《有理数的乘方》PPT课件

合集下载

有理数的乘方ppt课件

有理数的乘方ppt课件
222 2
10个2
导入新知 2×2×……×2 =
10个2
3×3×……×3 =
10个3
a×a×……×a =
10个a
a×a×……×a =
n个a
探究新知
知 识 要 点
n个相同的因数a相乘,记作an,读作“a的n次
幂(或a的n次方)”,即
a×a×……×a = an
n个a
这种求n个相同因数的积的运算叫做乘方,
• 必做:1.教材59页随堂练习 2.教材59页习题2.13
• 选做:教材59页数学理解
谢谢!
乘方的结果叫做幂.

an
指数 ---因数的个数,n取正整数
底数 ---因数,a取任意有理数 乘方an的意义:n个相同因数a相乘.
探究新知
探究一:乘方的定义
(1)填空 ① 在 中,底数是_7____,指数是_4____,表示___4__个___7___ 相乘; ② 在( − ) 中,底数是__-_4___,指数是___5___,表示_5____个_-_4__相乘; ③ 底数是-5,指数是 4 的幂可以写作_________.
(2)在 (
6 5
)
4
中,
底数是______,
指数是__4____,表示__4__个____相乘.
2.计算:
(1) ;
(2)( − ) ;
(3)( ) ;
(4)− ;
(5)− ;
(6)−( − ) .
B 层:
一个数的平方为 16,这个数可能是几?一个数的平方可能是零吗?这个数是±4,0的平方是0
课后作业
探究新知
探究一:乘方的定义
(2)把下列各式写成乘方的形式(独立完成):

第1课时有理数的乘方(41张PPT)数学

第1课时有理数的乘方(41张PPT)数学
15
16
17
18
本课结束
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
A
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
15.现规定一种新运算“※”:a※b=ab,如3※2=32=9,则(-2)※3=____.
解析 (-2)※3=(-2)3=-8.
-8
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
解 设S=1+2+22+23+24+…+210,将等式两边同时乘以2,得2S=2+22+23+24+…+211,将下式减去上式,得2S-S=211-1,即S=1+2+22+23+24+…+210=211-1.
1
2
3
4
5
6
7
8
9
10
11
12
13
解 第64个格子,应该底数是2,指数63,∴为263.

有理数的乘方ppt课件

有理数的乘方ppt课件


= 个
问 题:达依尔到达要求的是多少麦粒呢?
第1格

第2格

第3格
× =
第4格
× × =
... ...
××...×
=
第64格

一共需要:++ + +. . . +
= ,,,,,,
尝试动0次后纸张的厚度,看看
谁是方法更便捷 .(4分钟)
相同的因数
活 动:把一张纸进行对折 ,再对折...思考并回答:
都是乘法运算

=��
( 1 ) 对折1次有几层?

( 2 ) 对折2次有几层?
× =
( 3 ) 对折3次有几层?
× × =
有理数的乘方
理解有理数乘方的意义和表示方法;
能够利用乘方意义进行有理数的乘方运算;
通过几个探索规律的问题情景,进一步理解
乘方的意义和运算,感受底数大于1时,乘方
运算的结果增长得很快 .
世界第一高峰——珠穆朗玛峰
活 动 : 把一张纸厚度为 0.1毫米的纸,连续对折 27次
的厚度能超过珠穆朗玛峰的高度。你相信吗?
.
;
;
2.在
是( B )
中,最大的数
3.对任意实数a,下列各式不一定成立的是( B )
“乘”
“幂”
××...×



有理数
的乘方
意 义:
求n个相同因数a相乘的运算
运算方法:
变“乘”为“幂”
数学思想:
1. 类比、归纳思想
2. 符号感、抽象思维
感谢聆听
年内所产的小麦的总和!
当堂练习
1.填空:
(1)-(-3)2= -9

《有理数的乘方》PPT课件

《有理数的乘方》PPT课件
(2)
(3)-26=-2×2×2×2×2×2=-64.
总 结
1. 两个互为相反数的数的偶次幂相等,奇次幂仍然互为相反数;
2. 任意数的偶次幂都是非负数;
3. 1的任何次幂都是 1;-1的偶次幂是 1,-1的奇次幂是-1.
1、计算:
3
4
3
3 1 1
5 5 5 125 .






(2)(-10)2,(-10)3,(-10)4 ,(-10)7.
(2)(-10)2=(-10)×(-10)=100;
(-10)3=(-10)×(-10)×(-10)=-1 000;
(-10)4=(-10)×(-10) ×(-10)×(-10)=10 000;
(-10)7=(-10)×(-10) ×(-10)×(-10)×(-10) ×
(-10)×(-10)=-10 000 000.
2、
下列等式成立的是(
B )
A. (-3)2=-32
B. -23=(-2)3
C. 23=(-2)3
3、
D. 32=-32
若a2=(-3)2,则a等于( D )
A. -3
B. 3
负数,负数的偶次幂是正数; 0的任何整数次
幂都是0.
例 2 计算:
4
(1) (-2)3;
1
3 ;
(2)

(3) -26.
解: (1) (-2)3=(-2)×(-2)×(-2)=-8.
4
1 1 1 1 1 1
3 3 3 3 3 81 .
C. 9
D. ±3

(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)

(2024秋新版本)北师大版七年级数学上册 《 有理数的乘方》PPT课件)


1 2
×

1 2
×

1 2
=18
(3)

1 4
2
=

1 4
×

1 4
=116
连接中考
1. (-1)2等于( B )
A.-1
B.1
C.-2
D.2
2. 32可表示为( C )
A.3×2
B.2×2×2
C.3×3 D.3+3
课堂检测
基础巩固题
1.关于-74的说法正确的是( C )
A.底数是-7
B.表示4个-7相乘
探究新知
想一想 (-2)4 , -24,它们一样吗?说说它们的意义与读法.
(-2)4 =(-2)×(-2)×(-2)×(-2) =16,表示4个(-2)相乘, 读作“负2的4次方” . -24 =-2×2×2×2=-16 ,表示4个2相乘的相反数, 读作“负的2的4次方”或 “2的4次方的相反数”. 思考:它们的底数分别是什么?相同么?
素养目标
3.运用乘方的意义解决相关问题;体会解决问题策略的多 样性,发展实践能力与创新意识. 2.能够正确进行有理数的乘方运算.
1.理解有理数的乘方,幂,底数,指数概念.
探究新知 细胞分裂:
知识点 有理数的乘方
一次 2
二次 2×2
三次 2×2×2
探究新知
想一想 1个细胞30分钟后分裂成2个,经过5小时,这种细胞 由1个能分裂成多少个?
探究新知
计算:(1)

3 4
2
(2)-
3 4
2
(3)-342
解:
(1)

3 4
2

1.11 有理数的乘方 第1课时 有理数的乘方课件(共19张PPT)

1.11 有理数的乘方 第1课时 有理数的乘方课件(共19张PPT)
D
D
4.下面各组数中,相等的一组是 ( )A.-22与(-2)2 B.与C.-|-2|与-(-2) D.(-3)3与-33
5.用“△”定义一种新运算:对于任意有理数a和b,规定a△b=ab3(a>b);a△b=a3b(a<b).如:2△3=23×3=24.试比较(-1)△4与4△(-1)的大小.
(-2)3与-23的意义是否相同?(-2)4与-24呢?
(-2)3表示3个-2相乘,-23是23的相反数
根据有理数的乘法法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.
注意:当底数是负数或分数时,底数一定要加上括号,这也是辨认底数的方法.
随 堂 小 测
3.一个数的立方等于它本身,这个数是( ) A.1 B.-1或1 C.0 D.-1或1或0
1.11 有理数的乘方
课时导入
知识讲解
随堂小测
小结
第1课时 有理数的乘方
学习目标
1.理解并掌握有理数的乘方、幂、底数、指数的概念及意义.2.能够正确进行有理数的乘方运算.
课时导入
某种细胞每过30 min便由一个分裂成2个.经过5h,这种细胞由一个能 分裂成多少个?
细胞分裂示意图
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月15日
知识点1 有理数的乘方的意义
知识讲解
如图,边长为a厘米的正方形的面积为______平方厘米.
a
a×a
如图,一正方体的棱长为a厘米, 则它的体积为________立方厘米
a×a×a
a
a×a=a2
a×a×a=a3
读作:a的平方(或a的2次方)

1.6有理数的乘方PPT课件

1.6有理数的乘方PPT课件
(-3)2与-32 有什么区分?结果相同吗?
-3
2
(-3)×(-3)
9
-3的平方
3
2
-3×3
-9
3的平方的相反数
小提示:
请从它们的底数、指数、含义上去进行分析哦!
算一算
先理解式子的含义,再进行计算
探究1
计算:
4
8
16
32
4
-8
16
-32
结论: 正数的任何正整数次幂都是______.负数的_____幂是_____,负数的_____幂是______. 0的任何正整数次幂都是_____.
求n个相同因数的乘积的运算,叫做乘方。
A. 4个5相乘 B. 5个4相乘
C. 5与4的积 D. 5个4相加的和
2. 计算 (-1)100 + ( -1)101 的值是( )
A. 1100 B. -1 C. 0 D. -1100
2×2×2
2
2×2
2×2×2
2×2×2×2
……
5小时后:
2
第1次分裂:
第2次分裂:
第3次分裂:
第4次分裂:
上面算式有什么特点?
求n个相同因数的乘积的运算,叫做乘方。
2×2
2×2×2
=22
=23
=210
ɑ×ɑ×ɑ×···×ɑ
n个ɑ
ɑn
一般地:ɑ是有理数,n是正整数,则把 简记为
结果





考一考 : 目前已学过几种运算
对于有理数的混合运算,应先算乘方,后算乘除,再算加减;如果遇到括号,就先进行括号里的运算.
挑战一下
同学们想一想,下面的题目你能用所学的识解决吗?

人教版数学七年级上册课件有理数的乘方(共15张PPT)

人教版数学七年级上册课件有理数的乘方(共15张PPT)

乘方运算的 符号规律
中底数是 (5)
(,2指)数负(是) 数,幂是的.偶次幂是正数;负数的奇次幂是负数;
(3)0的任何次幂等于零; (4)
()
古时候,有个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋.
(4)1的任何次幂等于1;
(4)1的任何次幂等于1;
(5)-1的偶次幂等于1;-1的奇次幂是-1.
-24=-2×2×2×2=-16.
(5)
2 3
2
22 3
.
()
×
2 322 32 34 9, 2322 324 3.
例2.用计算器计算 ( 8和) 5 (. 3 ) 6
应用1
同学们,现在我们能解决本节课开始时《棋盘上 的学问》中的问题吗?
1 2 1 2 2 2 3 2 6 3 1_ ._ 8_ 4_ 4_ 6_ 7_ ×_ 1_ 0_ 1_ 9 _ ( 粒 ) .
建议利用计算器帮助计算.
估计每千颗米粒重40克,这么多颗米粒总重超过 700亿0 吨.
应用2
珠穆朗玛峰是世界最高峰,它的海拔高度是 8844米.把一张足够大的厚度为0.1毫米的纸,连 续对折30次的厚度是多少?
0 .1 2 3 0 _ _ _ _ _ _ _ _ ( m m ) _ _ _ _ _ _ _ _ ( m ) .
求n个相同因数a的积的运算叫做乘方。 (4)1的任何次幂等于1;
其运算步骤是什么? 中底数是 ,指数是 ,幂是 .
(2)负数的偶次幂是正数;
(-2)3=-8,(-3)2=9.
(1)平方等于它本身的数是 ,
如果对折n国王哈哈大笑.
(5)
()
.59049
3.判断正误:(对的画“√”,错的画“×”) (1)32 =3×2=6. ( ×) 32=3×3=9.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 .乘方的运算
作业
教科书习题2.14 知识技能1; 问题解决2.
折纸与楼高
对折2次厚度为_______mm, 对折3次厚度为_______mm, 对折4次厚度为_______mm, ………… 对折20次厚度为_______mm.
折纸与楼高
对折20次后厚 度为0.1×220mm
对折20次后大 约有35层楼高
当指数不断增加时,底数大于1 的幂的增长速 度相当快 。
目标: 1、理解有理数乘方的意义; 2、掌握有理数乘方的概念,能进行有理数的乘方运算; 3、经历有理数乘方的符号法则的探究过程,领悟乘方运算 符号的确定法则。
复习
1、填表:
底数 指数 幂 -1 3 2 5
-4 3
(-4)3
0.3 4
0.34
10 4
(-1)3
25
104 ( )×
2、判断:(对的画“√”,错的画“×”。) (1) 32 = 3×2 = 6;
探究:棋盘上的学问
棋盘上的米究竟有多少? 第2格有_______粒米, 第3格有_______粒米, 第4格有_______粒米, ………… 第64格有_______粒米, 共有_______粒米.
假设10000粒米为1斤, 100斤为1袋,估计有 ——————袋
1.乘方的意义
2.当底数大于1时,乘方运算的结果增长得很快
Hale Waihona Puke 随堂练习计算: ①-(3/2)2; ③-53;
②-(-3/2)2; ④-4/32.
⒈ 填空 (1)310的意义是 个3相乘. (2) 平方等于它本身的数是 . 立方等于它本身的数是 . (3) 一个数的15次幂是负数,那么这个数 的2003次幂是 . (4)(-2)6中指数是 ,底数是 . (5)平方等于1/64的数是 于1/64 的数是 . ,立方等
(-10)4=(-10)× (-10)×(-10)×(-10)=10000
你发现了什么规律?
探究: 1.底数为10的幂的特点:
10的n次幂等于1的后面有n个0.
2.有理数乘方运算的符号法则 :
正数的任何次幂都是正数, 负数的偶数次幂是正数, 负数的奇数次幂是负数.
想一想
珠穆朗玛峰是 世界最高峰,它的 海拔高度是8848米。

把一张足够大 的厚度为0.1毫米的 纸,连续对折30次 的厚度能超过珠穆 朗玛峰?
折纸与楼高
(1)纸的厚度为0.1mm ,对折一次后,厚度为 2*0.1mm,对折两次后,厚度为多少毫米? (2)假设对折20次后,厚度为多少毫米? (3)若每层楼高度为3米,这张纸对折20次后约有多 少层楼高? (3)假设对折30次,其厚度能否超过珠穆朗玛峰 ? (5)通过活动,你从中得到了什么启示?
(2) (-2)3 = (-3)2;
(3) -32 = (-3)2;
( ) ×
( ) ×
例3:计算
(1)10 2 , 103 , 10 4 ; (2)(-10)2 ,(-10)3 ,(-10)4
解:(1)102=10×10=100 103=10×10×10×10=1000 104=10×10×10×10=10000 (2)(-10)2 =(-10)× (-10)=100 (-10)3=(-10)× (-10)×(-10)=-1000
2. 计算: 1 3 ⑴ (-- ) ; 3 ⑵ -32×23; ⑶ (-3)2×(-2)3

-2×32;

(-2×3)2;

(-2)14×(--)15;
1 2
⑺ -(-2)4; ⑽ (-2)2 ·(-3)2.
⑻ (-1)2001; ⑼ -23+(-3)2;
探究:读一读书本上的“棋盘上的学问”
你认为国王的国库 里有这么多米吗?
相关文档
最新文档