构造使n个城市连接的最小生成树 课程设计报告

合集下载

n个城市最小生成树实验报告

n个城市最小生成树实验报告

数据结构课程设计报告起评分理论成绩实践成绩总成绩院系:专业:班级:学号:姓名:教师:时间:目录一、设计要求 (3)1、问题描述 (3)2、功能 (3)3、数据 (3)二、概述与分析 (3)1、图 (3)2、邻接矩阵 (3)3、生成树 (4)4、最小生成树 (5)5、最小生成树的操作 (5)三、程序设计及分析 (6)四、流程图 (7)1、模块结构流程图 (7)2、Prim算法流程设计 (8)五、测试分析 (8)六、总结 (10)七、源程序代码 (10)一、设计要求:1、问题描述构造可以使n个城市连接的最小生成树。

2、功能给定一个地区的n个城市间的距离网,用Prim算法或Kruskal算法建立最小生成树,并计算得到的最小生成树的代价。

本人采用的是Prim算法。

3、数据城市间的距离网采用邻接矩阵表示(要求至少6个城市,10条边),邻接矩阵的存储结构定义采用课本中给出的定义,若两个城市之间不存在道路,则将相应边的权值设为自己定义的无穷大值。

要求在屏幕上显示得到的最小生成树中包括了哪些城市间的道路,并显示得到的最小生成树的代价。

表示城市间距离网的邻接矩阵(要求至少6个城市,10条边)二、概述与分析1、图图的定义:图G是有两个集合V和E组成,记做G=(V,E),其中V是定点的有限集合,记做V(G),E是连接V的两个不同的顶点的边的有限集合,记做E(G)。

2、邻接矩阵邻接矩阵是图的一种存储方法,它是表示顶点之间相邻关系的矩阵。

设G=(V,E)是具有n(n>0)个顶点的图,顶点的顺序依次为(v0,v1,…,vn-1),则G的邻接矩阵A是n阶方阵,其定义如下。

1)如果G是无向图,则1 (vi,vj) ∈E(G)A[i][j]=0 其他2)如果G是有向图,则1 <vi,vj> ∈E(G)A[i][j]=0其他3)如果G是带权无向图,则w ij vi≠vj且(vi,vj)∈E(G)A[i][j]= 0 vi =vj∞其他4)如果G是带权有向图,则w ij vi≠vj且<vi,vj> ∈E(G)A[i][j]= 0 vi =vj∞其他邻接矩阵的特点如下:1)图的邻接矩阵表示是唯一的。

n个城市最小生成树实验报告材料

n个城市最小生成树实验报告材料

数据结构课程设计报告起评分理论成绩实践成绩总成绩院系:专业:班级:学号::教师:时间:目录一、设计要求 (3)1、问题描述 (3)2、功能 (3)3、数据 (3)二、概述与分析 (3)1、图 (3)2、邻接矩阵 (3)3、生成树 (4)4、最小生成树 (5)5、最小生成树的操作 (5)三、程序设计及分析 (6)四、流程图 (7)1、模块结构流程图 (7)2、Prim算法流程设计 (8)五、测试分析 (8)六、总结 (10)七、源程序代码 (10)一、设计要求:1、问题描述构造可以使n个城市连接的最小生成树。

2、功能给定一个地区的n个城市间的距离网,用Prim算法或Kruskal算法建立最小生成树,并计算得到的最小生成树的代价。

本人采用的是Prim算法。

3、数据城市间的距离网采用邻接矩阵表示(要求至少6个城市,10条边),邻接矩阵的存储结构定义采用课本中给出的定义,若两个城市之间不存在道路,则将相应边的权值设为自己定义的无穷大值。

要求在屏幕上显示得到的最小生成树中包括了哪些城市间的道路,并显示得到的最小生成树的代价。

表示城市间距离网的邻接矩阵(要求至少6个城市,10条边)二、概述与分析1、图图的定义:图G是有两个集合V和E组成,记做G=(V,E),其中V是定点的有限集合,记做V(G),E是连接V的两个不同的顶点的边的有限集合,记做E(G)。

2、邻接矩阵邻接矩阵是图的一种存储方法,它是表示顶点之间相邻关系的矩阵。

设G=(V,E)是具有n(n>0)个顶点的图,顶点的顺序依次为(v0,v1,…,vn-1),则G的邻接矩阵A是n阶方阵,其定义如下。

1)如果G是无向图,则1 (vi,vj) ∈E(G)A[i][j]=0 其他2)如果G是有向图,则1 <vi,vj> ∈E(G)A[i][j]=0其他3)如果G是带权无向图,则w ij vi≠vj且(vi,vj)∈E(G)A[i][j]= 0 vi =vj∞其他4)如果G是带权有向图,则w ij vi≠vj且<vi,vj> ∈E(G)A[i][j]= 0 vi =vj∞其他邻接矩阵的特点如下:1)图的邻接矩阵表示是唯一的。

数据结构课程设计报告(最小生成树完整版)

数据结构课程设计报告(最小生成树完整版)

武夷学院课程设计报告课程名称:数据结构设计题目:最小生成树的应用学生班级:09计科2班学生姓名:蒋家权,陈相财,吴继伟,梁丽春指导教师:林丽惠完成日期:2011-1-19课程设计项目研究报告目录一、问题分析和任务定义....................................................................................... - 1 -二、实现本程序需要解决的问题如下................................................................... - 1 -三、测试数据........................................................................................................... - 2 -四、算法思想........................................................................................................... - 3 -五、模块划分........................................................................................................... - 4 -六、算法设计与分析............................................................................................... - 7 -七、源程序............................................................................................................. - 11 -八、测试数据......................................................................................................... - 14 -九、课程设计项目进度表及任务分配表及任务分配表..................................... - 16 -十、设计心得......................................................................................................... - 17 -十、参考书目......................................................................................................... - 18 -一、问题分析和任务定义在n个城市间建立通信网络,需架设n-1条线路。

实验5最小生成树算法的设计与实现(报告)

实验5最小生成树算法的设计与实现(报告)

实验5 最小生成树算法的设计与实现一、实验目的1、根据算法设计需要, 掌握连通图的灵活表示方法;2、掌握最小生成树算法,如Prim、Kruskal算法;3、基本掌握贪心算法的一般设计方法;4、进一步掌握集合的表示与操作算法的应用。

二、实验内容1、认真阅读算法设计教材和数据结构教材内容, 熟习连通图的不同表示方法和最小生成树算法;2、设计Kruskal算法实验程序。

有n个城市可以用(n-1)条路将它们连通,求最小总路程的和。

设计测试问题,修改并调试程序, 输出最小生成树的各条边, 直至正确为止。

三、Kruskal算法的原理方法边权排序:1 3 14 6 23 6 41 4 52 3 53 4 52 5 61 2 63 5 65 6 61. 初始化时:属于最小生成树的顶点U={}不属于最小生成树的顶点V={1,2,3,4,5,6}2. 根据边权排序,选出还没有连接并且权最小的边(1 3 1),属于最小生成树的顶点U={1,3},不属于最小生成树的顶点V={2,4,5,6}3. 根据边权排序,选出还没有连接并且权最小的边(4 6 2),属于最小生成树的顶点U={{1,3},{4,6}}(还没有合在一起,有两颗子树),不属于最小生成树的顶点V={2,5}4. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,3,4,6}(合在一起),不属于最小生成树的顶点V={2,5}5. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,6},,不属于最小生成树的顶点V={5}6. 根据边权排序,选出还没有连接并且权最小的边(3 6 4),属于最小生成树的顶点U={1,2,3,4,5,6}此时,最小生成树已完成四、实验程序的功能模块功能模块:bool cmp(Edge a,Edge b); //定义比较方法x);//在并查集森林中找到x的祖先int g etfa(intint s ame(int x,int y); //判断祖先是否是同一个,即是否联通 void merge(int x,int y); //合并子树,即联通两子树sort(e+1,e+m+1,cmp); //对边按边权进行升序排序详细代码:#include <iostream>#include <cstdio>#include <cstring>#include <algorithm>#define M AXN_E 100000#define M AXN_V 100000using namespace std;struct Edge{int f m,to,dist;//边的起始顶点,边的到达顶点,边权}e[MAXN_E];int f a[MAXN_V],n,m; //顶点数组,顶点总数,边总数 //定义比较,只是边权比较bool cmp(Edge a,Edge b){return a.dist < b.dist;}//查找x的祖先是在并查集森林中找到x的祖先x){//getfaint g etfa(intreturn fa[x];if(fa[x]==x)else r eturn fa[x] = getfa(fa[x]);}//判断祖先是否是同一个,即是否联通int s ame(int x,int y){return getfa(x)==getfa(y);}//合并两棵树void merge(int x,int y){int f ax=getfa(x),fay=getfa(y);fa[fax]=fay;}int m ain(){int i;cout<<"请输入顶点数目和边数目:"<<endl;cin>>n>>m;//n为点数,m为边数//输出顶点信息cout<<"各个顶点值依次为:"<<endl;for(i=0;i<n;i++){fa[i]=i;if(i!=0)cout<<fa[i]<<" ";}cout<<endl;cout<<"请输入边的信息(例子:1 4 5 从顶点1到顶点4的边权为5)"<<endl;for(i=1;i<=m;i++)用边集数组存放边,方便排序和调用 cin>>e[i].fm>>e[i].to>>e[i].dist;//sort(e+1,e+m+1,cmp); //对边按边权进行升序排序表示目前的点共存在于多少个集合中,初始情况是每 int r st=n,ans=0;//rst个点都在不同的集合中for(i=1;i<=m && rst>1;i++){int x=e[i].fm,y=e[i].to;函数是查询两个点是否在同一集合中 if(same(x,y))continue;//sameelse{函数用来将两个点合并到同一集合中 merge(x,y);//mergerst--;//每次将两个不同集合中的点合并,都将使rst值减1这条边是最小生成树中的边,将答案加上边权 ans+=e[i].dist;//}}cout<<ans;return 0;}五、测试数据和相应的最小生成树Input:6 101 2 61 3 11 4 52 3 52 5 63 4 53 5 63 6 44 6 25 6 6Putout:18生成树为:七、思考题1、微软面试题一个大院子里住了50户人家,每家都养了一条狗,有一天他们接到通知说院子里有狗生病了,并要求所有主人在发现自己家狗生病的当天就要把狗枪杀掉。

n个城市的最小生成树 课程设计

n个城市的最小生成树 课程设计

数据结构与算法课程设计报告书题目:n个城市连接的最小生成树班级:1101211学号:1110121137姓名:小张教师:周期:2013年6月4日——6月28 (以下由验收教师填写)成绩:2013 年6月27日提问:使用的什么算法?好处?都实现了哪些功能?在程序的哪里体现的?《n个城市连接的最小生成树》一、课程设计的目的与要求(一)课程设计目的与任务(1)城市间的距离网采用邻接矩阵表示,邻接矩阵的存储结构定义采用课本上的定义,若两个城市之间不存在道路,则将相应边的权值设为自己定义的无穷大值。

要求在屏幕上显示得到的最小生成树中包括那些城市间的道路,并显示得到的最小生成树的代价。

(2)表示城市间距离网的邻接矩阵(要求至少6个城市,10条边)(3)最小生成树中包括的边及其权值,并显示得到的最小生成树的代价。

(二)题目要求对所选题目,运用面向过程的分析与设计方法,给出系统分析与设计的结果,要求必须要运用数据结构课程中相关的基本知识;二、设计正文1 系统分析和开发背景按照题目要求需要采用邻接矩阵来存放城市间的距离网,且用Prim算法建立最小生成树并求最小生成树代价。

图的结点信息存放在一个顺序表中,图的边信息存储在一个二维数组edge[MaxVertices][MaxVertices]中,这样就实现了用邻接矩阵存放城市间的距离网。

在Prim算法的函数用两个参数,一个是图G为邻接矩阵存储结构的图;另一个是通过函数得到的最小生成树的结点数据和相应结点的边的权值数据closeVertex.2 功能详细描述输入城市数,显示个城市间的距离,显示最小生成树3、数据结构和数据库设计顺序表定义结构体如下:Typedef struct{DataType list[Maxsize];Int size;}SeqList;其中,DataType为数组(即数据元素)的数据类型,Maxsize表示数组的最大元素个数,list表示顺序表的数组名,size表示顺序表中当前存储的数据元素个数,它必须满足size<= Maxsize,SeqList是该结构体的名称。

最小生成树-课程设计报告

最小生成树-课程设计报告

课程设计报告问题描述:已知一个无向连通网表示n个城市以及城市间可能设置的通信线路,其中网的顶点表示城市,边表示两个城市之间的线路,赋于边上的权值表示相应的代价。

对于n个点的连通网能建立许多不同的生成树,每一棵生成树都可以是一个通信网。

我们要选择一棵生成树,使总的耗费最小(1)需求分析:在N地建设网络保证连通即可求最小的架设方式,任务完成可分为两个部分:A 存储N中任意两地之间的权(采用邻接表,邻接矩阵)B 用prim和克鲁斯卡尔两种算法分别求出N地中最优架设方式即最小生成树。

C 按顺序输出生成树中各条边以及它们的权值。

(2)概要设计:程序分为两大部分 1 存储部分,2 算法部分;存储部分分为邻接矩阵和邻接表,而且包含了两者直接的互相转换;算法部分分为普里母算法和克鲁斯卡尔算法。

Prim算法的思想:假设V是图中顶点的集合,E是图中边的集合,TE为最小生成树中的边的集合,则prim算法通过以下步骤可以得到最小生成树:1:初始化:U={u 0},TE={f}。

此步骤设立一个只有结点u 0的结点集U 和一个空的边集TE作为最小生成树的初始形态,在随后的算法执行中,这个形态会不断的发生变化,直到得到最小生成树为止。

2:在所有u∈U,v∈V-U的边(u,v)∈E中,找一条权最小的边(u 0,v 0),将此边加进集合TE中,并将此边的非U中顶点加入U中。

此步骤的功能是在边集E中找一条边,要求这条边满足以下条件:首先边的两个顶点要分别在顶点集合U和V-U中,其次边的权要最小。

找到这条边以后,把这条边放到边集TE中,并把这条边上不在U中的那个顶点加入到U中。

这一步骤在算法中应执行多次,每执行一次,集合TE和U都将发生变化,分别增加一条边和一个顶点,因此,TE和U是两个动态的集合,这一点在理解算法时要密切注意。

3:如果U=V,则算法结束;否则重复步骤2。

可以把本步骤看成循环终止条件。

我们可以算出当U=V时,步骤2共执行了n-1次(设n为图中顶点的数目),TE中也增加了n-1条边,这n-1条边就是需要求出的最小生成树的边。

构造可以使n个城市连接的最小生成树

构造可以使n个城市连接的最小生成树

《数据结构》课程设计报告设计题目:构造可以使n个城市连接的最小生成树姓名:学号:专业:物联网工程(嵌入式培养)院系:计算机技术与科学学院班级:1405指导教师:2016年01 月09 日摘要本次课程设计的要求是给定一个地区的n个城市间的距离网,用Prim算法建立最小生成树,并计算得到的最小生成树的代价。

将该地区的城市用顶点表示,城市间的公路用边表示,公路的长度作为边的权值,最终这个问题可以归结为网图中,求顶点A到顶点B的所有路径中,边的权值之和最少的那条路径。

关键词:最小生成树Prim算法C++语言源程序AbstractThe curriculum design requirements is given a region n city, the distance between the net with the Prim algorithm to establish minimum spanning tree, and calculated the price of minimum spanning tree. Cities in the region with vertex said, between highway in the city edge, said the length of the road as the edge of the right values, finally the problem can be summed up in network diagram, and all the paths of vertex A to B, the edge of the weights of the sum of the minimum path.Keywords:minimum spanning treePrim algorithmC++ language source program目录一、问题描述 (4)1.1题目内容 (4)1.2基本要求 (4)二、需求分析 (4)三、概要设计 (4)3.1邻接矩阵的建立 (5)3.2图的建立 (5)3.3求最小生成树 (6)四、数据结构设计 (7)五、算法设计 (8)5.1算法分析 (8)5.2算法实现 (8)六、程序测试与实现 (9)6.1主程序 (9)6.2测试结果 (10)七、调试分析 (10)八、遇到的问题及解决办法 (10)九、心得体会 (10)十、附录 (11)一、问题描述1.题目内容:给定一个地区的n个城市间的距离网,用Prim算法建立最小生成树,并计算得到的最小生成树的代价。

数据结构课程设计求最小生成树

数据结构课程设计求最小生成树

##大学数据结构课程设计报告题目:图的最小生成树院(系):学生姓名:班级:学号:起迄日期:指导教师:2011—2012年度第 2 学期一、需求分析1.问题描述:设计要求:在n个城市之间建设网络,只需保证连通即可,求最经济的架设方法。

存储结构采用多种。

求解算法多种。

该题目需要运用最小生成树来解决。

最小生成树的代价之和最小,所以是一种最经济的架设方法。

2.基本功能该程序是解决城市间架设网络问题的,采用邻接表与邻接矩阵对构造的图进行存储,用普利姆与克鲁斯卡尔算法进行求解。

3.输入输出首先输入顶点的个数以及边的个数,格式如:4 6。

然后输入边的权值,格式如:a b 1。

输出分为四种输出,输出邻接表,邻接矩阵,普利姆算法求得的最小生成树,克鲁斯卡尔求得的最小生成树。

最小生成树的格式为:<顶点名顶点名>权值。

二、概要设计1.设计思路:问题的解决分别采用普利姆算法已经克鲁斯卡尔算法。

1)普利姆算法就是先选择根,把它放入一个集合U中,剩余的顶点放在集合V中。

然后选择该顶点与V中顶点之间权值最小的一条边,依此类推,如果到达最后一个则返回上一个顶点。

2)克鲁斯卡尔算法就是写出所有的顶点,选择权最小的边,然后写出第二小的,依此类推,最终要有个判断是是否生成环,不生成则得到克鲁斯卡尔的最小生成树。

2.数据结构设计:1.抽象数据类型如下:ADT Graph{ 数据对象 V:v是具有相同特征的数据元素的集合,称为顶点集。

数据关系 R:R={VR}VR={<v,w>|v,w属于v且p(v,w)表示从v到w的弧,谓词p(v,w)定义了弧<v,w>的意义或信息}基本操作:1)GreatGraph(&G,V,VR);初始条件:V是图的顶点集,VR是图中弧的集合。

操作条件:按V和VR的定义构造图G。

2)LocateVex(G,u);初始条件:图G存在,u和G中顶点有相同的特征。

操作条件:若G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六.参考文献
[1].严蔚敏,吴伟民.数据结构(C语言版).清华大学出版社,2007
[2].谭浩强,张基温.C语言程序设计教程(第三版)北京:高等教育出版社,2006
[3].陈维新,林小茶. C++面向对象程序设计教程.北京:清华大学出版社,2004
[4].苏仕华等.数据结构课程设计.北京:机械工业出版社,2005
/*printf("+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");
感谢同学在我的设计过程中提出的宝贵意见,如果没有他们的帮助,我在设计过程中出现的一些错误可能无法迅速查出解决,你们的帮助为我节省了宝贵的时间。
衷心感谢!
八.附录
//main
#include <iostream.h>
#include <stdio.h>
#include <string.h>
#include <windows.h>
构造可以使

1.
给定一个地区的n个城市间的距离网,用Prim算法或Kruskal算法建立最小生成树,并计算得到的最小生成树的代价。
1.
1.2.1城市间的道路网采用邻接矩阵表示,邻接矩阵的存储结构定义采用课本中给出的定义,若两个城市之间不存在道路,则将相应边的权值设为自己定义的无穷大值。
1.2.2显示出城市间道路网的邻接矩阵。
图4.2.2Prim算法运行显示界面
五.总结
通过本周的课程设计,我们小组终于圆满完成了课程设计的任务,我也有不少收获。既巩固和加深了对数据结构的理解,认识到《数据结构》是计算机专业一门重要的专业技术基础课程,还提高了我综合运用本课程所学知识的能力。而且,并不是单纯的看看教材就能解决我们的实际问题,所以还要去查找各种我们所需要的资料,所以这次课程设计也培养了我选用参考书,查阅手册及文献资料的能力。要完成一个课程设计的课题并不是一次就能编译成功的,中间会出现很多的大问题小问题,改错是个很繁琐的问题。通过这次课程设计培养了我独立思考,深入研究,分析问题,解决问题的能力。
void DeleteInfo(MGraph &G);//释放堆内存上动态申请的空间
2.3
创建用邻接矩阵表示的城市道路网
输入城市数G.vexnum、
道路数G.arcnum
输入城ቤተ መጻሕፍቲ ባይዱ名G.vexs[i]
输入表示道路的两个城市及道路值G.arcs[i][j].adj
返回OK
2.3.1创建邻接矩阵的流程图(N-S图)
4.1.2 Prim算法
Prim算法的思路是逐步将城市纳入生成树中,这里面的关键步骤是要找到下一个城市。于是通过讨教别人,写了Status Minimum(closedge closeEdge, int n)
函数,这样就可以在辅助数组中找到道路值最小的道路的两点城市了。
4.2
图4.2.1邻接矩阵初始化运行显示界面
在以后的学习过程中我将要注意以下几点:1、认真上好专业实验课,多在实践中锻炼自己。2、写程序的过程要考虑周到,严密。3、在做设计的时候要有信心,有耐心,切勿浮躁。4、认真的学习课本知识,掌握课本中的知识点,并在此基础上学会灵活运用。5、在课余时间里多写程序,熟练掌握在调试程序的过程中所遇到的常见错误,以便能节省调试程序的时间。
int main(int argc, char * argv[]);//主函数
Status LocateVex(MGraph G, VertexTypev);//判断城市v在网G中的位置
Status CreateUDN(MGraph &G);//创建网G的邻接矩阵
void DisplayNet(MGraph G);//以邻接矩阵的形式显示网G
GraphKindkind;//图的种类标志
}MGraph;
typedef struct//普里姆算法辅助数组的定义
{
VertexTypeadjvex;
VRTypelowcost;
}closedge[MAX_VERTEX_NUM];
#endif//结束if
2.
MGraph G;//网G,唯一的全局变量
for (i=0; i<城市数; ++i)
for(j=0; j<城市数; ++j)
初始化邻接矩阵:道路值=INFINITY;
for (i=0; i<城市数; ++i)
for(j=0; j<城市数; ++j)
输入两个城市表示道路,输入道路值;
}
3.2.2PRIM算法
**************************MiniSpanTree_PRIM*********
void MiniSpanTree_PRIM(MGraph G, VertexType u)
{
定义辅助数组:closedge closeEdge;
初始化:strcpy(closeEdge[j].adjvex, u);
closeEdge[j].lowcost = G.arcs[k][j].adj;
for (i=1; i<G.vexnum; ++i)
#define INFINITY32767//最大值∞
#define MAX_VERTEX_NUM20//最大顶点个数
typedef intVRType;//权值,即边的值
typedef charInfoType;//附加信息的类型,后面使用时会定义成一个指针
typedef charVertexType[MAX_VERTEX_NUM];//顶点类型
Prim算法
化辅助数组closeEdge
for (i=1; i<G.vexnum; ++i)
求下一个城市k = Minimum(closeEdge, G.vexnum)
输出找到的道路
标记城市,避免重复
输出总耗费
图2.3.2Prim算法流程图(N-S图)

3.1
为了用邻接矩阵表示图G,先是定义二维数组的每一个元素含道路值然后在图的定义中定义一个此二维数组的结构成员。并且在图中还定义一个用来存放城市的一维数组及int型的城市数级道路数。
Status LocateVex(MGraph G, VertexType v);
{
while (strcmp(G.vexs[i], v)) {i++;}
返回i;
}
****************CreateUDN*************************
{
输入城市数、道路数;
for (i=0; i<城市数; ++i)输入城市名;
1.2.3最小生成树中包括的边及其权值,并显示得到的最小生成树的总代价。
1.
输入城市数、道路数→输入城市名→输入道路信息→执行Kruskal 算法→执行 Prim算法→输出最小生成树
二.
2.1
#ifndef ADJACENCYMATRIXED//防止该头文件被重复引用
#define ADJACENCYMATRIXED//而引起的数据重复定义
//根据顶点的类型,可重载此函数。目前为char
int i=0;
while (strcmp(G.vexs[i], v)) {i++;}
return i;
}
Status CreateGraph(MGraph &G)
{
//采用数组(邻接矩阵)表示法,构造图G.
G.kind = UDN;//默认构造无向网
Status Minimum(closedge closeEdge, int n);//Prim算法中求下一个城市的函数
void DeleteInfo(MGraph &G);//释放堆内存上动态申请的空间
int main(int argc, char * argv[])
{
CreateGraph(G);
#include "TypeDefine.h"
#include "AdjacencyMatrix.h"
#include "InitializeFunction.h"
#include "MiniSpanTree_KRUSKAL.h"
#include "MiniSpanTree_PRIM.h"
#include "DisplayNet.h"
if ((closeEdge[i].lowcost != 0) && (minTemp > closeEdge[i].lowcost))
返回该城市在G中的位置
}

4.1
4.1.1邻接矩阵初始化
本函数的主要功能是对无向网进行邻接矩阵的初始化。构造这种具有n个顶点和e条边的无向网时,关键需要考虑其时间复杂度O(n^+e*n),其中对邻接矩阵G.arcs的初始化花费了O(n^)的时间。
DisplayNet(G);
MiniSpanTree_KRUSKAL(G);
MiniSpanTree_PRIM(G, G.vexs[0]);
DeleteInfo(G);
cout<<endl<<endl;
system("pause");
return 0;
}
//intializeFunction.h
Status CreateDG(MGraph &G){return 0;};
{
在其余G.vexnum-1个城市中找到离辅助数组中标记的道路最小值;
相关文档
最新文档