 【分析】令()0f x =得20e e x xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,利用导数研究()e x x g x =的图像,由函数()f x 有三个零点可知,若令1e e xxt t ⎛⎫=≤ ⎪⎝⎭,则可知方程20t at a +-=的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,分类讨论即可求解. 【详解】由22e e 0xxx ax a +-=得20e ex xx xa a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令()e x x g x =, 由()10e xxg x -'==,得1x =,因此函数()g x 在(),1-∞上单调递增,在()1,+∞上单调递减,且()00g =,当0x >时,()0e x x g x =>,则()ex xg x =的图像如图所示: 即函数()g x 的最大值为()11eg =,令1e e xx t t ⎛⎫=≤ ⎪⎝⎭,则()20h t t at a =+-=,由二次函数的图像可知,二次方程的一根1t 必在10,e ⎛⎫ ⎪⎝⎭内,另一根21e t =或20t =或()2,0t ∈-∞上,当21e t =时,21e ea =-,则另一根111e t =-,不满足题意,当20t =时,a =0,则另一根10t =,不满足题意,()0f x '<2(,0)x a ∈()0f x '>(0,)x ∈+∞()0f x '<(0)0f >()f x 0x 00x >2()0f a>24a >2a <-当()2,0t ∈-∞时,由二次函数()20h t t at a =+-=的图像可知22000110e e a a a a ⎧+⋅-<⎪⎨⎛⎫+⋅->⎪ ⎪⎝⎭⎩, 解得210e ea <<-, 则实数a 的取值范围是210,e e ⎛⎫ ⎪-⎝⎭,故选:D.6.(2022·河南·开封市东信学校模拟预测(理))对任意0x >,不等式e ln()(1)0x ax a x -+-≥恒成立,则正数a 的最大值为( ) ABC .1eD .e【答案】D 【解析】 【分析】将不等式化为ln()e ln()e x ax x ax +≥+,构造()e x f x x =+有()(ln())f x f ax ≥,利用函数的单调性及参变分离法有e xa x ≤在0x >上恒成立,应用导数求右侧最小值,即可得结果.【详解】∵e ln()(1)0x ax a x -+-≥,∴ln()e ln()ln()e x ax x ax ax ax +≥+=+.令()e x f x x =+,则不等式化为()(ln())f x f ax ≥. ∵()e (0)x f x x x =+>为增函数,∴ln()x ax ≥,即e xa x≤.令e ()=x g x x ,则2(1)e ()x x g x x '-=,当01x <<时,()0g x '<,即()g x 递减;当1x >时,()0g x '>,即()g x 递增; 所以()()min 1e e g x g a ⇒≤==. ∴实数a 的最大值为e . 故选:D7.(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a , 故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.8.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知函数()()e ln e (0)xf x a a a =+>,若对任意实数1x >,不等式()()ln 1f x x ≥-总成立,则实数a 的取值范围为( )A .210,e ⎛⎫ ⎪⎝⎭B .221,e e ⎛⎤⎥⎝⎦C .21,e ⎛⎫+∞ ⎪⎝⎭D .21,e ⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】将所求不等式变形为()()ln 1ln eln eln 1x x ax a x -+++≥+-,构造函数()e xg x x =+,可知该函数在R 上为增函数,由此可得出()ln ln 1a x x ≥--,其中1x >,利用导数求出()()ln 1h x x x =--的最大值,即可求得实数a 的取值范围. 【详解】当1x >时,由()()ln 1f x x ≥-可得()ln eln 1ln 1x aa x +++≥-, 即()()()ln 1ln eln 1ln 1eln 1x x ax a x x x -+++≥-+-=+-,构造函数()e xg x x =+,其中x ∈R ,则()e 10x g x '=+>,所以,函数()g x 在R 上为增函数, 由()()ln 1ln eln eln 1x x ax a x -+++≥+-可得()()ln ln 1g x a g x +≥-⎡⎤⎣⎦,所以,()ln ln 1x a x +≥-,即()ln ln 1a x x ≥--,其中1x >, 令()()ln 1h x x x =--,其中1x >,则()12111xh x x x -'=-=--. 当12x <<时,()0h x '>,函数()h x 单调递增, 当2x >时,()0h x '<,函数()h x 单调递减, 所以,()()max ln 22a h x h ≥==-,21e a ∴≥. 故选:D.二、多选题9.(2022·辽宁实验中学模拟预测)我们把形如(),,0f x y y '=的方程称为微分方程,符合方程的函数()y f x =称为微分方程的解,下列函数为微分方程0xy y xy +-'=的解的是( ) A .e x y = B .e x y x =C .e 1x y x =+D .e (R)x y c x c =⋅∈⋅【答案】CD 【解析】 【分析】根据导数的运算求得导函数y ',代入微分方程检验即可. 【详解】选项A ,e x y =,则e x y '=,e e e e 0x x x x xy y xy x x '+-=+-=≠,不是解;选项B ,e x y x =,e e x x y x '=+,22e e e e 0x x x x xy y xy x x x x '+-=+--=,是方程的解;选项C ,e 1x y x =+,e e x x y x '=+,22e e 1e e 10x x x x xy y xy x x x x x x '+-=+++--=+≠,不是方程的解; 选项D ,e (R)x y c x c =⋅∈⋅,e e x x y c cx '=+,22e e e e 0x x x x xy y xy cx cx cx cx '+-=+--=,是方程的解. 故选:CD .10.(2022·河北沧州·二模)已知实数,a b 满足e e e a b a b ++=,则( ) A .0ab < B .1a b +> C .e e 4a b + D .e 1a b >【答案】BCD 【解析】 【分析】A.由e e e a b a b ++=得到111e ea b +=判断;BC.由e e e 2e e a b a b a b ++==2b 判断;D. 由111e e a b +=,得到e e e 1e 11e 1e 1b b b ab b b b b -+-=-=--,令()e e 1,0b b f b b b =-+>,用导数法判断. 【详解】 由e e e a b a b ++=得111e ea b +=,又e 0,e 0a b >>,所以e 1,e 1a b >>,所以0,0a b >>,所以0ab >,选项A 错误;因为e e e 2e e a b a b a b ++==2b ,即e e e 4a b a b ++=,所以ln41a b +>,选项B C ,正确,因为111e e a b +=,所以e e e 1b ab =-,所以e e e 1e 11e 1e 1b b b a bbb b b -+-=-=--.令()e e 1,0b b f b b b =-+>,则()e 0b f b b '=>,所以f b 在区间()0,∞+上单调递增,所以()()00f b f >=,即e e 10b b b -+>,又e 10b ->,所以e 10a b ->,即e 1a b >,选项D 正确. 故选:BCD11.(2022·湖南·模拟预测)已知1x >,1y >,且()()1e 11e y xx y ++=+,则下列结论一定正确的是( )A .()ln 0x y ->B .122x y +<C .226x y +>D .()ln ln3x y +<【答案】AC 【解析】 【分析】构造函数()e xf x x=,利用导数判断函数的单调性,得出1x y >+,结合不等式以及指、对数函数的性质逐一判断即可. 【详解】令()e x f x x=,则()()2e 1e e xx x x x f x x x --'==, 所以当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增; 由()()1e 11e yxx y ++=+得1e e 111x y x y y +=+++,即1e e 111x y x y y +-=++,∵1y >,∴11012y <<+, ∴1e e 1012x y x y +<-<+,即()()1012f x f y <-+<, ∴1x y >+,即1->x y ,∴()ln 0x y ->,A 正确;由1x y >+知12x y +>+,所以12222x y y ++>>,所以选项B 错误; 由1x y >+知12222326x y y y y ++>+=⋅>,所以选项C 正确.由1x y >+,1y >知213x y y +>+>,所以()()ln ln 21ln3x y y +>+>, 所以D 错误,故选:AC .12.(2022·全国·高考真题)已知函数,则( )A .有两个极值点B .有三个零点C .点是曲线的对称中心D .直线是曲线的切线【答案】AC 【解析】 【分析】利用极值点的定义可判断A ,结合的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义3()1f x x x =-+()f x ()f x (0,1)()y f x =2y x =()y f x =()f x判断D. 【详解】由题,,令得或令得, 所以在上单调递减,在,上单调递增, 所以是极值点,故A 正确;因,,, 所以,函数在上有一个零点, 当时,,即函数在上无零点, 综上所述,函数有一个零点,故B 错误;令,该函数的定义域为,,则是奇函数,是的对称中心, 将的图象向上移动一个单位得到的图象, 所以点是曲线的对称中心,故C 正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为, 故D 错误.故选:AC.三、填空题13.(2020·河南高三其他(理))函数()2222ln x f x x e x ax =--,若0a =,则()f x 在[]1,2的最小值为_______;当0x >时,()1fx ≥恒成立,则a 的取值范围是_____.【答案】e (],1-∞ 【解析】当0a =时,∵()222ln x f x x ex =-,∴()222222x x f x xe x xe x'=+⋅-. 当1x >时,()0f x '>恒成立,()231f x x '=-()0fx '>x >x <()0f x '<x <()f x ((,-∞)+∞x =(10f =+>10f =>()250f -=-<()f x ,⎛-∞ ⎝⎭x ≥()0f x f ≥>⎝⎭()f x ⎫∞⎪⎪⎝⎭()f x 3()h x x x =-R ()()()()33h x x x x x h x -=---=-+=-()h x (0,0)()h x ()h x ()f x (0,1)()y f x =()2312f x x '=-=1x =±()(1)11f f =-=(1,1)21y x =-(1,1)-23y x =+∴()f x 在[]1,2上单调递增.∴()f x 在[]1,2上最小值为()1f e =.又0x >时,()1f x ≥恒成立,令 ()1xg x e x =--,()()100xg x e g ''=->=,所以()g x 在()0,∞+ 递增,()()00g x g >= 所以1x e x >+ ∴()22222ln 22ln 2ln x x x f x x e x ax e x ax +=--=--()2222ln 12ln 111x x x ax a x ≥++--=-+≥恒成立,∴1a ≤.故答案为e ;(],1-∞.14.(2022·全国·模拟预测(理))若曲线ln x y x =与212y kx =-仅有1个公共点,则k 的取值范围是___________. 【答案】(]1,02⎧⎫-∞⋃⎨⎬⎩⎭##1|02k k k ⎧⎫≤=⎨⎬⎩⎭或【解析】 【分析】将原问题转化为32ln 12x k x x =+只有一个解,令()()32ln 102x g x x x x =+>,利用导数求出()g x 的单调性及最值即可得答案. 【详解】 由题意可得:2ln 12x kx x =-只有一个解()0x >, 即32ln 12x k x x=+只有一个解. 令()32ln 12x g x x x=+, ()0x >原问题等价于y k =与()y g x =只有一个交点. 因为()43413ln 113ln x x xg x x x x '---=-= 因为13ln y x x =--在()0,∞+上单调递减, 且在1x =处的值为0 ,所以当()0,1x ∈时, ()()0,g x g x '>单调递增,当()1,x ∈+∞时, ()()0,g x g x '<单调递减且恒为正, 所以()()max 112g x g ==, 又因为y k =与()y g x =只有一个交点, 所以(]1,02k ⎧⎫∈-∞⎨⎬⎩⎭.故答案为: (]1,02⎧⎫-∞⋃⎨⎬⎩⎭.15.(2012·福建·高考真题(理))对于实数a 和b ,定义运算“*”: 设f (x )=(2x -1)*(x -1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________ 【答案】【解析】 【详解】由定义运算“*”可知 即,该函数图像如下:由,假设当关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根时, m 的取值范围是,且满足方程,所以令则, 所以令22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩⎫⎪⎪⎝⎭22(21)(21)(1)0()?(1)(21)(1)0x x x x f x x x x x ⎧----=⎨---->⎩2220()0x x x f x x x x ⎧-=⎨-+>⎩1124f ⎛⎫= ⎪⎝⎭1230x x x <<<10,4⎛⎫⎪⎝⎭23,x x 2-+=x x m 23=x x m 22-=x x m 1=x 123==x x x m 10,4⎛⎫=∈ ⎪⎝⎭y m所以, 又在递增的函数, 所以,所以,所以在递减, 则当时,;当时,所以.16.(2022·江苏·常州高级中学模拟预测)已知函数22()ln 2e f x x x mx =-+,若()0f x ≥的解集中恰有一个整数,则m 的取值范围为________.【答案】22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭【解析】【分析】由()0f x ≥且0x >,得出2ln 2e x x m x -+≥-,构造函数()ln =-xg x x,利用导数研究()g x 的单调性,画出()ln =-x g x x 和22e y x =-的大致图象,由图可知0m >,设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标,结合题意可知该整数为1,即012x ≤<,当直线22e y x m =-+过1,0A 和ln 22,2B ⎛⎫- ⎪⎝⎭时,即可求出求出m 的值,从而得出m 的取值范围.【详解】由题可知,22()ln 2e f x x x mx =-+,0x >, 由于()0f x ≥的解集中恰有一个整数,即22ln 2e 0x x mx -+≥,即222e ln x mx x -+≥-,因为0x >,所以2ln 2e xx m x-+≥-的解集中恰有一个整数, 令()ln =-x g x x ,则()2ln 1-'=x g x x , 当1e x <<时,()0g x '<;当e x >时,()0g x '>, 所以()g x 在()1,e 上单调递减,在()e,+∞上单调递增, 画出()ln xy xg x ==-和22e y x =-的大致图象,如图所示: 要使得2ln 2e xx m x-+≥-,可知0m >, 114'⎛= ⎝y ()=h m 10,4⎛⎫⎪⎝⎭()()01>=h m h 0y '<=y 10,4⎛⎫ ⎪⎝⎭0m =0y =14m ==y 123⎫∈⎪⎪⎝⎭x x x设0x 为()ln =-xg x x和22e y x m =-+的交点的横坐标, 而2ln 2e xx m x-+≥-的解集中恰有一个整数,可知该整数为1,即012x ≤<, 当01x =时,得()10g =;当02x =时,得()ln 222g =-, 即1,0A ,ln 22,2B ⎛⎫- ⎪⎝⎭,当直线22e y x m =-+过点1,0A 时,得22e m =,当直线22e y x m =-+过点ln 22,2B ⎛⎫- ⎪⎝⎭时,得2ln 24e 2m =-, 所以m 的取值范围为22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭.故答案为:22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭四、解答题17.(2018·全国·高考真题(文))已知函数.(1)求曲线在点处的切线方程; (2)证明:当时,.【答案】(1)切线方程是(2)证明见解析 【解析】 【分析】(1)求导,由导数的几何意义求出切线方程.(2)当时,,令,只需证明即可.【详解】()21x ax x f x e +-=()y f x =()0,1-1a ≥()0f x e +≥210x y --=a 1≥()12f x e 1x x e x x e +-+≥++-()12gx 1x e x x +=++-gx 0≥(1),.因此曲线在点处的切线方程是.(2)当时,.令,则,当时,,单调递减;当时,,单调递增; 所以 .因此.18.(2017·全国·高考真题(理))已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围. 【答案】(1)见解析;(2). 【解析】 【详解】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对按,进行讨论,写出单调区间;(2)根据第(1)问,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当时有2个零点.易知在有一个零点;设正整数满足,则.由于,因此在有一个零点.从而可得的取值范围为.试题解析:(1)的定义域为,,(ⅰ)若,则,所以在单调递减. (ⅱ)若,则由得.当时,;当时,,所以在单调递减,在单调递增.(2)(ⅰ)若,由(1)知,至多有一个零点.(ⅱ)若,由(1)知,当时,取得最小值,最小值为. ()()2212xax a x f x e-++'-=()02f '=()y f x =()0,1-210x y --=1a ≥()()211x xf x e x x e e +-+≥+-+()211xg x x x e +=+-+()121x g x x e +=++'()120x g x e +''=+>1x <-()()10g x g '-'<=()g x 1x >-()()10g x g '-'>=()g x ()g x ()1=0g ≥-()0f x e +≥()()2e 2e x xf x a a x =+--()f x ()f x a (0,1)()f x a 0a ≤0a >0a ≤()f x 0a >ln x a =-()f x 1(ln )1ln f a a a-=-+1a =(1,)∈+∞a (0,1)a ∈(0,1)a ∈()f x (,ln )a -∞-0n 03ln(1)n a>-00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->3ln(1)ln a a->-()f x (ln ,)a -+∞a (0,1)()f x (),-∞+∞()()()()2221121x x x xf x ae a e ae e =+---'=+0a ≤()0f x '<()f x (),-∞+∞0a >()0f x '=ln x a =-(),ln x a ∈-∞-()0f x '<()ln ,x a ∈-+∞()0f x '>()f x (),ln a -∞-()ln ,a -+∞0a ≤()f x 0a >ln x a =-()f x ()1ln 1ln f a a a-=-+①当时,由于,故只有一个零点; ②当时,由于,即,故没有零点; ③当时,,即. 又,故在有一个零点.设正整数满足,则.由于,因此在有一个零点. 综上,的取值范围为.19.(2017·全国·高考真题(文))已知函数.(1)讨论的单调性; (2)当时,证明. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)先求函数导数,再根据导函数符号的变化情况讨论单调性:当时,,则在单调递增;当时,在单调递增,在单调递减. (2)证明,即证,而,所以需证,设g (x )=ln x -x +1 ,利用导数易得,即得证. 【详解】(1) 的定义域为(0,+),. 若a ≥0,则当x ∈(0,+)时,,故f (x )在(0,+)单调递增.若a <0,则当时,时;当x ∈时,. 故f (x )在单调递增,在单调递减. (2)由(1)知,当a <0时,f (x )在取得最大值,最大值为. 1a =()ln 0f a -=()f x ()1,a ∈+∞11ln 0a a-+>()ln 0f a ->()f x ()0,1a ∈11ln 0a a-+<()ln 0f a -<()()4222e 2e 22e 20f a a ----=+-+>-+>()f x (),ln a -∞-0n 03ln 1n a ⎛⎫>- ⎪⎝⎭()()00000000e e 2e 20n n n nf n a a n n n =+-->->->3ln 1ln a a ⎛⎫->- ⎪⎝⎭()f x ()ln ,a -+∞a ()0,12()ln (21)f x x ax a x =+++()f x 0a <3()24f x a≤--(21)(1)'()(0)ax x f x x x++=>0a ≥'()0f x >()f x (0,)+∞0a <()f x 1(0,)2a -1(,)2a-+∞3()24f x a ≤--max 3()24f x a ≤--max 1()()2f x f a=-11ln()1022a a -++≤max ()(1)0g x g ==()f x ∞()()‘1211)22(1x ax f x ax a x x++=+++=∞’)(0f x >∞10,2x a ⎛⎫∈- ⎪⎝⎭()0f x '>1()2a ∞-+,’)(0f x <’)(0f x >1()2a∞-+,12x a=-111()ln()1224f a a a -=---所以等价于,即. 设g (x )=ln x -x +1,则. 当x ∈(0,1)时,;当x ∈(1,+)时,.所以g (x )在(0,1)单调递增,在(1,+)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,,即. 20.(2016·全国·高考真题(文))设函数.(Ⅰ)讨论的单调性; (Ⅱ)证明当时,; (Ⅲ)设,证明当时,.【答案】(Ⅰ)当时,单调递增;当时,单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】 【详解】试题分析:(Ⅰ)首先求出导函数,然后通过解不等式或可确定函数的单调性;(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的换为即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理. 试题解析:(Ⅰ)由题设,的定义域为,,令,解得. 当时,,单调递增;当时,,单调递减. (Ⅱ)由(Ⅰ)知,在处取得最大值,最大值为. 所以当时,. 故当时,,,即. (Ⅲ)由题设,设,则,令,解得.当时,,单调递增;当时,,单调递减. 由(Ⅱ)知,,故,又,故当时,. 所以当时,.3()24f x a≤--113ln()12244a a a ---≤--11ln()1022a a -++≤’1(1)g x x=-()0g x '>∞()0g x '<∞11ln()1022a a -++≤3()24f x a≤--()ln 1f x x x =-+()f x (1,)x ∈+∞11ln x x x-<<1c >(0,1)x ∈1(1)xc x c +->01x <<()f x 1x >()f x ()f x '()0f x '>()0f x '<()f x x 1x()f x (0,)+∞1()1f x x=-'()0f x '=1x =01x <<()0f x '>()f x 1x >()0f x '<()f x ()f x 1x =(1)0f =1x ≠ln 1x x <-(1,)x ∈+∞ln 1x x <-11ln1x x <-11ln x x x-<<1c >()1(1)x g x c x c =+--'()1ln xg x c c c =--'()0g x =01lnln ln c c x c-=0x x <'()0g x >()g x 0x x >'()0g x <()g x 11ln c c c-<<001x <<(0)(1)0g g ==01x <<()0g x >(0,1)x ∈1(1)xc x c +->21.(2015·全国·高考真题(理))设函数.(1)证明:在单调递减,在单调递增;(2)若对于任意,都有,求m 的取值范围.【答案】(1)在单调递减,在单调递增;(2).【解析】【详解】(Ⅰ).若,则当时,,;当时,,.若,则当时,,;当时,,.所以,在单调递减,在单调递增.(Ⅱ)由(Ⅰ)知,对任意的,在单调递减,在单调递增,故在处取得最小值.所以对于任意,的充要条件是:即①,设函数,则.当时,;当时,.故在单调递减,在单调递增.又,,故当时,.当时,,,即①式成立.当时,由的单调性,,即;当时,,即.综上,的取值范围是.22.(2014·四川·高考真题(理))已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;(Ⅱ)若,函数在区间内有零点,求的取值范围【答案】(Ⅰ)当时, ;当 时, ; 当时, .(Ⅱ) 的范围为. 【解析】【详解】试题分析:(Ⅰ)易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.(Ⅱ)设为在区间内的一个零点,注意到2()e mx f x x mx =+-()f x (,0)-∞(0,)+∞12,[1,1]x x ∈-12|()()|1f x f x e -≤-()f x (,0)-∞(0,)+∞[1,1]-()(1)2mx f x m e x -'=+0m ≥(,0)x ∈-∞10mx e -≤()0f x '<(0,)x ∈+∞10mx e -≥()0f x '>0m <(,0)x ∈-∞10mx e ->()0f x '<(0,)x ∈+∞10mx e -<()0f x '>()f x (,0)-∞(0,)+∞m ()f x [1,0]-[0,1]()f x 0x =12,[1,1]x x ∈-12()()1f x f x e -≤-(1)(0)1,{(1)(0)1,f f e f f e -≤---≤-1,{1,m m e m e e m e --≤-+≤-()1t g t e t e =--+()1t g t e =-'0t <()0g t '<0t >()0g t '>()g t (,0)-∞(0,)+∞(1)0g =1(1)20g e e --=+-<[1,1]t ∈-()0g t ≤[1,1]m ∈-()0g m ≤()0g m -≤1m >()g t ()0g m >1m e m e ->-1m <-()0g m ->1m e m e -+>-m [1,1]-2()1x f x e ax bx =---,a b R ∈ 2.71828e =()g x ()f x ()g x [0,1](1)0f =()f x (0,1)a 12a ≤()(0)1g x g b ≥=-122e a <≤()22ln(2)g x a a a b ≥--2e a >()2g x e a b ≥--a ()2,1e -()2,()2x x g x e ax b g x e a -='=--a ()g x ()g x [0,1]()g x [0,1]0x ()f x (0,1).联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由(Ⅰ)可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:(Ⅰ)①当时,,所以.②当时,由得.若,则;若,则. 所以当时,在上单调递增,所以. 当时,在上单调递减,在上单调递增,所以. 当时,在上单调递减,所以. (Ⅱ)设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由(Ⅰ)知,当时,在上单调递增,故在内至多有一个零点. 当时,在上单调递减,故在内至多有一个零点. 所以. 此时,在上单调递减,在上单调递增,因此,必有.由得:,有(0)0,(1)0f f ==()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤2e a ≥()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=1b e a =--a ()2,()2x xg x e ax b g x e a -='=--0a ≤()20x g x e a -'=>()(0)1g x g b ≥=-0a >()20x g x e a -'=>2,ln(2)x e a x a >>12a >ln(2)0a >2e a >ln(2)1a >102a <≤()g x [0,1]()(0)1g x g b ≥=-122e a <≤()g x [0,ln 2]a [ln 2,1]a ()(ln 2)22ln 2g x g a a a a b ≥=--2e a >()g x [0,1]()(1)2g x g e a b ≥=--0x ()f x (0,1)0(0)()0f f x ==()f x 0(0,)x ()g x ()g x 0(0,)x 1x ()g x 0(),1x 2x ()g x (0,1)12a ≤()g x [0,1]()g x (0,1)2e a ≥()g x [0,1]()g x (0,1)122e a <<()g x [0,ln 2]a [ln 2,1]a 12(0,ln(2)],(ln(2),1)x a x a ∈∈(0)10,(1)20g b g e a b =->=-->(1)10f e a b =---=12a b e +=-<.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,,故在内有零点.综上可知,的取值范围是. (0)120,(1)210g b a e g e a b a =-=-+>=--=->21e a -<<21e a -<<()g x [0,1](ln(2))g a (ln(2))0g a ≥()0([0,1])g x x ≥∈()f x [0,1](0)(1)0f f ==(ln(2))0g a <(0)20,(1)10g a e g a =-+>=->()g x (0,ln(2))a (ln(2),1)a 1x 2x ()f x 1[0,]x 1(,x 2)x 2[,1]x 1()(0)0f x f >=2()(1)0f x f <=()f x 1(,x 2)x a (2,1)e -。
2020届高考数学一轮复习综合检测二(标准卷)理(含解析)新人教A版

综合检测二(标准卷)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2-x x >0,B ={x |x ≥1},则A ∩B 等于( ) A .{x |0<x ≤1}B .{x |0<x <1}C .{x |1≤x <2}D .{x |0<x <2} 答案 C解析 由集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2-x x >0,可知0<x <2; 因为B ={x |x ≥1},所以A ∩B ={}x |1≤x <2,故选C.2.若复数z 满足(1+2i)z =1-i ,则复数z 为( )A.15+35i B .-15+35i C.15-35i D .-15-35i 答案 D解析 ∵(1+2i)z =1-i ,∴z =1-i 1+2i =(1-i )(1-2i )(1+2i )(1-2i )=-1-3i 5=-15-35i ,故选D. 3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ y ≥0,x -y +1≥0,x +y -3≤0,,则z =2x -y 的最小值为( )A .-3B .-2C .-1D .2答案 B 解析 绘制不等式组表示的可行域(阴影部分包含边界),结合目标函数可得,目标函数在点A (-1,0) 处取得最小值z =2x -y =-2.4.如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 答案 A解析 由题可知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23B A →=OB →+23(OA →-OB →)=23O A →+13OB →,所以x =23,y =13,故选A. 5.(2x +x )4的展开式中x 3的系数是( )A .6B .12C .24D .48答案 C解析 (2x +x )4的展开式的通项公式为T k +1=C k 4(2x )4-k (x )k =C k 424-k 42k x -,令4-k 2=3解得k =2,故x 3的系数为C 2422=24,故选C.6.阅读如图所示的程序框图,运行相应的程序,则输出的S 值为( )A .15B .37C .83D .177答案 B解析 执行程序,可得S =0,i =1,不符合,返回循环;。
新教材老高考适用2023高考数学一轮总复习单元质检卷二函数与基本初等函数北师大版(含答案)

新教材老高考适用2023高考数学一轮总复习:单元质检卷二函数与基本初等函数(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021山东潍坊高三期中)若函数f(x)=axx+a的定义域是{x|x∈R,x≠2},则函数f(x)的值域为()A.(-∞,-2)∪(-2,+∞)B.(-∞,2)∪(2,+∞)C.(-∞,-2)D.(-2,+∞)2.(2021天津和平高三期中)若2a=3b=6,则1a2+1ab+1b=()A.1B.16C.32D.653.(2021江苏南京高三月考)函数y=4x-6·2x+8的所有零点的和等于()A.8B.6C.3D.24.(2021湖南师大附中高三期中)若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(-12)-f(4)等于()A.-2B.2C.-1D.15.(2021广东佛山高三月考)已知函数f(x)=ln|x|+e x+e-x,则f-13,f12,f14的大小关系是()A.f-13>f14>f12B.f14>f-13>f12C.f12>f-13>f14D.f12>f14>f -136.已知函数f (x )=x 2-2ax+a 在区间[0,3]上的最小值为-2,则实数a 的值为( ) A.-2 B.-2或115 C.-2或1D.±27.(2021山东省实验中学高三二模)中国科学院院士吴文俊在研究中国古代数学家刘徽著作的基础上,把刘徽常用的方法概括为“出入相补原理”:一个图形不论是平面的还是立体的,都可以切割成有限多块,这有限多块经过移动再组合成另一个图形,则后一图形的面积或体积保持不变.利用这个原理,解决下面问题:已知函数f (x )满足f (4-x )=f (x ),且当x ∈[0,2]时的解析式为f (x )={-log 2(2-x),0≤x ≤1,log 2x,1<x ≤2,则函数y=f (x )在[0,4]上的图象与直线y=-1围成的封闭图形的面积是( ) A.2 B.2log 23 C.4D.4log 238.(2021湖北宜昌高三期末)已知函数f (x )=ln(x-2)+ln(4-x ),则( ) A.f (x )的图象关于直线x=3对称 B.f (x )的图象关于点(3,0)对称 C.f (x )在(2,4)上单调递增 D.f (x )在(2,4)上单调递减9.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A.y=x 3B.y=ln 1|x| C.y=2|x|D.y=cos x10.定义一种运算:a b={a,a ≥b,b,a <b,设f (x )=(5+2x-x 2) |x-1|,则下列结论错误的是( )A.f (x )的图象关于直线x=1对称B.f (x )的图象与直线y=5有三个公共点C.f (x )的单调递减区间是(-∞,-1]和[1,3]D.f(x)的最小值是211.已知函数y=a x(a>0且a≠1)的图象如图,则下列四个函数图象与函数解析式对应错误的是()12.设函数f(x)=sinπxx2-x+1,则下列说法错误的是()A.f(x)的最大值为43B.|f(x)|≤5|x|C.曲线y=f(x)存在对称轴D.曲线y=f(x)存在对称中心二、填空题:本题共4小题,每小题5分,共20分.13.(2021福建三明高三三模)能够说明“若ax >ay,a<0,则x>y”是假命题的一组整数x,y的值依次为.14.函数f(x)=a x+5-2(a>0,a≠1)的图象恒过定点P,则点P的坐标为.15.(2021辽宁锦州高三模拟)函数y=21−x的图象与函数y=4sin πx(-4≤x≤6)的图象所有交点的横坐标之和为.16.(2021山东济南高三期中)已知函数f(x)=x,g(x)=ax2-x,其中a>1.若∀x1∈[1,3],∃x2∈[1,3],使得f(x1)f(x2)=g(x1)g(x2)成立,则实数a=.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2021江苏镇江高三月考)已知幂函数f(x)=(m-1)2x m2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k.(1)求实数m的值;(2)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.18.(12分)(2021山东烟台高三期中)已知函数f(x)={log14(x+3),−3<x≤1,(12)x+a,x>1,(1)若函数f(x)在定义域上是单调函数,求实数a的取值范围;(2)若函数f(x)的值域为[-1,+∞),求实数a的取值范围.19.(12分)已知命题p:函数f(x)=|x+2c|在[-1,+∞)上单调递增;命题q:函数g(x)=cxx2+1-a(a>0)有零点.(1)当a=2时,命题p和q均为真命题,求实数c的取值范围;(2)若“p为真命题”是“q为真命题”的充分不必要条件,求实数a的取值范围.20.(12分)(2021上海格致中学高三三模)“弗格指数f=log a x+bx-b”是用来衡量地区内居民收益差距的一个经济指标,其中b是该地区的最低保障收入系数,a是该地区收入中位系数,x是该地区收入均值系数.经换算后,a,b,x都是大于1的实数,当f∈(1,2)时,该地区收入均衡性最为稳定.(1)指出函数g(x)=f=log a x+bx-b的定义域与单调性(不用证明),并说明其实际意义.经测算,某地区的“弗格指数”为0.89,收入均值系数为3.15,收入中位系数为2.17,则该地区的最低保障收入系数为多少(参考数据:2.170.89≈2)?(2)要使该地区收入均衡性最为稳定,求该地区收入均值系数的取值范围(用a,b表示).21.(12分)(2021浙江高三月考)已知函数f(x)=(x-1)·|x-a|.(1)若a=2,求f (x )在0,52上的最大值;(2)已知函数g (x )=f (x )+|x-a|-x+a-m ,若存在实数a ∈(-1,2],使得函数g (x )有三个零点,求实数m 的取值范围.22.(12分)(2021山东淄博高三期末)已知函数f (x )=log a (a x+1)+bx (a>0且a ≠1,b ∈R )是偶函数,函数g (x )=a x(a>0且a ≠1). (1)求实数b 的值;(2)若函数h (x )=f (x )-12x-a 有零点,求实数a 的取值范围.单元质检卷二 函数与基本初等函数1.A 解析:由x+a ≠0得x ≠-a ,因此a=-2,所以f (x )=-2-4x -2,由于4x -2≠0,因此-2-4x -2≠-2,即函数f (x )的值域为(-∞,-2)∪(-2,+∞),故选A .2.A 解析:由于2a=3b=6,所以a=log 26,b=log 36,因此1a =log 62,1b =log 63,则1a +1b =1,于是1a 2+1ab +1b =1a 1a+1b +1b =1a +1b =1,故选A . 3.C 解析:令y=4x-6·2x+8=0得(2x-4)(2x-2)=0,所以2x=4或2x=2,解得函数的零点为x 1=2,x 2=1,故零点之和等于3.4.C 解析:若f (x )是R 上周期为5的奇函数,则f (-x )=-f (x ),f (x+5)=f (x ),所以f (-12)=-f (12)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1,所以f (-12)-f (4)=-2-(-1)=-1,故选C .5.C 解析:由f (-x )=ln |-x|+e -x+e-(-x )=ln |x|+e x +e -x =f (x )且f (x )的定义域为(-∞,0)∪(0,+∞),即f (x )为偶函数,所以当x>0时,f (x )=ln x+e x +e -x ,则f'(x )=1x +e 2x -1e x>0,即f (x )在(0,+∞)上单调递增,所以f -13=f13,而14<13<12,故f14<f -13<f12,故选C .6.D 解析:函数f (x )=x 2-2ax+a=(x-a )2-a 2+a ,当a ≤0时,函数在区间[0,3]上单调递增,函数的最小值f (0)=a=-2,符合题意;当0<a<3时,函数在区间[0,3]上的最小值f (a )=-a 2+a=-2,解得a=-1(舍)或a=2,所以a=2;当a ≥3时,函数在区间[0,3]上单调递减,函数的最小值f (3)=9-6a+a=-2,解得a=115,不合题意,综上可知a=±2,故选D .7.C 解析:由题意知f (x )关于直线x=2对称,而f (x )={-log 2(2-x),0≤x ≤1,log 2x,1<x ≤2,且f (0)=f (4)=-1,f (2)=1,所以在[0,4]上函数f (x ),f (4-x )及y=-1的图象如图.将所围成的图形在x 轴下半部分阴影区域分成两部分相补到x 轴上半部分阴影区域,可得到由x 轴,y 轴,y=1,x=4所围成的矩形的面积,所以函数y=f (x )在[0,4]上的图象与直线y=-1围成的封闭图形的面积为4,故选C .8.A 解析:f (x )的定义域为(2,4).对于A,因为f (x+3)=ln(x+1)+ln(1-x )=f (3-x ),所以f (x )的图象关于x=3对称,因此A 选项正确;对于B,由A 知f (x+3)≠-f (3-x ),所以f (x )的图象不关于点(3,0)对称,因此B 选项错误;对于C,f (x )=ln(x-2)+ln(4-x )=ln(-x 2+6x-8),函数y=-x 2+6x-8=-(x-3)2+1在(2,3)上单调递增,在(3,4)上单调递减,因此f (x )在(2,3)上单调递增,在(3,4)上单调递减,因此C 选项,D 选项错误,故选A .9.B 解析:对于A,函数是奇函数,不满足题意;对于B,因为ln 1|-x|=ln 1|x|,所以函数是偶函数,在区间(0,+∞)上,y=-ln x ,函数单调递减,满足题意;对于C,因为2|-x|=2|x|,所以函数是偶函数,在区间(0,+∞)上,y=2x ,函数单调递增,不满足题意;对于D,函数是偶函数,在区间(0,+∞)上不单调,不满足题意,故选B .10.B 解析:由题意,f (x )=(5+2x-x 2) |x-1|={5+2x -x 2,-1≤x ≤3,|x -1|,x <−1或x >3,作出函数的图象如图所示,由图象可知,函数f (x )的图象关于直线x=1对称,故A 正确;函数f (x )的图象与直线y=5有四个公共点,故B 错误;函数f (x )的单调递减区间是(-∞,-1]和[1,3],故C 正确;函数f (x )的最小值是2,故D 正确,故选B .11.C 解析:由图可得a 1=2,即a=2,y=a -x=12x单调递减且过点(-1,2),故A 正确;y=x -a =x -2为偶函数,在(0,+∞)上单调递减,在(-∞,0)上单调递增,故B 正确;y=a |x|=2|x|={2x ,x ≥0,2-x ,x <0为偶函数,结合指数函数图象可知不符合题意,故C 错误;y=|log a x|=|log 2x|,根据“上不动、下翻上”可知D 正确,故选C .12.D 解析:对于选项A,因为sin πx ∈[-1,1],x 2-x+1=x-122+34≥34,所以f (x )=sin πx x 2-x+1≤134=43,故A 正确;对于选项B,由于f(x)x=sin πx πx·π(x -12) 2+34≤43π<5,所以|f (x )|≤5|x|,故B 正确;对于选项C,因为直线x=12是曲线y=sin πx 的对称轴,也是曲线y=x 2-x+1=x-122+34的对称轴,所以直线x=12是曲线y=f (x )的对称轴,故C 正确;对于选项D,因为f (a-x )+f (a+x )不可能为常数,所以曲线y=f (x )不存在对称中心,即D 错误,故选D .13.-1,1(答案不唯一) 解析:当a x >a y ,a<0时,可得1x <1y ,①当x ,y 同号时,可得x>y ;②当x ,y 异号时,y>0>x ,故取整数x ,y 满足y>0>x 即可.14.(-5,-1) 解析:当x+5=0,即x=-5时,y=a 0-2=-1,即f (-5)=-1,故函数图象恒过定点(-5,-1),即点P 的坐标为(-5,-1).15.12 解析:设f (x )=21−x ,g (x )=4sin πx ,当x ≠1时,f (2-x )=21−(2−x)=2x -1=-f (x ),即f (2-x )+f (x )=0,所以函数f (x )=21−x 的图象关于点(1,0)中心对称,g (2-x )=4sin[π(2-x )]=4sin(2π-πx )=-4sin πx=-g (x ),即g (2-x )+g (x )=0,所以,函数g (x )=4sin πx 的图象也关于点(1,0)中心对称,作出函数y=21−x与函数y=4sin πx (-4≤x ≤6)的图象如图:由图象可知,两个函数图象共有12个交点,形成6对关于点(1,0)对称的点对,因此两个函数所有交点的横坐标之和为6×2=12.16.43 解析:∀x 1∈[1,3],∃x 2∈[1,3],使得f (x 1)f (x 2)=g (x 1)g (x 2)成立,即为g(x 1)f(x 1)=f(x 2)g(x 2),即ax 1-1=1ax 2-1成立.由于a>1,可得ax 1-1在[1,3]上的值域为[a-1,3a-1],1ax 2-1在[1,3]上的值域为13a -1,1a -1,由题意可得在[1,3]内,ax 1-1的值域为1ax 2-1的值域的子集,因此13a -1≤a-1<3a-1≤1a -1,所以(a-1)(3a-1)=1,解得a=43.17.解(1)依题意,得(m-1)2=1,解得m=0或m=2.当m=2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去. 当m=0时,f (x )=x 2在(0,+∞)上单调递增,满足题意. 故m 的值为0.(2)由(1)知f (x )=x 2,在区间[1,2]上,f (x ),g (x )均单调递增, 所以A=[1,4],B=[2-k ,4-k ], 因为A ∪B=A ,得到B ⊆A , 所以{2−k ≥1,4−k ≤4,解得0≤k ≤1.故实数k 的取值范围为[0,1].18.解(1)当x ∈(-3,1]时,f (x )=lo g 14(x+3)单调递减,当x ∈(1,+∞)时,f (x )=12x+a 单调递减.所以要使函数f (x )在定义域上是单调函数,应满足lo g 14(1+3)≥121+a ,即a+12≤-1,解得a ≤-32.故实数a 的取值范围是-∞,-32.(2)当x ∈(-3,1]时,f (x )=lo g 14(x+3)∈[-1,+∞),当x ∈(1,+∞)时,f (x )=12x+a ∈a ,a+12,由于函数f (x )的值域为[-1,+∞),所以a ,a+12⊆[-1,+∞), 因此a ≥-1,即实数a 的取值范围是[-1,+∞). 19.解由于f (x )=|x+2c|={x +2c,x ≥−2c,-x -2c,x <−2c,所以f (x )的单调递增区间是[-2c ,+∞).又因为f (x )在[-1,+∞)上单调递增,所以-2c ≤-1, 解得c ≥12.即命题p 为真命题时,c 的取值范围是12,+∞.(1)当a=2时,g (x )=cxx 2+1-2有零点,所以方程cxx 2+1-2=0有实数根,即2x 2-cx+2=0有实数根,因此c 2-16≥0,解得c ≥4或c ≤-4.即命题q 为真命题时c 的取值范围是(-∞,-4]∪[4,+∞). 故当命题p 和q 均为真命题时,应有{c ≥12,c ≥4或c ≤−4,即c ≥4.故实数c 的取值范围是[4,+∞).(2)函数g (x )=cx x 2+1-a 有零点,则方程cxx 2+1-a=0有实数根, 即ax 2-cx+a=0有实数根,所以c 2-4a 2≥0,解得c ≥2a 或c ≤-2a. 由于“p 为真命题”是“q 为真命题”的充分不必要条件, 所以12>2a , 解得0<a<14.故实数a 的取值范围是0,14.20.解(1)要使函数g(x)有意义,须使x+bx-b>0, 又因为x>1且b>1,解得x>b,所以函数g(x)的定义域为(b,+∞).令t=x+bx-b(x>b),则f=log a t.因为t=x+bx-b =1+2bx-b,所以当x∈(b,+∞)时,函数t=x+bx-b单调递减;又因为a>1,所以f=log a t在(0,+∞)上单调递增,故f=log a x+bx-b在定义域(b,+∞)上是减函数.其实际意义是当该地区收入均值系数x大于该地区的最低保障收入系数b时,收入均值系数x越大,弗格指数f越小.将f=0.89,x=3.15,a=2.17代入函数得0.89=log2.173.15+b3.15−b,所以3.15+b3.15−b =2.170.89≈2⇒b≈3.15-6.33=1.05.故该地区的最低保障收入系数为1.05.(2)要使该地区收入均衡性最为稳定,则f∈(1,2),即1<log a x+bx-b<2.又因为a>1,所以a<x+bx-b<a2,即a-1<2bx-b<a2-1.又因为x>b,a>1,所以1a2-1<x-b2b<1a-1,解得a 2b+ba2-1<x<ab+ba-1.即该地区收入均值系数x的取值范围是a 2b+ba2-1,ab+ba-1.21.解(1)当a=2时,f(x)=(x-1)|x-2|.若x ∈[0,2],则f (x )=-(x-1)(x-2)=-x-322+14, 所以f (x )max =f 32=14. 若x ∈2,52,则f (x )=(x-1)(x-2)=x-322-14,f (x )在区间内单调递增,所以f (x )max =f 52=34.综上f (x )在0,52上的最大值为34.(2)由题设,令g (x )=x|x-a|-(x-a )-m=0.所以x|x-a|-(x-a )=m 在a ∈(-1,2]上有三个根, 即h (x )={x 2-(a +1)x +a,x ≥a,-x 2+(a -1)x +a,x <a 与y=m 有三个交点.当-1<a<1时,h (x )在-∞,a -12,a+12,+∞上单调递增,在a -12,a+12上单调递减,此时,h a+12<m<h a -12,可得-(a -1)24<m<(a+1)24,故-1<m<1;当1≤a ≤2时,h (x )在-∞,a -12,(a ,+∞)上单调递增,在a -12,a 上单调递减,此时,0<m<h a -12,可得0<m<(a+1)24∈1,94,故0<m<94.综上,实数m 的取值范围为-1,94.22.解(1)因为f (x )为偶函数,所以∀x ∈R ,有f (-x )=f (x ). 即log a (a -x+1)-bx=log a (a x+1)+bx 在R 上恒成立.所以log a (a -x +1)-log a (a x+1)=2bx 在R 上恒成立.所以2bx=-x ,故b=-12.(2)若函数h (x )=f (x )-12x-a 有零点,所以log a (a x+1)-x=a 有解,即log a 1+1a x =a 有解.令p (x )=log a 1+1a x ,则函数y=p (x )图象与直线y=a 有交点.当0<a<1时,因为1+1a x >1,p(x)=log a1+1a x<0,所以log a1+1a x=a无解.当a>1时,因为1+1a x >1,p(x)=log a1+1a x>0,由log a1+1a x=a有解可知a>0,所以a>1.故a的取值范围是(1,+∞).。
高考数学一轮复习综合测试卷一含解析新人教A版

综合测试卷(一)时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020浙江超级全能生第一次联考,2)已知复数z =2-i 1+i(i 为虚数单位),则复数z 的模等于( )A.√102B.3√22C.√3D.√52答案 A 由于z =2-i 1+i =(2-i)(1-i)(1+i)(1-i)=1-3i2,∴|z |=|12-32i |=√(12)2+(-32)2=√102.故选A .2.(2019江西南昌外国语学校适应性测试,1)已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于 ( )A.9B.8C.7D.6答案 B 因为M ∩N ={x |0<x <5}∩{x |m <x <6}={x |3<x <n },所以m =3,n =5,因此m +n =8.故选B . 3.(2020九师联盟9月质量检测,3)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔,令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约为230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为 ( )A.128.4米B.132.4米C.136.4米D.140.4米答案 C 本题主要考查空间几何体的结构特征,考查数学抽象、数学运算的核心素养.由已知条件“胡夫金字塔的底部周长除以其高度的两倍,得到商为3.14159”可得,胡夫金字塔的原高为230×42×3.14159≈146.4米,则胡夫金字塔现高大约为146.4-10=136.4米,故选C . 4.(2019广西梧州调研,6)若抛物线x 2=2py (p >0)上一点(1,m )到其准线的距离为54,则抛物线的方程为( )A.x 2=y B.x 2=2y 或x 2=4y C.x 2=4y D.x 2=y 或x 2=4y答案 D 由已知可得m =12p ,则12p +p 2=54,化简得2p 2-5p +2=0,解得p =12或p =2,所以抛物线方程为x 2=y 或x 2=4y.5.(2018湖南张家界三模,4)已知变量x ,y 之间的线性回归方程为p^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是 ( ) x 6 8 10 12 y6m32A.变量x ,y 之间成负相关关系B.可以预测,当x =20时,p^=-3.7 C.m =4D.该回归直线必过点(9,4)答案 C 由-0.7<0,得变量x ,y 之间成负相关关系,故A 说法正确;当x =20时,p^=-0.7×20+10.3=-3.7,故B 说法正确; 由表格数据可知。
直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(真题测试)含详解

专题4.2 应用导数研究函数的单调性(真题测试)一、单选题1.(2022·上海松江·二模)下列函数中,与函数3y x =的奇偶性和单调性都一致的函数是( ) A .2yxB .sin y x x =+C .||2x y =D .tan y x =2.(2015·陕西·高考真题(文))设()sin f x x x =-,则()f x =( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数D .是没有零点的奇函数3.(2016·全国·高考真题(文))函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D .4.(2009·湖南·高考真题(文))若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .5.(2013·全国·高考真题(理))若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞6.(2015·福建·高考真题(理))若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( ) A .11f k k⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭ D .111k f k k ⎛⎫> ⎪--⎝⎭ 7.(2011·辽宁·高考真题(文))函数()f x 的定义域为R ,()12f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为( ) A .()1,1-B .()1,-+∞C .(),1-∞-D .(),-∞+∞8.(2022·青海·模拟预测(理))若01a b <<<,则( ) A .e e ln ln b a b a -<- B .e e ln ln b a b a -≥- C .e e a b b a ≤ D .e e a b b a >二、多选题9.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()0f x f x +'>,则下列式子成立的是( ) A .()()20212022f ef < B .()()20212022f ef >C .()f x 是R 上的增函数D .0t ∀>,则()()tf x e f x t <+10.(2022·湖北·模拟预测)已知正实数a ,b ,c 满足1log b ac c b a <<<,则一定有( )A .1a <B .a b <C .b c <D .c a <11.(2022·辽宁沈阳·二模)已知奇函数()f x 在R 上可导,其导函数为()f x ',且()()1120f x f x x --++=恒成立,若()f x 在[]0,1单调递增,则( )A .()f x 在[]1,2上单调递减 B .()00f =C .()20222022f =D .()20231f '=12.(2021·福建·福州三中高三阶段练习)已知函数()xf x xe ax =+.则下列说法正确的是( )A .当0a =时,min ()0f x =B .当1a =时,直线2y x =与函数()f x 的图像相切C .若函数()f x 在区间[)0,∞+上单调递增,则0a ≥D .若在区间[]0,1上,()2f x x ≤恒成立,则1a e -≤三、填空题13.(2009·江苏·高考真题)函数32()15336f x x x x =--+的单调减区间为_____.14.(2022·河北衡水·高三阶段练习)已知函数()f x 的导函数为'()f x ,定义域为(0,)+∞,且满足'()()0xf x f x -<,则不等式2(2022)(2022)(2)f m m f ->-恒成立时m 的取值范围为__________.15.(2022·江苏盐城·三模)已知()f x '为()f x 的导函数,且满足()01f =,对任意的x 总有()()22f x f x '->,则不等式()223x f x e +≥的解集为__________.16.(2022·浙江·海亮高级中学模拟预测)已知函数()33x f x ax b =-+,则对任意的x ∈R ,存在a 、b (其中a 、b ∈R 且1a ≥),能使以下式子恒成立的是___________.①()()221f x f x ≤+;②()()2021f x f x +-=;③()()21f x f a -≤+;④()()221a f x f ->-.四、解答题17.(2014·全国·高考真题(文))函数f(x)=ax 3+3x 2+3x(a≠0). (1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a 的取值范围.18.(2008·四川·高考真题(文))设1x =和2x =是函数()531f x x ax bx =+++的两个极值点.(1)求a 和b 的值;(2)求()f x 的单调区间19.(2017·全国·高考真题(文))已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.20.(2014·山东·高考真题(文))设函数若,求曲线处的切线方程;讨论函数的单调性.21.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.22.(2022·江苏江苏·三模)设函数()()2e sin 1xf x a x ax a x =+--+.(1)当0a ≤时,讨论()f x 的单调性; (2)若()f x 在R 上单调递增,求a .专题4.2 应用导数研究函数的单调性(真题测试)一、单选题1.(2022·上海松江·二模)下列函数中,与函数3y x =的奇偶性和单调性都一致的函数是( ) A .2yxB .sin y x x =+C .||2x y =D .tan y x =【答案】B 【解析】 【分析】根据初等函数的奇偶性与单调性,再结合导数即可判断答案. 【详解】容易判断()3R y x x =∈是奇函数,且在R 上是增函数,而2||,2x y x y ==是偶函数,tan y x =在R 上不是增函数,所以排除A,C,D.对B ,函数()sin R y x x x =+∈是奇函数,且1cos 0y x '=+≥,则函数在R 上是增函数. 故选:B.2.(2015·陕西·高考真题(文))设()sin f x x x =-,则()f x =( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数【答案】B 【解析】 【详解】 试题分析:函数的定义域为,关于原点对称,,因此函数是奇函数,不恒等于0,函数是增函数,故答案为B .3.(2016·全国·高考真题(文))函数2||2x y x e =-在[]–2,2的图象大致为( )A .B .C .D .【答案】D 【解析】 【详解】试题分析:函数2||()2x f x x e =-|在[–2,2]上是偶函数,其图象关于y 轴对称, 因为22(2)8e ,08e 1f =-<-<, 所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数, 当0(,2)x x ∈时,()f x 为增函数. 故选:D.4.(2009·湖南·高考真题(文))若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是( )A .B .C .D .【答案】A 【解析】 【详解】试题分析:∵函数y=f (x )的导函数在区间[a ,b]上是增函数,∴对任意的a <x 1<x 2<b ,有也即在a,x 1,x 2,b 处它们的斜率是依次增大的.∴A 满足上述条件,对于B 存在使,对于C 对任意的a <x 1<x 2<b ,都有,对于D 对任意的x ∈[a ,b],不满足逐渐递增的条件,故选A .5.(2013·全国·高考真题(理))若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞【答案】D 【解析】 【详解】试题分析:由条件知()2120f x x a x -'=+≥在1,+2⎛⎫∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,+2⎛⎫∞ ⎪⎝⎭上恒成立. ∵函数212y x x =-在1,+2⎛⎫∞ ⎪⎝⎭上为减函数,∴max21123212y <-⨯=⎛⎫⎪⎝⎭, ∴.故选D .6.(2015·福建·高考真题(理))若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( ) A .11f k k⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭ D .111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】 【详解】试题分析:令()g()x f x kx =-,则()'()0g x f x k '=->,因此1111g()(0)(0)1111111k k g f f f k k k k k k ⎛⎫⎛⎫>⇒->⇒>-= ⎪ ⎪------⎝⎭⎝⎭,所以选C. 7.(2011·辽宁·高考真题(文))函数()f x 的定义域为R ,()12f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1,-+∞C .(),1-∞-D .(),-∞+∞【答案】B 【解析】 【分析】构造函数()()24g x f x x =--,利用导数判断出函数()y g x =在R 上的单调性,将不等式()24f x x >+转化为()()1g x g >-,利用函数()y g x =的单调性即可求解. 【详解】依题意可设()()24g x f x x =--,所以()()20g x f x ''=->. 所以函数()y g x =在R 上单调递增,又因为()()11240g f -=-+-=. 所以要使()()240g x f x x =-->,即()()1g x g >-,只需要1x >-,故选B. 8.(2022·青海·模拟预测(理))若01a b <<<,则( ) A .e e ln ln b a b a -<- B .e e ln ln b a b a -≥- C .e e a b b a ≤ D .e e a b b a >【答案】D 【解析】 【分析】对于A,B ,构造函数()e ln x f x x =-,利用导数判断其单调性,根据01a b <<<,比较()e ln ,()e ln abf a a f b b =-=-,可判断A,B ;对于C,D, 设e g()=x x x,利用导数判断其单调性,根据01a b <<<,比较(),()g a g b ,可判断C,D. 【详解】对于A,B,令()e ln x f x x =- ,则1()e xf x x '=-,当01x <<时,1()e xf x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=-=>>故存在012(,)23x ∈ ,使得0()0f x '=,则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增, 由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定, 故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x -',当01x <<时,()0g x '<,故eg()=xx x单调递减,所以当01a b <<<时,()()g a g b > ,即e ea b a b> ,即e e a b b a >,故C 错误,D 正确, 故选:D 二、多选题9.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()0f x f x +'>,则下列式子成立的是( ) A .()()20212022f ef < B .()()20212022f ef >C .()f x 是R 上的增函数D .0t ∀>,则()()tf x e f x t <+【答案】AD 【解析】 【分析】构造函数()xy e f x =,由已知可得函数单调递增,即可判断选项ABD ,举特例可判断选项C.【详解】由()()0f x f x +'>,得()()0x x e f x e f x '+>,即()0x e f x '⎡⎤>⎣⎦,所以函数()x y e f x =为R 上的增函数,故()()2021202220212022e f e f <,所以()()20212022f ef <,故A 正确,B 不正确;函数()xe f x 为增函数时,()f x 不一定为增函数,如()12x f x =,显然()x e f x 是增函数,但()f x 是减函数,所以C 不正确;因为函数()x e f x 为增函数,所以0t >时,有()()x x t e f x e f x t +<+,故有()()tf x e f x t <+成立,所以D 正确.故选:AD.10.(2022·湖北·模拟预测)已知正实数a ,b ,c 满足1log b ac c b a <<<,则一定有( )A .1a <B .a b <C .b c <D .c a <【答案】AB 【解析】 【分析】根据1b c <,1a b <可得(),0,1c b ∈,进而判断出1a c <<,A 正确; 构造()ln xf x x=,0x >得到单调性,从而求出a b <,B 正确;CD 选项可以举出反例. 【详解】由正实数a ,b ,c ,以及1b c <,1a b <可得(),0,1c b ∈, 又log 1log c c a c >=,所以1a c <<. 所以b b a c <,又b a c b <,所以b a a b <, 即ln ln b a a b <,等价于ln ln a ba b<, 构造函数()ln xf x x=,0x > ()21ln xf x x -'=, 当()0,1x ∈时,()21ln 0xf x x -'=> 故()ln xf x x=在()0,1上递增,从而a b <. 又取b c =时,原式为1log b ab b b a <<<同样成立,故CD 不正确,故选:AB 11.(2022·辽宁沈阳·二模)已知奇函数()f x 在R 上可导,其导函数为()f x ',且()()1120f x f x x --++=恒成立,若()f x 在[]0,1单调递增,则( )A .()f x 在[]1,2上单调递减B .()00f =C .()20222022f =D .()20231f '=【答案】BCD 【解析】 【分析】根据函数的的对称性和周期性,以及函数的导数的相关性质,逐个选项进行验证即可. 【详解】 方法一:对于A ,若()f x x =,符合题意,故错误,对于B ,因已知奇函数()f x 在R 上可导,所以()00f =,故正确, 对于C 和D ,设()()g x f x x =-,则()g x 为R 上可导的奇函数,()00g =,由题意()()1111f x x f x x -+-=+--,得()()11g x g x -=+,()g x 关于直线1x =对称, 易得奇函数()g x 的一个周期为4,()()()2022200g g g ===,故C 正确,由对称性可知,()g x 关于直线1x =-对称,进而可得()10g '-=,(其证明过程见备注) 且()g x '的一个周期为4,所以()()202310g g '='-=,故D 正确.备注:()()11g x g x -=+,即()()11g x g x --=-+,所以()()11g x g x -+=--, 等式两边对x 求导得,()()11g x g x '-+=-'--, 令0x =,得()()11g g '-=-'-,所以()10g '-=. 方法二:对于A ,若()f x x =,符合题意,故错误,对于B ,因已知奇函数()f x 在R 上可导,所以()00f =,故正确,对于C ,将()()1120f x f x x --++=中的x 代换为1x +,得()()2220f x f x x --+++=,所以()()222f x f x x ++=+,可得()()4226f x f x x +++=+,两式相减得,()()44f x f x +-=,则()()624f f -=,()()1064f f -=,…,()()202220184f f -=, 叠加得()()202222020f f -=,又由()()222f x f x x ++=+,得()()2022f f =-+=, 所以()()2022220202022f f =+=,故正确,对于D ,将()()1120f x f x x --++=的两边对x 求导,得()()1120f x f x ''---++=, 令0x =得,()11f '=,将()()f x f x --=的两边对x 求导,得()()f x f x '-=',所以()11f '-=, 将()()44f x f x +-=的两边对x 求导,得()()4f x f x ''+=, 所以()()()2023201911f f f '''==⋅⋅⋅=-=,故正确. 故选:BCD12.(2021·福建·福州三中高三阶段练习)已知函数()xf x xe ax =+.则下列说法正确的是( )A .当0a =时,min ()0f x =B .当1a =时,直线2y x =与函数()f x 的图像相切C .若函数()f x 在区间[)0,∞+上单调递增,则0a ≥D .若在区间[]0,1上,()2f x x ≤恒成立,则1a e -≤【答案】BD 【解析】 【分析】对于A :当0a =时,()e xf x x =,求导函数,分析导函数的符号,得出函数()f x 的单调性,从而求得函数()f x 的最小值;对于B :当1a =时,()e +xf x x x '=,求导函数,设切点为()00,x y ,则过切点的切线方程为:()()()0000000e +e +e +1x x x y x x x x x -=-,由切线过原点,求得00x =,继而求得过原点的切线方程;对于C :问题等价于()+e 0xf x x x a '=+≥在区间[)0,∞+上恒成立,分离参数得e x a x x ≥--在区间[)0,∞+上恒成立,令()e xg x x x =--,求导函数,分析导函数的符号,得函数()g x 的单调性和最值,由此可判断;对于D :问题等价于2e x x x ax +≤在区间[]0,1上恒成立,0x =时,不等式恒成立;当01x <≤时,分离参数e x a x ≤-,令()e xh x x =-,求导函数,分析()h x '的符号,得函数()h x 的单调性和最值,由此可判断.【详解】对于A ,当0a =时,()()()e ,1e x xf x x f x x ==+',易知函数()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增,()min 1()1ef x f ∴=-=-,故选项A 不正确;对于B ,当1a =时,()()()()e ,1e 1,02x xf x x x f x x f +''=+=+=,∴函数()f x 在()0,0处的切线方程为2y x =,故选项B 正确;对于C ,()()1e xf x x a =++',若函数()f x 在区间[)0,∞+上单调递增,则()0f x '在[)0,∞+上恒成立,()1e x a x ∴-+,令()()1e ,0x g x x x =-+,则()()2e 0x g x x =-+<', ∴函数()g x 在[)0,∞+上单调递减,()max ()01a g x g ∴==-,故选项C 错误;对于D ,当0x =时,a ∈R 恒成立;当(]0,1x ∈时,()2f x x 恒成立等价于2e x x ax x +恒成立,即e x a x +,即e x a x -恒成立,设()e ,01x h x x x =-<,则()10e xh x '=-<在(]0,1上恒成立,()h x ∴在(]0,1上单调递减,()min ()11e a h x h ∴==-,故选项D 正确.故选:BD. 三、填空题13.(2009·江苏·高考真题)函数32()15336f x x x x =--+的单调减区间为_____. 【答案】(1,11)- 【解析】 【详解】f ′(x )=3x 2-30x -33=3(x -11)(x +1),令f ′(x )<0,得-1<x <11,所以单调减区间为(-1,11).14.(2022·河北衡水·高三阶段练习)已知函数()f x 的导函数为'()f x ,定义域为(0,)+∞,且满足'()()0xf x f x -<,则不等式2(2022)(2022)(2)f m m f ->-恒成立时m 的取值范围为__________. 【答案】()2022,2024【解析】 【分析】 设()()f x F x x=,根据题意得到()0F x '<,得出函数()F x 在(0,)+∞上单调递减,结合不等式2(2022)(2022)(2)f m m f ->-,得到020222m <-<,即可求解.【详解】由题意,函数()f x 的定义域为(0,)+∞,因为()()0xf x f x '-<,可得2()'()()'0f x xf x f x x x -⎡⎤=<⎢⎥⎣⎦, 设()()f x F x x=,可得()0F x '<,所以函数()F x 在(0,)+∞上单调递减,又由2(2022)(2022)(2)f m m f ->-,所以20220m ->,且(2022)(2)20222f m f m ->-,则020222m <-<,解得20222024m <<,即m 的取值范围为()2022,2024. 故答案为:()2022,2024.15.(2022·江苏盐城·三模)已知()f x '为()f x 的导函数,且满足()01f =,对任意的x 总有()()22f x f x '->,则不等式()223xf x e +≥的解集为__________. 【答案】[)0,+∞##{|0}x x ≥ 【解析】 【分析】 构造新函数()()22exf xg x +=,利用已知条件()()22f x f x '->,可以判断()g x 单调递增,利用()g x 的单调性即可求出不等式的解集 【详解】设函数()()22e x f x g x +=,则()()()()222221()22222e x x x x f x e e f x f x f x g x e '⋅-⋅⋅+⎡⎤⎣⎦'--'==⎛⎫ ⎪⎝⎭又()()22f x f x '-> ()0g x '∴>所以()g x 在R 上单调递增,又()()0023g f =+=故不等式2()23xf x e +≥ 可化为()(0)g x g ≥ 由()g x 的单调性可得该不等式的解集为[)0,+∞. 故答案为:[)0,+∞16.(2022·浙江·海亮高级中学模拟预测)已知函数()33x f x ax b =-+,则对任意的x ∈R ,存在a 、b (其中a 、b ∈R 且1a ≥),能使以下式子恒成立的是___________.①()()221f x f x ≤+;②()()2021f x f x +-=;③()()21f x f a -≤+;④()()221a f x f ->-.【答案】①②③ 【解析】 【分析】取1a =-,0b =,利用导数研究函数()f x 的单调性,可判断①;取20212=b 可判断②;取1a =-,利用导数研究函数()f x 的单调性,可判断③;分1a ≤-、1a ≥两种情况讨论,利用导数分析函数()f x 的单调性,可判断④. 【详解】对于①,取1a =-,0b =,则()33x f x x =+,()210f x x '=+>,所以,函数()f x 在R 上为增函数,因为()221210x x x +-=-≥,即221x x ≤+,故()()221f x f x ≤+恒成立,①对;对于②,取1a =-,20212=b ,则()3202132x f x x =++,所以,()()33202120213232x x f x x x --=-+=--+,则()()2021f x f x +-=,②对; 对于③,当1a =-时,()33x f x x b =++,则()210f x x '=+>,所以,函数()f x 在R 上为增函数,20x -≤,故()()21f x f a -≤+,③对;对于④,当1a ≥时,()2f x x a '=-.由()0f x '>可得x <x ()0f x '<可得x <此时,函数()f x 的增区间为(,-∞、)+∞,减区间为(,所以,函数()f x 的极大值为(f b b =+>,极小值为fb b =<,20x ≥,所以,()2f x fb ≥=,1210a a --≤-<-<,所以,(()()210af f f b f->->=>,则()()221af x f ->-不恒成立;当1a ≤-时,()20f x x a '=->,则()f x 在R 上为增函数,因为20x ≥,211--≥a ,所以,()2f x 、()21af --的大小关系无法确定,④错.故答案为:①②③. 四、解答题17.(2014·全国·高考真题(文))函数f(x)=ax 3+3x 2+3x(a≠0). (1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(1,2)是增函数,求a 的取值范围. 【答案】(1)见解析;(2)5[,0)(0,)4-⋃+∞【解析】 【分析】 【详解】试题分析:(1)首先求出函数的导数,然后求出使()0f x '>或()0f x '<的解集即可. (2)分类讨论在区间(1,2)上使()0f x '>成立的条件,并求出参数a 的取值范围即可 试题解析:(1)2()363f x ax x '=++,2()3630f x ax x ++'==的判别式△=36(1-a ). (i )若a≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x=-1,故此时f (x )在R 上是增函数.(ii )由于a≠0,故当a<1时,()0f x '=有两个根:12x x ==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;若a<0,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '<,故f (x )在(-∞,x 2),(x 1,+∞)上是减函数;当x ∈(x 2,x 1)时,()0f x '>,故f (x )在(x 2,x 1)上是增函数;(2)当a>0,x>0时,()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<.综上,a 的取值范围是5[,0)(0,)4-⋃+∞.18.(2008·四川·高考真题(文))设1x =和2x =是函数()531f x x ax bx =+++的两个极值点.(1)求a 和b 的值;(2)求()f x 的单调区间 【答案】(1)25,203a b =-= (2)单调增区间是()()(),2,1,1,2,-∞--+∞,单调减区间是()()2,1,1,2-- 【解析】 【分析】(1)根据极值点为导函数的零点,且在零点两边导函数符号相反,列出方程组,求出a 和b 的值,代入检验是否符合要求;(2)在第一问的基础上求出导函数,解不等式,求出单调区间. 【详解】(1)因为()4253f x x ax b =++',由题设知:()1530f a b '=++=()42225230f a b =⨯⨯+'+=,解得:25,203a b =-=,此时()53252013f x x x x +-=+,()()()422252520514f x x x x x =+=-'--,令()0f x '>得:2x <-或11x -<<或2x >,令()0f x '<得:21x -<<-或12x <<,故1x =是函数的极大值点,2x =是函数的极小值点,满足要求,综上:25,203a b =-=; (2)由(1)知()()()()()()()42245351451212f x x ax b x x x x x x =++=--=++--'当()()(),21,12,x ∈-∞-⋃-⋃+∞时,()0f x '>;当()()2,11,2x ∈--⋃时,()0f x '<. 因此()f x 的单调增区间是()()(),2,1,1,2,-∞--+∞,()f x 的单调减区间是()()2,1,1,2-- 19.(2017·全国·高考真题(文))已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.【答案】(1) f (x )在,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 上单调递减,在区间ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上单调递增.(2)3420e ⎡⎤-⎢⎥⎣⎦,【解析】 【分析】(1)求f (x )的导函数为f ′(x )=(2e x +a )(e x -a ),通过讨论a ,求函数的单调区间即可. (2)因为f (x )≥0,所以即求f (x )的最小值大于等于0,由第(1)的结果求的f (x )的最小值,解关于a 的不等式即可求出a 的范围. 【详解】(1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln 2a ⎛⎫- ⎪⎝⎭.当x ∈,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 时,f ′(x )<0;当x ∈ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 时,f ′(x )>0.故f (x )在,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 上单调递减,在区间ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln 2a ⎛⎫- ⎪⎝⎭时,f (x )取得最小值,最小值为f ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=a 23ln 42a ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦,故当且仅当a 23ln 42a ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦≥0,即0>a ≥342e -时,f (x )≥0. 综上a 的取值范围是[342e -,0]. 20.(2014·山东·高考真题(文))设函数若,求曲线处的切线方程;讨论函数的单调性.【答案】(1)210x y --=.(2)当0a ≥时,函数()f x 在(0,)+∞上单调递增;当12a ≤-时,函数()f x 在(0,)+∞上单调递减;当102a -<<时,()f x 在,)+∞上单调递减,在上单调递增.【解析】 【详解】试题分析:(1)由题意知0a =时,1(),(0,)1x f x x x -=∈+∞+,求切线的斜率,即1(1)2f '=,又(1)0f =,由直线方程的点斜式进一步整理,得到切线方程为210x y --=.(2)函数()f x 的定义域为(0,)+∞,2222(22)()(1)(1)a ax a x af x x x x x +++'=+=++,根据a 的不同情况,讨论导函数值的正负,以确定函数的单调性.其中0a ≥时,情况较为单一,()0f x '>,函数()f x 在(0,)+∞上单调递增, 当0a <时,令2()(22)g x ax a x a =+++,由于22(22)44(21)a a a ∆=+-=+,再分12a =-,12a <-,102a -<<等情况加以讨论.试题解析:(1)由题意知0a =时,1(),(0,)1x f x x x -=∈+∞+, 此时22()(1)f x x ='+,可得1(1)2f '=,又(1)0f =, 所以曲线()y f x =在(1,(1))f 处的切线方程为210x y --=. (2)函数()f x 的定义域为(0,)+∞, 2222(22)()(1)(1)a ax a x af x x x x x +++'=+=++,当0a ≥时,()0f x '>,函数()f x 在(0,)+∞上单调递增, 当0a <时,令2()(22)g x ax a x a =+++, 由于22(22)44(21)a a a ∆=+-=+, 当12a =-时,0∆=,221(1)2()0(1)x f x x x --=≤+',函数()f x 在(0,)+∞上单调递减,当12a <-时,0,()0g x ∆<<,()0f x '<,函数()f x 在(0,)+∞上单调递减,当102a -<<时,0∆>,设1212,()x x x x <是函数()g x 的两个零点,则1x =2x =由1x =0=>,所以1(0,)x x ∈时,()0,()0g x f x '<<,函数()f x 单调递减, 12(,)x x x ∈时,()0,()0g x f x '>>,函数()f x 单调递增,2(,)x x ∈+∞时,()0,()0g x f x '<<,函数()f x 单调递减,综上可知,当0a ≥时,函数()f x 在(0,)+∞上单调递增; 当12a ≤-时,函数()f x 在(0,)+∞上单调递减;当102a -<<时,()f x 在,)+∞上单调递减,在上单调递增.21.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,+∞e e .【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)方法一:利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)[方法一]【最优解】:分离参数()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x -'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增;在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,+∞e e .[方法二]:构造差函数由()y f x =与直线1y =有且仅有两个交点知()1f x =,即a x x a =在区间(0,)+∞内有两个解,取对数得方程ln ln a x x a =在区间(0,)+∞内有两个解.构造函数()ln ln ,(0,)g x a x x a x =-∈+∞,求导数得ln ()ln a a x a g x a x x'-=-=. 当01a <<时,ln 0,(0,),ln 0,()0,()a x a x a g x g x '<∈+∞->>在区间(0,)+∞内单调递增,所以,()g x 在(0,)+∞内最多只有一个零点,不符合题意; 当1a >时,ln 0a >,令()0g x '=得ln a x a =,当0,ln a x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,ln a x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<;所以,函数()g x 的递增区间为0,ln a a ⎛⎫ ⎪⎝⎭,递减区间为,ln a a ⎛⎫+∞⎪⎝⎭. 由于1110e1,e 1e ln 0ln aaa a g a a ---⎛⎫<<<=--< ⎪⎝⎭,当x →+∞时,有ln ln a x x a <,即()0g x <,由函数()ln ln g x a x x a =-在(0,)+∞内有两个零点知ln 10ln ln a a g a a a ⎛⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,所以e ln aa >,即eln 0a a ->.构造函数()eln h a a a =-,则e e()1a h a a a'-=-=,所以()h a 的递减区间为(1,e),递增区间为(e,)+∞,所以()(e)0h a h ≥=,当且仅当e a =时取等号,故()0>h a 的解为1a >且e a ≠.所以,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法三]分离法:一曲一直曲线()y f x =与1y =有且仅有两个交点等价为1ax xa=在区间(0,)+∞内有两个不相同的解.因为a x x a =,所以两边取对数得ln ln a x x a =,即ln ln x a x a=,问题等价为()ln g x x =与ln ()x ap x a =有且仅有两个交点.①当01a <<时,ln 0,()ap x a<与()g x 只有一个交点,不符合题意. ②当1a >时,取()ln g x x =上一点()()000011,ln ,(),,()x x g x g x g x xx ''==在点()00,ln x x 的切线方程为()0001ln y x x x x -=-,即0011ln y x x x =-+. 当0011ln y x x x =-+与ln ()x a p x a =为同一直线时有00ln 1,ln 10,a ax x ⎧=⎪⎨⎪-=⎩得0ln 1,e e.a a x ⎧=⎪⎨⎪=⎩ 直线ln ()x a p x a =的斜率满足:ln 1e0a a <<时,()ln g x x =与ln ()x ap x a =有且仅有两个交点.记2ln 1ln (),()a a h a h a a a'-==,令()0h a '=,有e a =.(1,e),()0,()a h a h a '∈>在区间(1,e)内单调递增;(e,),()0,()a h a h a '∈+∞<在区间(,)e +∞内单调递减;e a =时,()h a 最大值为1(e)eg =,所当1a >且e a ≠时有ln 1e0a a <<. 综上所述,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法四]:直接法()112ln (ln )()(0),()a a x x a a x xx x ax a a a x x a x a f x x f x a a a --'⋅-⋅-=>==. 因为0x >,由()0f x '=得ln a x a=. 当01a <<时,()f x 在区间(0,)+∞内单调递减,不满足题意;当1a >时,0ln aa >,由()0f x '>得0,()ln a x f x a<<在区间0,ln a a ⎛⎫ ⎪⎝⎭内单调递增,由()0f x '<得,()ln ax f x a >在区间,ln a a ⎛⎫+∞ ⎪⎝⎭内单调递减. 因为lim ()0x f x →+∞=,且0lim ()0x f x +→=,所以1ln a f a ⎛⎫> ⎪⎝⎭,即ln ln ln 1(ln )aaa a a a aa a a a a -⎛⎫ ⎪⎝⎭=>,即11ln ln (ln ),ln a a a a a a a a a -->>,两边取对数,得11ln ln(ln )ln a a a ⎛⎫-> ⎪⎝⎭,即ln 1ln(ln )a a ->.令ln a t =,则1ln t t ->,令()ln 1h x x x =-+,则1()1h x x'=-,所以()h x 在区间(0,1)内单调递增,在区间(1,)+∞内单调递减,所以()(1)0h x h ≤=,所以1ln t t -≥,则1ln t t ->的解为1t ≠,所以ln 1a ≠,即e a ≠. 故实数a 的范围为(1,e)(e,)⋃+∞.] 【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题, 方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值. 方法三:将问题取对,分成()ln g x x =与ln ()x ap x a=两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论.方法四:直接求导研究极值,单调性,最值,得到结论.22.(2022·江苏江苏·三模)设函数()()2e sin 1xf x a x ax a x =+--+.(1)当0a ≤时,讨论()f x 的单调性; (2)若()f x 在R 上单调递增,求a .【答案】(1)在(),0∞-上单调递减,在()0,∞+上单调递增 (2)12 【解析】 【分析】(1)求得()()e cos 21xf x a x ax a =+--+',设()()g x f x '=,得到()()e 2sin x g x a x +'=-,得到()y g x =在R 上单调递增,得到()y f x '=在R 上单调递增,结合()00f '=,即可求解;(2)令()e 1xh x x =--,利用导数求得()()00h x h ≥=,得到e 10x x --≥和e 1x x -≥-,令()sin x x x ϕ=-,得出0x ≥时,sin x x ≥;0x ≤,得到sin x x ≤,分0a ≤,102a <<,12a >和12a =,四种情况讨论,结合导数求得函数的单调性与最值,即可求解. (1)解:因为()()2e sin 1xf x a x ax a x =+--+,可得()()e cos 21x f x a x ax a =+--+',设()()g x f x '=,则()()e 2sin xg x a x +'=-所以当0a ≤时,()0g x '>,函数()y g x =在R 上单调递增, 即函数()y f x '=在R 上单调递增,又由()00f '=,所以当0x <时,()0f x '<;当0x >时,()0f x '>,所以当0a ≤时,()f x 在(),0∞-上单调递减,在()0,∞+上单调递增. (2)解:令()e 1x h x x =--,可得()e 1xh x '=-,当0x >时,()0h x '>,()h x 单调递增; 当0x <时,()0h x '<,()h x 单调递减,又由()00h =,所以()()00h x h ≥=,即e 10x x --≥, 所以e 1x x ≥+,所以e 1x x -≥-;令()sin x x x ϕ=-,可得()1cos 0x x ϕ'=-≥,所以函数()x ϕ单调递增, 因为()00ϕ=,当0x ≥,可得()()00x ϕϕ≥=,即sin 0x x -≥,即sin x x ≥; 当0x ≤,可得()()00x ϕϕ≤=,即sin 0x x -≤,即sin x x ≤, (2.1)当0a ≤时,由(1)知不合题意;(2.2)当102a <<时,若(),0x ∈-∞,()()e cos 21xf x a x ax a =+--+'()1cos 211a x ax a x≤+--+- 121212111ax x a a ax a x x⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦≤+---=--; 当1102x a-<<时,()0f x '<,()f x 单调递减,不合题意; (2.3)当12a >时,若()0,1x ∈,同理可得()12121ax x a f x x⎡⎤⎛⎫-- ⎪⎢⎝⎣'⎥⎭⎦≤-, 当1012x a<<-时,()0f x '<,()f x 单调递减,不合题意; (2.4)当12a =时,()2113e sin 222x f x x x x =+--,可得()13e cos 22xf x x x =+--', 设()()g x f x '=,则()1e sin 12xg x x '=--,①当0x >时,()111e sin 11sin 10222xg x x x x x x =-'-≥+--≥->,所以()g x 在()0,∞+上单调递增,()f x '在()0,∞+上单调递增, ②当0x >时,若[)1,0x ∈-,()()()1111e sin 11021221xx x g x x x x x +=--≤--=≤--', 若(],1x ∈-∞-,()111e sin 1102e 2xg x x -≤+'=--<,所以()g x 在(),0∞-上单调递增,()f x '在(),0∞-上单调递增, 由①②可知,()()00f x f ''≥=,所以()f x 在R 上单调递增, 综上所述,12a =.。
2025年高考数学一轮知识点复习-1.1集 合-专项训练【含答案】

第一章集合、常用逻辑用语与不等式第一节集合1.设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}2.(2022·全国乙卷1题)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈MB.3∈MC.4∉MD.5∉M3.已知集合P={x|x<3},Q={x∈Z||x|<2},则()A.P⫋QB.Q⫋PC.P∩Q=PD.P∪Q=Q4.(2023·新高考Ⅱ卷2题)设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=()A.2B.1C.23D.-15.(2024·长春吉大附中预测)集合A,B满足A∪B={2,4,6,8,10},A∩B={2,8},A={2,6,8},则集合B中的元素个数为()A.3B.4C.5D.66.(多选)已知全集U=Z,集合A={x|2x+1≥0,x∈Z},B={-1,0,1,2},则()A.A∩B={0,1,2}B.A∪B={x|x≥0}C.(∁U A)∩B={-1}D.A∩B的非空真子集个数是67.(多选)若集合M={x|-3<x<1},N={x|x≤3},则集合{x|x≤-3或x≥1}=()A.M∩NB.∁R MC.∁R(M∩N)D.∁R(M∪N)8.设集合A={x|x2-4x-5=0},若1-2∈A,则a=.9.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},则A∩B=,A∪B=,(∁R A)∪B=.10.已知集合A={x|x<-1或x≥0},B={x|a≤x<a+2},若A∪B=R,则实数a的取值范围是.11.设全集U=R,集合A={x|-1<x<2},B={x|x>1},则图中阴影部分表示的集合为()A.{x|x≥1}B.{x|x≤1}C.{x|-1<x≤1}D.{x|-1≤x<2}12.(2024·重庆质量调研)已知全集U=R,集合A={x|x-2x2≥-15},B={x|x≤-3或x≥2},则A∩∁U B=()A.[-52,2)B.(-3,-52]C.(-3,3]D.(2,3]13.已知集合A=(1,3),集合B={x|2m<x<1-m}.若A∩B=⌀,则所有满足条件的实数m的取值范围是()A.-23≤m<13B.m≥0C.m≥13D.0≤m<1314.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)是集合A的同一种分拆.若集合A有三个元素,则集合A的不同分拆种数是.15.某年级先后举办了数学、历史、音乐的讲座,其中有85人听了数学讲座,70人听了历史讲座,61人听了音乐讲座,其中16人同时听了数学、历史讲座,12人同时听了数学、音乐讲座,9人同时听了历史、音乐讲座,还有5人听了全部讲座,则听讲座的人数为.参考答案与解析1.D因为集合A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.故选D.2.A由题意知M={2,4,5},故选A.3.B由题意,Q={x∈Z||x|<2}={-1,0,1},P={x|x<3},故Q⫋P,故A错误,B正确,又P∩Q={-1,0,1}=Q,P∪Q={x|x<3}=P,故C、D错误.故选B.4.B由题意,得0∈B.又B={1,a-2,2a-2},所以a-2=0或2a-2=0.当a-2=0时,a=2,此时A={0,-2},B={1,0,2},不满足A⊆B,舍去.当2a-2=0时,a=1,此时A={0,-1},B={1,-1,0},满足A⊆B.综上所述,a=1.故选B.5.B因为A∩B={2,8},故{2,8}⊆B,又A={2,6,8},故6∉B,又A∪B={2,4,6,8,10},故B={2,4,8,10},即集合B中的元素个数为4.故选B.6.ACD A={x|2x+1≥0,x∈Z}={x|x≥-12,x∈Z},B={-1,0,1,2},A∩B={0,1,2},故A正确;A∪B={x|x≥-1,x∈Z},故B错误;∁U A={x|x<-12,x∈Z},所以(∁U A)∩B={-1},故C正确;由A∩B={0,1,2},则A∩B的非空真子集个数是23-2=6,故D正确.故选A、C、D.7.BC因为集合M={x|-3<x<1},N={x|x≤3},所以M∩N={x|-3<x<1},M∪N={x|x≤3},∁R M={x|x≤-3或x≥1},所以∁R(M∩N)={x|x≤-3或x≥1},∁R(M∪N)={x|x >3}.故选B、C.8.1或115解析:由题得A={-1,5},则1-2=-1或1-2=5,解得a=1或115.9.(2,3)(1,4)(-∞,1]∪(2,+∞)解析:由已知得A={x|1<x<3},B={x|2<x<4},所以A∩B={x|2<x<3},A∪B={x|1<x<4},(∁R A)∪B={x|x≤1或x>2}.10.[-2,-1]解析:由题意知,若A∪B=R,画出数轴如图,则必有≤-1,+2≥0,解得-2≤a≤-1,即实数a的取值范围为[-2,-1].11.C∵全集U=R,集合A={x|-1<x<2},B={x|x>1},∴∁U B={x|x≤1},∴图中阴影部分表示的集合为A∩(∁U B)={x|-1<x<2}∩{x|x≤1}={x|-1<x≤1}.故选C.12.A因为U=R,B={x|x≤-3或x≥2},所以∁U B={x|-3<x<2},又A={x|x-2x2≥-15}={x |2x 2-x -15≤0}={x |-52≤x ≤3},所以A ∩∁U B ={x |-52≤x <2},故选A.13.B由A ∩B =⌀,得:①若2m ≥1-m ,即m ≥13时,B =⌀,符合题意;②若2m <1-m ,即m <13时,因为A ∩B =⌀,则<13,1-≤1或<13,2≥3,解得0≤m <13,综上所述m ≥0.故选B.14.27解析:不妨令A ={1,2,3},因为A 1∪A 2=A ,当A 1=⌀时,A 2={1,2,3},当A 1={1}时,A 2可为{2,3},{1,2,3}共2种,同理A 1={2},{3}时,A 2各有2种,当A 1={1,2}时,A 2可为{3},{1,3},{2,3},{1,2,3}共4种,同理A 1={1,3},{2,3}时,A 2各有4种,当A 1={1,2,3}时,A 2可为A 1的子集,共8种,故共有1+2×3+4×3+8=27(种)不同的分拆.15.184解析:设全年级同学是全集U ,听数学讲座的人组成集合A ,听历史讲座的人组成集合B ,听音乐讲座的人组成集合C ,根据题意,用Venn 图表示,如图所示.由Venn 图可知,听讲座的人数为62+7+5+11+4+50+45=184.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合测试卷
(时间:120分钟满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分)
1.已知全集U=R,集合A={x|1<x≤3},B={x|x>2},则A∩(?U B)=()
A.{x|1≤x≤2}
B.{x|1≤x<2}
C.{x|1<x≤2}
D.{x|1≤x≤3}
2.已知i是虚数单位,复数(1+3i)(a-i)在复平面内对应的点在第四象限,则a的取值范围是()
A.(-3,+∞)
B.
C.
D.(-3,1)
3.若椭圆=1(a>b>0)的离心率为,则双曲线=1的离心率是()
A.2
B.
C.
D.3
4.设直线y=x+b是曲线y=ln x的一条切线,则b的值为()
A.ln 2-1
B.ln 2-2
C.2ln 2-1
D.2ln 2-2
5.设a∈R,则“a=1”是“f(x)=ln为奇函数”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
6.执行如图所示的程序框图,当输入x为6时,输出的y=()
A.1
B.2
C.5
D.10
7.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()
A.5
B.7
C.6
D.4
8.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()
A.10 cm3
B.20 cm3
C.30 cm3
D.40 cm3
9.已知等差数列的前n项和为S n,且S1 006>S1 008>S1 007,则满足S n S n-1<0的正整数n为()
A.2 015
B.2 013
C.2 014
D.2 016
10.已知△ABC的三个顶点在以O为球心的球面上,且cos A=,BC=1,AC=3,三棱锥O-ABC的体积为
,则球O的表面积为()
A.36π
B.16π
C.12π
D.
11.在△ABC中,AB=3,AC=4,∠BAC=60°,若P是△ABC所在平面内一点,且AP=2,则的最大值为()
A.10
B.12
C.10+2
D.8
12.已知函数f(x)的导函数为f'(x),对任意x∈R都有f'(x)>f(x)成立,则()
A.3f(ln 2)>2f(ln 3)
B.3f(ln 2)=2f(ln 3)
C.3f(ln 2)<2f(ln 3)
D.3f(ln 2)与2f(ln 3)的大小不确定
二、填空题(本大题共4小题,每小题5分,共20分)
13.用系统抽样的方法从300名学生中抽取容量为20的样本,将300名学生从1~300编号,按编号顺序平均分成20组,若第16组抽出的号码为231,则第1组中用抽签法确定的号码
是.
14.某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店
(1)第一天售出但第二天未售出的商品有种;
(2)这三天售出的商品最少有种.
15.若实数x,y满足条件则2x+y的最大值为.
16.已知点A(0,3),若圆C:(x-a)2+(x-2a+4)2=1上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.
三、解答题(本大题共6小题,共70分)
17.(12分)已知a=(sin 2x,2cos2x-1),b=(sin θ,cos θ)(0<θ<π),函数f(x)=a·b的图象经过
点.
(1)求θ及f(x)的最小正周期;
(2)当x∈时,求f(x)的最大值和最小值.。