高三数学考试卷-含答案
高三数学考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。
12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。
13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。
14. 若复数z=3+4i,则|z|=______。
15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。
上海市青浦高级中学2024-2025学年高三上学期9月考试数学试卷(含答案)

上海市青浦高级中学2024学年第一学期9月质量检测高三 数学试卷考试时间:120分钟 满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.直线的倾斜角大小为__________.2.在的展开式中,含项的系数为__________.3.已知集合,集合,则__________.4.若关于x ,y 的方程组有唯一解,则实数a 满足的条件是__________.5.已知x ,,则“”是“”的____________________条件.6.已知,的最小值为__________.7.从1,2,3,4,5这五个数字中任意选取两个不同的数字组成一个两位数,则这个两位数是偶数的概率为__________.8.已知函数,且,则方程的解是__________.9.已知集合,,若,则m 的取值范围是__________.10.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判,则前4局中乙恰好当一次裁判的概率是__________.11.设O 为坐标原点,P 是以F 为焦点的抛物线上任意一点,M 是线段PF 上的点且,则直线OM 斜率的取值范围是__________.12.对于定义在D 上的函数,若同时满足:(1)对任意的,均有;(2)对任意的,存在,且,使得成立,则称函数10x +=51x x ⎛⎫+ ⎪⎝⎭3x 211x A x x ⎧⎫=≤⎨⎬-⎩⎭{1,0,1,2,3}B =-A B = 2436x y x ay +=⎧⎨+=⎩y ∈R ||||||x y x y -=+0xy <1ab =2249a b +()21xf x -=+2log (1),0()(),0x x g x f x x +≥⎧=⎨-<⎩()2g x =5322A x x ⎧⎫=-≤⎨⎬⎩⎭{13,}B x m x m m =+≤≤∈R ∣A B A = 1222(0)y px p =>4PM MF = ()y f x =x D ∈()()0f x f x -+=1x D ∈2x D ∈21x x ≠-()()1122f x x x f x -=-()y f x =为“等均”函数.下列函数中:①;②;③;④,“等均”函数的序号是__________.二、选择题(本大题共有4题,满分18分.第13-14题每题4分,第15-16题每题5分)13.若实数a ,b 满足,则下列不等式中恒成立的是()A .B.C .D .14.在2022北京冬奥会单板滑雪U 型场地技巧比赛中,6名评委给A 选手打出了6个各不相同的原始分,经过“去掉其中一个最高分和一个最低分”处理后,得到4个有效分,则经处理后的4个有效分与6个原始分相比,一定会变小的数字特征是()A .平均数B .中位数C .众数D .方差15.如图所示,在正方体中,M 是棱上一点,若平面与棱交于点N ,则下列说法中正确的是( )A .存在平面与直线垂直B .四边形可能是正方形C .不存在平面与直线平行D .任意平面与平面垂直16.已知无穷数列的各项均为实数,为其前n 项和,若对任意正整数都有,则下列各项中可能成立的是( )A .,,,…,为等差数列,,,,…,为等比数列B .,,,…,为等比数列,,,,…,为等差数列C .,,,…,为等差数列,,,…,,…为等比数列D .,,,…,为等比数列,,,…,,…为等差数列三、解答题(本大题共有5题,满分78分)17.(本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)如图,在四棱锥中,平面ABCD ,底面ABCD 为梯形,,,()f x x =1()1x f x x -=+2()f x x =()sin f x x =0a b >>22a b +>22a b +<a b +>a b +<1111ABCD A B C D -1AA 1MBD 1CC 1MBND 1BB 1MBND 1MBND 11A C 1MBND 1ACB {}n a n S 2024k >1k k S S +>1a 3a 5a 21n a -2a 4a 6a 2n a 1a 3a 5a 21n a -2a 4a 6a 2n a 1a 2a 3a 2024a 2024a 2025a n a 1a 2a 3a 2024a 2024a 2025a n a P ABCD -PD ⊥//AB CD 60BAD ∠=︒,.(1)在侧面PBC 中能否作出一条线段,使其与AD 平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由;(2)若四棱锥的体积是,求直线BP 与平面PCD 所成角的大小.18.(本题满分14分,本题共有2个小题,第1小题满分7分,第2小题满分7分)记为数列的前n 项和,已知,是公差为的等差数列.(1)求的通项公式;(2)证明:.19.(本题满分14分,本题共有2个小题,第1小题满分7分,第2小题满分7分)汽车智能辅助驾驶已得到广泛应用,其自动刹车的工作原理是用雷达测出车辆与前方障碍物之间的距离(并结合车速转化为所需时间),当此距离等于报警距离时就开始报警提醒,等于危险距离时就自动刹车.某种算法(如下图所示)将报警时间划分为4段,分别为准备时间、人的反应时间、系统反应时间、制动时间,相应的距离分别为、、、.当车速为v (米/秒),且时,通过大数据统计分析得到下表(其中系数k 随地面湿滑程度等路面情况而变化,)阶段0、准备1、人的反应2、系统反应3、制动时间秒秒2AD AB ==4CD =P ABCD -n S {}n a 11a =n n S a ⎧⎫⎨⎬⎩⎭13{}n a 121112na a a +++< 0t 1t 2t 3t 0d 1d 2d 3d [0,33.3]v ∈[0.5,0.9]k ∈0t 10.8t =20.2t =3t距离米米(1)请写出报警距离d (米)与车速v (米/秒)之间的函数关系式,并求时,若汽车达到报警距离时人和系统均不采取任何制动措施,仍以此速度行驶,则汽车撞上固定障碍物的最短时间.(精确到0.1秒)(2)若要求汽车不论在何种路面情况下行驶,报警距离均小于80米,则汽车的行驶速度应限制在多少米/秒以下?合多少千米/小时〈精确到1千米/小时〉?20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知椭圆的左、右焦点分别为、、点在椭圆上,且.(1)求椭圆的方程;(2)过点作斜率为k 的直线l 交椭圆于M 、N 两点,若,O 为坐标原点,求直线l 的方程;(3)点P 、Q 为椭圆上的两个动点,O 为坐标原点,若直线OP 、OQ 的斜率之积为,求证:为定值.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)设函数,直线l 是曲线在点处的切线.(1)当,求单调区间;(2)求证:l 不经过;(3)当时,设点,,,B 为l 与y 轴的交点,与分别表示和的面积.是否存在点A 使得成立?若存在,这样的点A 有几个?020d =1d 2d 23120d v k=()d v 0.9k =2222:1(0)x y a b a b Γ+=>>1F 2F T ⎛- ⎝124TF TF +=Γ(1,0)Γ35OM ON ⋅=- Γ14-22||||OP OQ +()ln(1)(0)f x x k x k =++≠()y f x =(,())(0)t f t t >1k =-()f x (0,0)1k =(,())(0)A t f t t >(0,())C f t (0,0)O ACO S △ABO S △ACO △ABO △215ACO ABO S S =△△上海市青浦高级中学2024学年第一学期9月质量检测高三 数学试卷考试时间:120分钟 满分:150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.2.53.4.5.必要不充分6.127.8.39.10.1112.①③二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.C 14.D 15.D 16.C三、解答题(本大题共有5题,满分78分)17.(本题满分14分,本题共有2个小题,第1小题满分6分,第2小题满分8分)解:(1)不能.因为梯形ABCD 中,,,,所以AD 不平行于BC ,则AD 与BC 必相交于一点,设为M ,面,在侧面PBC 中不能作AD 的平行线.(2)过点B 作于H ,连接PH ,因为平面ABCD ,平面ABCD ,所以,所以平面PCD ,所以PH 是BE 在平面PCD 内的射影,所以是直线BP 与平面PCD 所成角,因为中,,,所以是等边三角形,所以,,又因为,所以,所以,所以中,,又因为四棱锥的体积是所以,解得,所以中,,,直线BP 与平面PCD 所成角大小是18.(本题满分14分,本题共有2个小题,第1小题满分7分,第2小题满分7分)π6{1,0}-6a ≠2543m ≤58//AB CD 2AB =4CD =AD ∴ PBC M =∴BH CD ⊥PD ⊥BH ⊂PD PH ⊥BH ⊥BPH ∠ABD △2AB AD ==60BAD ∠=︒ABD △60ADB ∠=︒2BD =//AB CD 120ADC ∠=︒60BDC ∠=︒Rt BDH △BH =1DH =P ABCD -111(2332V Sh h ==⋅+=2h =Rt BPH △PH ==BH =tan BH BPH PH ∠===arctan解:(1),当时,,作差,累加得,满足,.(2),.19.(本题满分14分,本题共有2个小题,第1小题满分7分,第2小题满分7分)解:(1)由题意得,,当时,,(秒).(2)根据题意,要求对于任意,恒成立,即对于任意,,即恒成立,由得,,即,解得,(米/秒),(千米/小时),汽车的行驶速度应限制在20米/秒以下,合72千米/小时.20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解:(1)椭圆的左右焦点分别为、,点在椭圆上,且.,椭圆的方程.(2)设,,2233n n n n S n n S a a ++=⇒=2n ≥1113n n n S a --+=111n n a n a n -+=-1(1)2n a n n a +=1a n a (1)2n n n a +∴=11121n a n n ⎛⎫=- ⎪+⎝⎭1211112121na a a n ⎛⎫∴+++=-< ⎪+⎝⎭ 0123()d v d d d d =+++21()2020d v v v k ∴=++0.9k =2()2018v d v v =++20()1112 3.118v t v v =++≥+=+=[0.5,0.9]k ∈()80d v <[0.5,0.9]k ∈21208020v v k ++<2160120k v v <-[0.5,0.9]k ∈111,201810k ⎡⎤∈⎢⎥⎣⎦2160110v v ∴<-2106000v v +-<3020v -<<020v ∴≤<360020721000⨯=∴ 2222:1(0)x y a b a bΓ+=>>1F 2F T ⎛- ⎝Γ124TF TF +=21a b =⎧⎨=⎩∴2214x y +=()11,M x y ()22,N x y根据题意得,,与联立,整理可得,根据韦达定理可得①②将①代入②,解得,即直线l 的方程为或.(3)证明:设直线,联立方程组,得,,又直线,同理可得,为定值.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解:(1)当时,,得的单调增区间是,单调减区间是.(2),,,整理得,假设l 过原点,,设,,(1)y k x =-2214x y +=22(1)14y k x x y =-⎧⎪⎨+=⎪⎩()2222148440k x k x k +-+-=212221228144414k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩()()()()22212121212121231115OM ON x x y y x x k x k x k x x k x x k ⋅=+=+--=+-++=- 1k =±1y x =-1y x =-+:OP y kx =2244y kx x y =⎧⎨+=⎩22414x k =+()()222222241||114k OP x y k x k +∴=+=+=+1:4OQ y x k=-222161||41k OQ k +=+2222222244161205||||5414141k k k OP OQ k k k +++∴+=+==+++1k =-()(1)1x f x x x'=>-+()f x (0,)+∞(1,0)-()ln(1)(0)f x x k x k =++≠()11k f x x∴'=++:[ln(1)]1()1k l y t k t x t t ⎛⎫∴-++=+- ⎪+⎝⎭1ln(1)(0)11k kt y x k t k t t⎛⎫=+-++≠ ⎪++⎝⎭ln(1)0*1t t t -⇒++=+()ln(1)1t F t t t=+-+2211()01(1)(1)t F t t t t '=-=>+++所以在上严格增,,与*式矛盾.所以l 不经过原点.(3),,由(2)知时,,,,,设,,,极大值,极小值,又,所以在上有两个零点.存在点A 使得且点A 有两个.()F t (0,)+∞()0F t ∴>ln(1)1t t t∴+>+(,ln(1))A t t t ++(0,ln(1))C t t ++1k =0,ln(1)1t B t t ⎛⎫+- ⎪+⎝⎭215ACO ABO S S = △△112||||15||||22OC AC OB AC ∴⨯⋅=⨯2||15||OC OB ∴=15()213ln(1)1t g t t t t =-+++(0)t >222294(21)(4)()(1)(1)t t t t g t t t -+--'==++13613ln 022g ⎛⎫=-> ⎪⎝⎭(4)2013ln 50g =-<40(8)1613ln 903g =-+>()g t (0,)+∞∴215ACO ABO S S =△△。
高三数学考试试卷(含答案)

1高三数学考试试卷数学试题一、选择题(本大题共18小题,每小题3分,共54分.每小题列出的四个选项中只有一个是符合题目要求的,不选,多选,错选均不给分.)1. 已知集合{}10<≤=x x P ,{}32≤≤=x x Q .记Q P M Y =,则 A .{}M ⊆2,1,0 B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 3. 将不等式组⎩⎨⎧≥-+≥+-01,01y x y x 表示的平面区域记为Ω,则属于Ω的点是A .)1,3(-B .)3,1(-C .)3,1(D .)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 25. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .367. 若锐角α满足53)2πsin(=+α,则=αsinA .52 B .53 C .43 D .548.在三棱锥ABC O -中,若D 为BC 的中点,则= A .OB OC OA -+2121 B . OC OB OA ++2121 C .OA OC OB -+2121 D . OA OC OB ++21219. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是 A .{}n n b a ⋅ B .{}n n b a + C .{}1++n n b a D .{}1+-n n b aABCD 1A1D 1C 1B(第6题图)210.不等式1112<+--x x 的解集是 A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A .)2(+x f 为奇函数B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分 别为四个小正方形的内切圆,则图中某个圆的方程是 A .01222=++-+y x y x B .012222=+-++y x y x C .01222=-+-+y x y x D .012222=-+-+y x y x13. 设a 为实数,则“21aa >”是“a a 12>”的A .充分不必要条件B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=a A .41 B .43 C .1 D .3415. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A .乙甲乙甲,V V S S >>B . 乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<ABCDxyo(第12题图)a a a aa a 15题图①)a aa aaa 侧视图15题图②)316.如图,F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB的面积是△OPF 面积的25倍,则该椭圆的离心率是 A .52或53 B .51或54C .510或515 D .55或552 17.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A .1或3B . 2或3C . 2或4D .3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC .若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19. 已知函数1)3π2sin(2)(++=x x f ,则)(x f 的最小正周期是 ▲ ,)(x f 的最大值是 ▲ .20. 若平面向量,满足)6,1(2=+,)9,4(2-=+,则=⋅ ▲ . 21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ . 22.若不等式02)(22≥----a x a x x 对于任意R ∈x 恒成立,则实数a 的最小值是▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分)在等差数列{})N (*∈n a n 中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物ABCDEF(第18题图)(第16题图)4线上位于第一象限内的点.(Ⅰ) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(Ⅱ)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分) 如图,在直角坐标系xOy 中,已知点)0,2(A ,)3,1(B ,直线t x =)20(<<t 将△OAB 分成两部分,记左侧部分的多边形为Ω.设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(Ⅰ) 分别求函数)(t f 和)(t g 的解析式;(Ⅱ)是否存在区间),(b a ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b - 的最大值;若不存在,说明理由.ABxoyt x =(第25题图)xyO ABPD(第24题图)5数学试题答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(Ⅰ)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (Ⅱ)将(Ⅰ)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(Ⅰ)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(Ⅱ)由直线AD PA ,的位置关系知 t k k AD -=-=11.因为PB AD ⊥,所以 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(Ⅰ)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为 t t t 2,3,; 当21<<t 时,多边形Ω是四边形(如图②),边长依次为62),1(2),2(3,--t t t .所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(t t t tt tt g(Ⅱ)由(Ⅰ)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减.证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.(第25题图②)。
广东省佛山市顺德区普通高中2024-2025学年高三上学期教学质量检测数学试题一含答案

2024学年顺德区普通高中高三教学质量检测(一)数学试题(答案在最后)2024.11本试卷共4页,19小题,满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必填写答题卡上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卡的整洁.考试结束后,将答题卡交回.第I 卷(选择题共58分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足3i1z -=,则z =()A.2 B.1C.D.【答案】B 【解析】【分析】依题意可得z =,再根据复数代数形式的除法运算化简,最后再计算其模.【详解】因为i1z-=+,所以i 1i z --==-,所以1z =.故选:B2.已知集合{}Z |13A x x =∈-<,{}03B xx =≤≤∣,则A B = ()A.{}0,1,2,3 B.{}1,0,1,2- C.{}03xx ≤≤∣ D.{24}xx -<<∣【答案】A 【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得.【详解】由13x -<,即313x -<-<,解得24-<<x ,所以{}{}{}Z |13Z |241,0,1,2,3A x x x x =∈-<=∈-<<=-,又{}03B xx =≤≤∣,所以{}0,1,2,3A B = .故选:A3.“21a >,2log 1b >”是“24a b +>”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件、必要条件的定义及指数函数、对数函数的性质判断即可.【详解】由21a >可得0a >,由2log 1b >可得2b >,由24a b +>可得2a b +>,所以由“21a >,2log 1b >”推得出“24a b +>”,故充分性成立;由“24a b +>”推不出“21a >,2log 1b >”,如0a =,3b =,满足24a b +>,但是21a =,故必要性不成立;所以“21a >,2log 1b >”是“24a b +>”的充分不必要条件.故选:A4.已知单位向量a,b 满足1a b += ,则下列说法正确的是()A.,150a b =B.3a b -= C.向量a b +在向量a上的投影向量为2a D.12b a b ⎛⎫⊥+ ⎪⎝⎭【答案】D 【解析】【分析】根据数量积的运算律求出a b ⋅ ,即可求出,a b ,从而判断A ,再根据a b -=判断B ,根据投影向量的定义判断C ,计算12b a b ⎛⎫⋅+ ⎪⎝⎭ ,即可判断D.【详解】单位向量a,b 满足1a b += ,则()22221a ba ab b ++⋅==+ ,所以12a b ⋅=-r r ,所以1cos ,2a b a b a b⋅==-⋅,又0,180a b ≤≤ ,所以,120a b = ,故A 错误;a b -====,故B 错误;因为()2211122a b a a b a ⎛⎫+⋅=+⋅=+-= ⎪⎝⎭ ,所以向量a b + 在向量a 上的投影向量为()212a a b a a a+⋅⋅=,故C 错误;因为221111102222b a b b a b ⎛⎫⋅+=⋅+=-+⨯= ⎪⎝⎭ ,所以12b a b ⎛⎫⊥+ ⎪⎝⎭ ,故D 正确.故选:D5.函数()cos2cos f x x x =-是()A.偶函数,且最小值为-2B.偶函数,且最大值为2C.周期函数,且在π0,2⎛⎫⎪⎝⎭上单调递增 D.非周期函数,且在π,π2⎛⎫⎪⎝⎭上单调递减【答案】B 【解析】【分析】根据函数的奇偶性判定方式以及函数的最值判断A ,B ;根据周期性判断,结合复合函数的单调性判断C ,D.【详解】()cos2cos f x x x =-定义域为R ,关于原点对称,()()()()cos 2cos cos 2cos f x x x x x f x -=---=-=,所以()f x 为偶函数,又()2cos2cos 2cos cos 1f x x x x x =-=--,令cos x t =,11t -≤≤,()221f t t t =--,当14t =时,即1cos 4x =,()f x 有最小值,最小值为98-,当1t =-时,即cos 1x =-时,()f x 有最大值,最大值为2,故A 错误,故B 正确;因为()()()()2πcos22πcos 2πcos 2cos f x x x x x f x +=+-+=-=,所以()f x 为周期函数,因为cos y x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,在π,π2⎛⎫ ⎪⎝⎭上单调递减,当π0,2x ⎛⎫∈ ⎪⎝⎭,()22cos cos 1f x x x =--,令cos x t =,01t <<,()221f t t t =--,()f t 在10,4⎛⎫ ⎪⎝⎭单调递减,在1,14⎛⎫⎪⎝⎭单调递增,当π,π2x ⎛⎫∈⎪⎝⎭,()22cos cos 1f x x x =--,令cos x t =,10t -<<,()221f t t t =--,()f t 在()1,0-单调递减,由复合函数的单调性知,()f x 在π0,2⎛⎫ ⎪⎝⎭上先减后增,在π,π2⎛⎫ ⎪⎝⎭上单调递增;故C ,D 错误,故选:B.6.印度数学家卡普列加在一次旅行中,遇到猛烈的暴风雨,他看到路边写有3025的一块牌子被劈成了两半,一半上写着30,另一半上写着25.这时,他发现302555+=,2553025=,即将劈成两半的数加起来,再平方,正好是原来的数字.数学家将3025等符合上述规律的数字称之为雷劈数(或卡普列加数).则在下列数组:92,81,52,40,21,14中随机选择两个数,其中恰有一个数是雷劈数的概率是()A.815B.35C.13D.0【答案】C 【解析】【分析】找出这6个数中的雷劈数,结合组合数公式求相应的概率.【详解】因为()2281981+==,所以81是雷劈数.其余的不是雷劈数.记:“从6个数中随机选择两个数,其中恰有一个数是雷劈数”为事件A ,则()1526C 51C 153P A ===.故选:C7.已知函数()()21,1,ax x af x x x a-+<⎧⎪=⎨-≥⎪⎩的值域为R ,则实数a 的取值范围是()A.(),0-∞ B.(],1-∞- C.[]1,1- D.[)1,0-【答案】D 【解析】【分析】分段求函数值域,根据原函数值域为R ,求实数a 的取值范围.【详解】若0a <,在(),a -∞上,函数1y ax =-+单调递增,所以()2,1y a∈-∞-;此时,函数()21y x =-在[],1a 上单调递减,在()1,+∞上单调递增,无最大值,所以[)0,y ∈+∞;因为函数()f x 的值域为R ,所以210a -≥,结合0a <得10a -≤<.若0a =,则()()21,01,0x f x x x <⎧⎪=⎨-≥⎪⎩的值域为[)0,+∞;若01a <<,在(),a -∞上,函数1y ax =-+单调递减,所以()21,y a ∈-+∞(210a ->);在[],1a 上,函数()21y x =-单调递减,在()1,+∞上单调递增,无最大值,所以[)0,y ∈+∞;所以函数()f x 的值域不可能为R ;若1a ≥,则函数在(),a -∞上,函数1y ax =-+单调递减,所以()21,y a ∈-+∞(210a -≤);在[),a +∞上,函数()21y x =-单调递增,())21,y a ⎡∈-+∞⎣,此时函数()f x 的值域不可能为R .综上可知:当10a -≤<时,函数()f x 的值域为R .故选:D8.记正项数列{}n a 的前n 项积为n T ,已知()12n n n a T a -=,若10011000n a <,则n 的最小值是()A.999B.1000C.1001D.1002【答案】C 【解析】【分析】由数列的前项积满足()12n n n a T a -=,可求得{}n T 是等差数列,并求得n T 的通项,进而得到{}n a 的通项,再由10011000n a <,即可求得正整数n 的最小值.【详解】∵n T 为正项数列{}n a 的前n 项积,()12n n n a T a -=,∴当1n =时,()11112T T T -=,113a T ==2n ≥时,1nn n T a T -=,又()12n n n a T a -=,∴11122211n nn nn n n n n n T T T T a T a T T T -----=-==,即12n n T T --=,∴{}n T 是首项为3,公差为2的等差数列,且32(1)21n T n n =+-=+.由()2n n n T a T -=,得21221n n n T n a T n +==--若10011000n a <,则211001211000n n +<-,∴2001,2n >所以,正整数n 的最小值为1001.故选:C.二、多项选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对得部分分,有选错的得0分.9.现有甲、乙两组数据,甲组数据为:1216,,,x x x ;乙组数据为:121639,39,,39x x x --- ,若甲组数据的平均数为m ,标准差为n ,极差为a ,第60百分位数为b ,则下列说法一定正确的是()A.乙组数据的平均数为39m -B.乙组数据的极差为3aC.乙组数据的第60百分位数为39b -D.乙组数据的标准差为n【答案】ABC 【解析】【分析】根据平均数、极差、标准差的性质及百分位数的定义判断即可.【详解】不妨设甲组数据从小到大排列为:1216,,,x x x ,则乙组数据从小到大排列为:121639,39,,39x x x --- ,因为甲组数据的平均数为m ,标准差为n ,极差为a ,第60百分位数为b ,则161a x x =-,又1660%9.6⨯=,所以10b x =,所以乙组数据的平均数为39m -,故A 正确;乙组数据的极差为()()161161393933a x x x x ----==,故B 正确;乙组数据的第60百分位数为109393b x -=-,故C 正确;乙组数据的标准差为3n ,故D 错误.故选:ABC10.在三棱台111ABC A B C -中,侧面11ACC A 是等腰梯形且与底面垂直,111A C =,1AA =,3AC BC ==,AB =)A.1A A BC ⊥B.11119A ABC B A B C V V --=C.1112A ABC B A CC V V --= D.三棱台111ABC A B C -的体积为136【答案】ABD 【解析】【分析】根据面面垂直证明线面垂直,再证线线垂直,可判断A 的真假;根据两个同高的三棱锥的体积之比等于它们的底面积之比,可判断BC 的真假;根据台体的体积公式求出台体体积,判断D 的真假.【详解】如图:对于A :在ABC V 中,3AC BC ==,AB =,所以90ACB ∠=︒,即AC BC ⊥.由平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,⊂BC 平面ABC ,所以⊥BC 平面11ACC A ,又1A A ⊂平面11ACC A ,所以1BC A A ⊥,故A 正确;对于B :因为111A C =,3AC =,且111A B C △∽ABC V ,所以11119A B C ABC S S =.又三棱锥1A ABC -和111B A B C -的高相同,所以11119A ABC B A B C V V --=,故B 正确;对于C :因为113AC A C =,所以1113A AC A C C S S = ,所以1113B A AC B A C C V V --=,即1113A ABC B A CC V V --=,故C 错误;对于D :因为三棱台的高为1,所以三棱台111ABC A B C -的体积为:119133226V ⎛=⋅++= ⎝,故D 正确.故选:ABD11.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若()()22f x f x +-=,()1g x -为偶函数,则下列说法一定正确的是()A.()()()0123f f f ++= B.()()4g x g x +=C.()()4f x f x += D.1322g g ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭【答案】ABD 【解析】【分析】根据奇函数和偶函数的定义,结合函数的周期性和对称性,即可判断.【详解】对A :令1x =,则()()112f f +=⇒()11f =;令0x =,则()()022f f +=.所以()()()0123f f f ++=,故A 正确;对B :因为()()22f x f x +-=,两边求导,得()()20g x g x --=即()()2g x g x =-;因数()1g x -为偶函数,所以()()11g x g x -+=--⇒()()24g x g x -=-+,所以()()4g x g x =-+,故()()4g x g x +=成立,故B 正确;对C :因为()()4g x g x +=,所以()()124f x c f x c ++=+⇒()()4f x f x c +=+,c 未必为0,故C 错误;对D :因为()()2g x g x =-,令12x =,则1322g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:ABD【点睛】结论点睛:若()f x ,()g x 的定义域均为R ,且()()g x f x '=,则:(1)若()f x 为奇函数,则()g x 为偶函数;若()f x 为偶函数,则()g x 为奇函数.反之也成立.(2)若()f x 为周期函数,则()g x 也是周期函数,且周期相同,反之未必成立.第II 卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.若3cos 4sin 5αα+=,则tan α=_____________.【答案】43【解析】【分析】由已知条件结合同角三角函数间的平方关系,求得sin cos αα,,进而可得解.【详解】联立223cos 4sin 5cos sin 1αααα+=⎧⎨+=⎩,得4sin 53cos 5αα⎧=⎪⎪⎨⎪=⎪⎩,因此sin 4tan cos 3ααα==.故答案为:4313.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,过2F 且垂直于x 轴的直线交椭圆于A 、B 两点,若1AF B ∆为等边三角形,则椭圆C 的离心率为_________.【答案】3【解析】【分析】由已知及1AF B ∆是等边三角形即可求得:23AF c =,13AF =,利用椭圆定义列方程可得:21233AF AF a +=+=a =,问题得解.【详解】如图,依据题意作出图形,由题可得:122F F c =,又1AF B ∆为等边三角形,由椭圆的对称性可得:126AF F π∠=,又12AB F F ⊥计算可得:2233AF c =,1433AF c =由椭圆定义可得:2133233AF AF a +=+=整理得:3c a =所以33c e a ==【点睛】本题主要考查了椭圆的简单性质,还考查了三角形中的边、角计算,还考查了椭圆的定义应用,考查方程思想及计算能力,属于中档题.14.现有甲、乙、丙等7位同学,各自写了一封信,然后都投到同一个邮箱里.若甲、乙、丙3位同学分别从邮箱里随机抽取一封信,则这3位同学抽到的都不是自己写的信的不同取法种数是__________(用数字作答).【答案】134【解析】【分析】设甲、乙、丙3位同学的信件分别为A 、B 、C ,对A 、B 、C 取到的个数分四种情况讨论,按照分类、分步计数原理计算可得.【详解】设甲、乙、丙3位同学的信件分别为A 、B 、C ,若A 、B 、C 都没有取到,则有34A 24=种不同的取法;若A 、B 、C 取到一个,则有112324C A A 72=种不同的取法;若A 、B 、C 取到两个,则有()21113244C A A C 36+=种不同的取法;若A 、B 、C 取到三个,则有12C 2=种不同的取法;综上可得一共有2472362134+++=种不同的取法.故答案为:134四、解答题:本大题共5小题,满分77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin B C A ⋅=,2a =.(1)求ABC V 的面积S ;(2)若2212b c +=,求A .【答案】(1)2(2)π4【解析】【分析】(1)利用正弦定理得到sin 2b C a ⋅==,从而得到2sin C b=,再由面积公式计算可得;(2)由余弦定理得到cos 4bc A =,从而得到2cos bc A a =,再由正弦定理将边化角,即可求出tan A ,从而得解.【小问1详解】因为sin sin sin B C A ⋅=,2a =,由正弦定理可得sin 2b C a ⋅==,所以2sin C b=,所以112sin 2222ABC S ab C b b==⨯⨯= ;【小问2详解】因为2222cos a b c bc A =+-,又2212b c +=,2a =,所以4122cos bc A =-,所以cos 4bc A =,则2cos bc A a =,由正弦定理可得2sin sin co s s in A B C A =,又sin sin sin B C A ⋅=,所以2sin cos sin A A A =,显然sin 0A >,所以cos sin A A =,则tan 1A =,又()0,πA ∈,所以π4A =.16.如图,四棱锥P ABCD -的底面是正方形,且2AB =,PA PB ⊥.四棱锥P ABCD -的体积为43.(1)证明:平面PAB ⊥平面ABCD ;(2)求平面PAB 与平面PCD 夹角的余弦值.【答案】(1)证明见解析(2)55【解析】【分析】(1)取AB 的中点O ,连接OP ,即可得到1PO =,设P 到平面ABCD 的距离为h ,根据锥体的体积公式求出1h =,即可得到⊥PO 平面ABCD ,从而得证;(2)取CD 的中点,连接OE ,建立空间直角坐标系,利用空间向量法计算可得.【小问1详解】取AB 的中点O ,连接OP ,因为2AB =,PA PB ⊥,所以112PO AB ==,又四棱锥P ABCD -的底面是正方形,所以224ABCD S ==,设P 到平面ABCD 的距离为h ,则1144333AB P ABCD CD V hS h -==⨯⨯=,所以1h =,所以PO h =,即⊥PO 平面ABCD ,又PO ⊂平面PAB ,所以平面PAB ⊥平面ABCD;【小问2详解】取CD 的中点,连接OE ,则//OE BC ,即OE AB ⊥,如图建立空间直角坐标系,则0,0,1,()1,2,0C ,()1,2,0D -,所以()2,0,0DC = ,()1,2,1PC =-,设平面PCD 的法向量为(),,n x y z = ,则2020n DC x n PC x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩,取()0,1,2n = ,又平面PAB 的一个法向量为()0,1,0m =,设平面PAB 与平面PCD 夹角为θ,则cos 5m n m n θ⋅===⋅ ,所以平面PAB 与平面PCD夹角的余弦值为5.17.已知函数()()()2e21e 2210xx f x a ax a a =-++++>.(1)求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的单调性;(3)若函数()f x 存在两个零点1x ,2x ,且120x x +>,求实数a 的取值范围.【答案】(1)0y =(2)答案见解析(3)()1,+∞【解析】【分析】(1)求出()0f ,再求出导函数,即可得到切线的斜率,从而求出切线方程;(2)由(1)可得()()()12e exxf x a=--',再分1a =、1a >、01a <<三种情况讨论,分别求出函数的单调区间;(3)由()00f =,可得()f x 必有一个零点为0,再结合(2)讨论可得.【小问1详解】因为()()()2e21e 2210xx f x a ax a a =-++++>,所以()00f =,()()22e21e 2xx f x a a '=-++,则()00f '=,所以函数()f x 在0x =处的切线方程为0y =;【小问2详解】函数()()()2e 21e 2210xx f x a ax a a =-++++>的定义域为R ,且()()()()22e21e 22e e 1xx x x f x a a a '=--+=-+,当1a =时,()()22e 10x f x '=-≥恒成立,所以()f x 在R 上单调递增;当1a >时,则当ln x a >或0x <时()0f x '>,当0ln x a <<时()0f x '<,所以()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减;当01a <<时,则当0x >或ln x a <时()0f x '>,当ln 0a x <<时()0f x '<,所以()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减;综上可得,当1a =时,()f x 在R 上单调递增;当1a >时,()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减;当01a <<时,()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减.【小问3详解】因为()00f =,()f x 必有一个零点为0,由(1)可得,当1a =时()f x 只有一个零点,不符合题意;当1a >时,()f x 在(),0-∞,()ln ,a +∞上单调递增,在()0,ln a 上单调递减,显然()()ln 00f a f <=,当()ln 21x a >+⎡⎤⎣⎦时()e 21x a >+,则()e 210xa -+>,e 0x>,20ax >,所以()()()2e21e 221e 21e 2210xx x xf x a ax a a ax a ⎡⎤=-++++=-++++>⎣⎦,所以()f x 在()ln ,a +∞上存在一个零点,此时()f x 有两个零点1x ,2x (不妨令12x x <),且10x =,()2ln ,x a ∈+∞,即20x >,满足120x x +>;当01a <<时,()f x 在(),ln a -∞,()0,∞+上单调递增,在()ln ,0a 上单调递减,所以()f x 在()0,∞+不存在零点,且一个零点为0,则另一零点不可能大于0,此时不满足120x x +>,故舍去;综上可得实数a 的取值范围为()1,+∞.18.密室逃脱是当下非常流行的解压放松游戏,现有含甲在内的7名成员参加密室逃脱游戏,其中3名资深玩家,4名新手玩家,甲为新手玩家.(1)在某个游戏环节中,需随机选择两名玩家进行对抗,若是同级的玩家对抗,双方获胜的概率均为12;若是资深玩家与新手玩家对抗,新手玩家获胜的概率为13,求在该游戏环节中,获胜者为甲的概率;(2)甲作为上一轮的获胜者参加新一轮游戏:如图,有两间相连的密室,设两间密室的编号分别为①和②.密室①有2个门,密室②有3个门(每个门都可以双向开),甲在每个密室随机选择1个门出去,若走出密室则挑战成功.若甲的初始位置为密室①,设其挑战成功所出的密室号为()1,2X X =,求X 的分布列.【答案】(1)542(2)分布列见解析【解析】【分析】(1)先求出7人中随机选择2人的情况数和包含甲的情况数,分析得到6种情况中,甲和资深玩家对抗的情况有3种,和同级的玩家对抗情况有3种,分两种情况,求出甲获胜的概率,相加即可;(2)设1P 为甲在密室①,且最终从密室①走出密室,挑战成功的概率,2P 为甲在密室②,且最终从密室①走出密室,挑战成功的概率,分析得到两个方程,求出135P =,从而得到()315P X ==和()225P X ==,得到分布列.【小问1详解】7人中随机选择2人,共有27C 21=种情况,其中含甲的情况有16C 6=种,6种情况中,甲和资深玩家对抗的情况有3种,和同级的玩家对抗情况有3种,则甲和资深玩家对抗并获胜的概率为31121321⨯=,和同级的玩家对抗并获胜的概率为31321242⨯=,故在该游戏环节中,获胜者为甲的概率为135214242+=;【小问2详解】设1P 为甲在密室①,且最终从密室①走出密室,挑战成功的概率,2P 为甲在密室②,且最终从密室①走出密室,挑战成功的概率,考虑1P ,需考虑甲直接从a 号门走出密室或者进入密室②且最终从密室①走出密室,故121122P P =+①,考虑2P ,则甲从b 号门进行密室①,且从密室①走出密室,故2113P P =②,联立①②,可得135P =,所以()1315P X P ===,故()322155P X ==-=,故分布列如下:X12P352519.已知数列{}n a 的前n 项和为n S ,且23n n S a n =+-.(1)求数列{}n a 的通项公式;(2)设11,12,11k n n k k k n a b b k a n a -+=-⎧=⎨+-<<-⎩,*N k ∈(i )当2k ≥,11k n a +=-时,求证:()11n k n b a b -≥-⋅;(ii )求1n S nii b -=∑.【答案】(1)121n n a -=+(2)(i )证明见解析;(ii )114399n n ⎛⎫-⨯+ ⎪⎝⎭【解析】【分析】(1)根据数列的前n 项和,可构造数列的递推公式,再构造等比数列,可求数列的通项公式.(2)先利用等差数列的前n 项和公式求12121k k i i b --=+∑,因为1n S ni i b -=∑()11141n nk i k i k -===+-∑∑114nk k k -==⋅∑,再利用错位相减法求和.【小问1详解】当1n =时,11213=+-a a ⇒12a =.当2n ≥时,23n n S a n =+-,1124n n S a n --=+-,两式相减得:1221n n n a a a -=-+⇒121n n a a -=-⇒()1121n n a a --=-.所以{}1n a -是以111a -=为首项,以2为公比的等比数列,所以112n n a --=⇒121n n a -=+.当1n =时,上式也成立.所以数列{}n a 的通项公式为:121n n a -=+【小问2详解】由题意:111,22,22k n k kn k n b b k n ---⎧==⎨+<<⎩,*N k ∈(i )当2k ≥,11k n a +=-时,1n b k =+,112k k a --=,()111221222k k k n b k k k k ---=+--⨯=⨯-.因为()11n k n b a b ---⋅()112212k k k k k --=⨯--+⋅()112k k k -=-⋅-,因为2k ≥,所以()()1122120k k k k k k --⋅-≥--=-≥,所以:()11n k n b a b -≥-⋅.(ii )因为()111222112nni n n i S n n n -=-=+=+=+--∑,所以21n n S n -=-.()()()()11121121212221222k k k k k i i b k k k -----=+--=-++⨯∑()141k k -=-,所以1n S ni i b -=∑()11141nnk i k i k -===+-∑∑114nk k k -==⋅∑设01211424344n n T n -=⨯+⨯+⨯++⋅ ,则()12141424144n nn T n n -=⨯+⨯++-⋅+⋅ 两式相减得:01134444n n n T n --=+++-⋅ 11433n n ⎛⎫=-⋅- ⎪⎝⎭,所以114399n n n T ⎛⎫=-⨯+⎪⎝⎭.即1n S ni i b -=∑114399n n ⎛⎫=-⨯+ ⎪⎝⎭.【点睛】关键点点睛:(1)当122k k n -<<时,数列{}n b 是首项为2k k +,公差为2k 的等差数列,项数为:1122121k k k ----=-.(2)当数列是“等差⨯等比”形式时,其前n 项和用“错位相减法”求和.。
福建省部分达标高中2024-2025学年高三上学期11月期中考试 数学含答案

高三半期考数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试卷主要考试内容:集合与常用逻辑用语、等式与不等式、函数与导数、三角函数与解三角形、平面向量与复数。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{13}A x x =-<≤∣,{}1,2,3,4B =,则A B = ()A .{}2,3B .{}1,2C .{}1,2,3D .{}12.函数41tan 3y x π⎛⎫=-⎪⎝⎭的最小正周期为()A .4B .22πC .8D .24π3.在中国传统的十二生肖中,马、牛、羊、鸡、狗、猪为六畜,则“甲的生肖不是马”是“甲的生肖不属于六畜”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知复数()32z =-+,则z 的虚部为()A .-B .C .10-D .105.在梯形ABCD 中,5BC AD = ,AC 与BD 交于点E ,则ED =()A .1166AD AB-B .1177AD AB-C .1166AB AD-D .1177AB AD-6.将函数()cos y x ϕ=+图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象.若()y f x =的图象关于点7,03π⎛⎫- ⎪⎝⎭对称,则ϕ的最小值为()A .3πB .23πC .6πD .56π7.已知22111x y+=,则221169x y --的最大值为()A .35-B .49-C .42-D .48-8.若2sin cos 2tan3sin cos 1tan 3αααααα-=+-,则α的值可以为()A .12π-B .20π-C .10πD .5π二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()f x 与()g x 分别为定义在R 上的偶函数、奇函数,则函数()()()h x f x g x =的部分图象可能为()A .B .C .D .10.如图,在ABC 中,3AB AC ==,2BC =,点D ,G 分别边AC ,BC 上,点E ,F 均在边AB 上,设DG x =,矩形DEFG 的面积为S ,且S 关于x 的函数为()S x ,则()A .ABC 的面积为B .()13S =C .()S x 先增后减D .()S x 11.已知向量a ,b ,c 满足6a = ,1b = ,,3a b π= ,()()3c a c b -⋅-= ,则()A .a b -=B .cC .a c - 的最小值为2D .a c - 的最大值为62三、填空题:本题共3小题,每小题5分,共15分.12.log =________.13.已知14ω>,函数()sin 4f x x π⎛⎫=- ⎪⎝⎭在[]0,ωπ上单调递增,则ω的最大值为________.14.已知函数()e x x f x m =-,()2exg x m =-,若()f x 与()g x 的零点构成的集合的元素个数为3,则m 的取值范围是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin cos sin sin c A B a B C =.(1)求角B ;(2)若3a =,ABC 的面积为92,求b .16.(15分)已知函数()3f x x x =--.(1)求曲线()y f x =在点()()4,4f 处的切线方程;(2)若()ln f x m >恒成立,求m 的取值范围.17.(15分)已知函数()14sin sin 3f x x x π⎛⎫=--⎪⎝⎭.(1)将()f x 化成()()sin 0,0,2f x A x B A πωϕωϕ⎛⎫=++>><⎪⎝⎭的形式;(2)求()f x 在0,4π⎡⎤⎢⎥⎣⎦上的值域;(3)将()f x 的图象向左平移6π个单位长度后得到函数()h x 的图象,求不等式()0h x ≥的解集.18.(17分)已知函数()f x ,()g x 满足()2e exxf x ax -=-+,()()()2212e 1e 2e 2e x x f x g x a -⎛⎫+=-+-+ ⎪⎝⎭.(1)若()f x 为R 上的增函数,求a 的取值范围.(2)证明:()f x 与()g x 的图象关于一条直线对称.(3)若a ≥-,且关于x 的方程()()()e 22xf x f mg x +-=-在[]1,1-内有解,求m 的取值范围.19.(17分)若存在有限个0x ,使得()()00f x f x -=,且()f x 不是偶函数,则称()f x 为“缺陷偶函数”,0x 称为()f x 的偶点.(1)证明:()5h x x x =+为“缺陷偶函数”,且偶点唯一.(2)对任意,x y ∈R ,函数()f x ,()g x 都满足()()()()22f x f y g x g y x y++-=+①若()g x y x=是“缺陷偶函数”,证明:函数()()F x xg x =有2个极值点.②若()32g =1x >时,()()21ln 12g x x >-.参考数据:1ln0.4812+≈ 2.236≈.高三半期考数学试卷参考答案1.C因为{13}A x x =-<≤∣,{}1,2,3,4B =,所以{}1,2,3A B = .2.D 函数41tan 3y x π⎛⎫=- ⎪⎝⎭的最小正周期244T πππ==.3.B若甲的生肖不是马,则甲的生肖未必不属于六畜;若甲的生肖不属于六畜,则甲的生肖一定不是马.故“甲的生肖不是马”是“甲的生肖不属于六畜”的必要不充分条件.4.A因为()()()321210z =-+=--+=+,所以z的虚部为-.5.A 因为5BC AD = ,所以AD BC ,且15DE AD BE BC ==,所以()11116666ED BD AD AB AD AB ==-=- .6.A 依题意可得()1cos 2f x x ϕ⎛⎫=+⎪⎝⎭.因为()y f x =的图象关于点7,03π⎛⎫- ⎪⎝⎭对称,所以()17232k k ππϕπ⎛⎫⨯-+=+∈ ⎪⎝⎭Z ,即()53k k πϕπ=+∈Z ,所以ϕ的最小值为5233πππ-=.7.D因为22111x y+=,所以()2222222222119161691692525249y x x y x y xy x y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当2222916y x x y=,即274x =,273y =时,等号成立.故221169x y --的最大值为14948-=-.8.B因为sin cos tan 1tan sin cos tan 14αααπαααα--⎛⎫==-⎪++⎝⎭,22tan3tan61tan 3ααα=-,且2sin cos 2tan3sin cos 1tan 3αααααα-=+-,所以()64k k πααπ-=+∈Z ,所以()205k k ππα=--∈Z ,所以α的值可以为20π-.9.AC因为()f x 与()g x 分别为定义在R 上的偶函数、奇函数,所以()()f x f x -=,()()g x g x -=-,所以()()()()h x f x g x h x -=--=-,则()h x 为奇函数,其图象关于原点对称,故选AC .10.ACD取BC 的中点N ,连接AN ,则AN BC ⊥,且AN ==,所以ABC的面积为122⨯⨯=,A 正确.过C 作CH AB ⊥,垂足为H ,设CH 与DG 交于点M ,由等面积法可得1 2AB CH⋅=3CH=.由CM DGCH AB=,得9CH DGCMAB⋅==,则3MH CH CM=-=9-,所以()()2233992S x DG DE DG MH x x x⎛⎫=⋅=⋅=-=--+<⎪⎝⎭3)x<,则()19S=,则() S x在30,2⎛⎫⎪⎝⎭上单调递增,在3,32⎡⎫⎪⎢⎣⎭上单调递减,所以()S x,B错误,C,D均正确.11.BC a b-==A错误.建立平面直角坐标系xOy,不妨假设()6,0a OA==,1,22b OB⎛⎫== ⎪⎪⎝⎭,设(),c OC x y==,则()6,c a x y-=-,1,22c b x y⎛-=--⎝⎭,代入()()3c a c b-⋅-=,整理得221343444x y⎛⎛⎫-+-=⎪⎝⎭⎝⎭,所以点C在以13,44M⎛⎫⎪⎪⎝⎭为圆心,2为半径的圆上.因为该圆经过坐标原点,所以cB正确.因为22133143604444⎛⎛⎫-+-=<⎪⎝⎭⎝⎭,所以点A在圆M内,因为a c AC-=,2AM=,所以a c-的最小值为43312,a c-的最大值为43312+,C正确,D错误.12.1525221515log log8log8222===.13.34因为[]0,x ωπ∈,所以,444x πππωπ⎡⎤-∈--⎢⎣⎦,又14ω>,所以04πωπ->,所以42ππωπ-≤,解得34ω≤,则ω的最大值为34.14.222210,,e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ 令()0f x =,得e x x m =,令()0g x =,得2e xm =.设()e x x h x =,()1exxh x -=',则()h x 在()0,1上单调递增,在()1,+∞上单调递减,所以()()max11e h x h ==.当0x >时,()0h x >,所以结合()h x ,()2exk x =的图象(图略)及()()22122e e h k ==<,得m 的取值范围是222210,,e e e ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.15.解:(1)因为sin cos sin sin c A B a B C =,所以sin sin cos sin sin sin C A B A B C =,2分因为sin 0A >,sin 0C >,所以cos sin B B =,4分所以tan 1B =.6分又()0,B π∈,所以4B π=.7分(2)因为193sin 242c π⨯=,所以c =,9分所以2222cos 918292b ac ac B =+-=+-⨯=,12分解得3b =.13分16.解:(1)()231f x x=--'2分所以()4481146f =--='.3分因为()4644852f =--=,所以曲线()y f x =在点()()4,4f 处的切线方程为()52464y x -=-,即46132y x =-.6分(2)()231f x x=--'()0,+∞上单调递增.8分因为()10f '=,9分所以当()0,1x ∈时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,11分所以()()min ln 14m f x f <==-,13分解得410e m <<,故m 的取值范围为410,e ⎛⎫ ⎪⎝⎭.15分17.解:(1)()2114sin 4sin 12sin cos 22f x x x x x x x ⎛⎫=-⨯-⨯=-+ ⎪ ⎪⎝⎭1分1cos212cos22sin 226xx x x x π-⎛⎫=-⨯+=+=+ ⎪⎝⎭.4分(2)由0,4x π⎡⎤∈⎢⎥⎣⎦,得22,663x πππ⎡⎤+∈⎢⎥⎣⎦.5分当266x ππ+=时,()f x 取得最小值,最小值为2sin 16π=;6分当262x ππ+=时,()f x 取得最大值,最大值为2sin 22π=.7分故()f x 在0,4π⎡⎤⎢⎥⎣⎦上的值域为[]1,2.8分(3)由题意可得()2sin 22sin 22cos26662h x f x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=+= ⎪ ⎪ ⎪⎢⎝⎭⎝⎭⎝⎭⎣⎦,11分则不等式()0h x ≥即为2cos20x ≥,得()22222k x k k ππππ-+≤≤+∈Z ,13分解得()44k x k k ππππ-+≤≤+∈Z ,即不等式()0h x ≥的解集为(),44k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z .15分18.(1)解:因为()f x 为R 上的增函数,所以()2e e 0x x f x a -=++≥'恒成立,2分因为()f x a a ≥=',3分当且仅当2e e xx-=,即1ln22x =-时,等号成立,4分所以0a ≥,即a ≥-,a 的取值范围为)⎡-+∞⎣.5分(2)证明:因为()2e exxf x ax -=-+,()()()2212e 1e 2e 2e x x f x g x a -⎛⎫+=-+-+ ⎪⎝⎭,所以()222e e 2x x g x a ax --=-+-,7分所以()()()()222ee 22x xg x a x f x ---=-+-=-,9分则()f x 与()g x 的图象关于直线1x =对称.10分(3)解:因为()()()e 22xf x f mg x +-=-,所以由(2)知()()()e 2xf x f m f x +-=,即()()e xf m f x -=.12分由(1)知,当a ≥-时,()f x 为R 上的增函数,所以e xm x -=,即e x m x =-.13分设()()e 11x h x x x =--≤≤,则()()e 111x h x x '=--≤≤,当10x -≤<时,()0h x '<,当01x <≤时,()0h x '>,14分所以()()min 01h x h ==,又()111eh -=+,()()11e 1h h =-+>-,所以()()max 1e 1h x h ==-.16分故m 的取值范围是[]1,e 1-.17分19.证明:(1)由()()h x h x -=,得()55x x x x -+-=+,则()()542210x xx x +=+=,1分解得0x =,所以()h x 只有1个偶点,且偶点为0,所以()5h x x x =+为“缺陷偶函数”,且偶点唯一.3分(2)由题意得()()()()22f x g x x f y g y y +-=-++对,x y ∈R 恒成立,4分所以存在常数a ,使得()()()()22f x g x x f y g y y a +-=-++=.5分令y x =,得()()()()2,2,f x g x x a f x g x x a ⎧+-=⎪⎨-++=⎪⎩解得()223x x a g x -+=.6分①()21333g x x a y xx ==+-,由()()g x g x x x -=-,得2033x ax+=,即()220x a x =-≠,则20a ->,即0a <.7分()()3223x x ax F x xg x -+==,()23223x x aF x -+=',因为4240a ∆=->,所以()0F x '=必有两根1x ,2x (设12x x <),8分当1x x <或2x x >时,()0F x '>,当12x x x <<时,()0F x '<,所以函数()()F x xg x =有2个极值点1x ,2x .9分②若()62323ag +==,则0a =,()23x x g x -=,10分当1x >时,要证()()21ln 12g x x >-,只需证()223ln 12x x x ->-,因为()()223420x x x x ---=-≥,所以234x x x -≥-,所以只需证()2334ln 12x x ->-.12分设函数()()()2334ln 112p x x x x =--->,则()()()()22231631121x x xp x x x x '--=-=>--,当112x <<时,()0p x '<,当12x +>时,()0p x '>,14分所以()min12p x p ⎛+= ⎝⎭,211122⎛++-= ⎝⎭,所以()min 3353153 2.236534ln 0.4810.132522222p x ++⨯-=--≈-⨯=,16分所以()min 0p x >,从而()()2334ln 102p x x x =--->,故当1x >时,()()21ln 12g x x >-.17分。
湖北省武汉市部分重点中学2024-2025学年高三上学期第一次联考数学试卷(含答案)

湖北省部分重点中学2025届高三第一次联考高三数学试卷考试时间:2024年11月11日下午14:00-16:00试卷满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,,则( )A. B. C. D.2.已知为虚数单位,若,则( )A. B. C. D.3.已知向量,满足,,则向量在向量方向上的投影向量为( )A. B. C. D.4.已知角,满足,,则( )A.B. C.D.5.已知函数在区间上有极值,则实数的取值范围是( )A. B. C. D.6.将正奇数按照如图排列,我们将3,7,13,21,31……,都称为“拐角数”,则下面是拐角数的为()A.55B.77C.91D.1137.已知等腰梯形的上底长为1,腰长为1,若以等腰梯形的上底所在直线为轴,旋转一周形成一个几何体,则该几何体表面积的最大值为( )A. B. C. D.8.已知函数,的定义域均为,是奇函数,且,201x A xx -⎧⎫=≤⎨⎬+⎩⎭{}220Bx Nx x =∈+-≤∣AB = (]1,1-{}0,1,2{}0,1{}1,0,1-i ()()1122z i i ++=-+z =1i-+1i --1i +1i-a b ()3,4a = ()2,1b =- b a68,2525⎛⎫⎪⎝⎭(6,8)68,55⎛⎫⎪⎝⎭(4,2)αβtan 2α=()sin 2cos sin βαβα=-tan β=2323-4343-()26ln 1f x x x ax =++-(1,2)a 8,⎡--⎣(8,--7,⎡--⎣(8,7)--(2π+(1π+(3π+()f x ()g x R ()1f x +()()114f x g x -++=,则下列结论正确的是( )A.为奇函数B.为奇函数C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知正实数,满足,则的可能取值为( )A.8B.9C.10D.1110.已知双曲线的左、右焦点分别为,.过的直线与双曲线的右支交于,两点.的内心为,的内心为,则下列说法正确的有( )A.双曲线的离心率为2B.直线的斜率的取值范围为C.的取值范围为D.11.在正三棱锥中,,三棱锥的内切球球心为,顶点在底面的射影为,且中点为,则下列说法正确的是( )A.三棱锥的体积为3B.二面角C.球的表面积为D.若在此三棱锥中再放入一个球,使其与三个侧面及内切球均相切,则球三、填空题:本题共3小题,每小题5分,共15分.12.已知点在抛物线上,为抛物线的焦点,直线与准线相交于点,则线段的长度为_____.()()24f x g x +-=()f x ()g x ()()9136k f k g k =⎡⎤-=⎣⎦∑()()9136k f k g k =⎡⎤+=⎣⎦∑x y 2x y +=2291x y x y+++22:13y C x -=1F 2F 2F l C A B 12AF F △1I 12BF F △2I AB (),-∞+∞12I I ⎡⎢⎣2112tan3tan22AF F AF F ∠∠=P ABC -AB =PA =P ABC -O P ABC Q PQ M P ABC -M AB P --O 43π1O O 1O (),4A a 24y x =F AF B FB13.已知直线与曲线相切,则实数的值为_____.14.某人有两把雨伞用于上下班,如果一天上班时他在家而且天下雨,只要有雨伞可取,他将拿一把去办公室,如果一天下班时他在办公室而且天下雨,只要有雨伞可取,他将拿一把回家.如果天不下雨,那么他不带雨伞.假设每天上班和下班时下雨的概率均为,不下雨的概率均为,且与过去情况相互独立.现在两把雨伞均在家里,那么连续上班两天,他至少有一天淋雨的概率为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列为等比数列,数列满足,且.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求.16.(15分)如图,在中,角,,所对的边分别为,,,已知.(1)求;(2)若,,将沿折成直二面角,求直线与平面所成角的正弦值.17.(15分)为倡导节能环保,实现废旧资源再利用,小明与小亮两位小朋友打算将自己家中的闲置玩具进行交换,其中小明家有2台不同的玩具车和2个不同的玩偶,小亮家也有与小明家不同的2台玩具车和2个玩偶,他们每次等可能的各取一件玩具进行交换.(1)两人进行一次交换后,求小明仍有2台玩具车和2个玩偶的概率;(2)两人进行两次交换后,记为“小明手中玩偶的个数”,求随机变量的分布列和数学期望.18.(17分)已知椭圆,不过原点的直线与椭圆相交于不同的,两点,与直线交于点,且,y ax=()x ef xx=a1323{}na{}n b()()*21nnnb n N=+-∈()1,0n n na b b Rλλλ+=-∈>{}na{}nc2n nc n a={}n c n n T9TABC△A B C a b csin sin sin sinA B B Cc a b++=-A3,0BC BD AB AD=⋅=2AD=ABC△AD B AD C'--AB'B CD'X X()2222:10x yC a ba b+=>>()2,1P O l C A B OP Q2AB QB=直线与轴,轴分别交于点,.(1)求椭圆的标准方程;(2)当的面积取最大值时,求的面积.19.(17分)2022年7月,在重庆巴蜀中学读高一的瞿霄宇,夺得第63届国际数学奥林匹克(IMO )满分金牌.同年9月26日,入选2022年阿里巴巴全球数学竞赛获奖名单,同时成为了本届获奖者中年龄最小的选手.次年9月16日,他再接再厉,在2023阿里巴巴全球数学竞赛中获金奖.他的事迹激励着广大数学爱好者勇攀数学高峰,挖掘数学新质生产力.翔宇中学高二学生小刚结合自己“强基计划”的升学规划,自学了高等数学的罗尔中值定理:如果上的函数满足条件:①在闭区间上连续;②在开区间可导;③.则至少存在一个,使得.据此定理,请你尝试解决以下问题:(1)证明方程:在内至少有一个实根,其中,,,;(2)已知函数在区间内有零点,求的取值范围.l x y M N C APB △MON △R ()f x [],a b (,)a b ()()f a f b =(),c a b ∈()0f c '=()43254320ax bx cx dx a b c d +++-+++=(0,1)a b c d R ∈()()()2222222xf x emx e m x m R =-----∈(0,1)m湖北省部分重点中学2025届高三第一次联考数学试卷参考答案及评分标准选择题:1234567891011CAADBCADCDABDACD填空题:12. 13. 14.解答题:15.(13分)解:(1)因为为等比数列,所以,即,化简得.因为,得.因此,易知为等比数列;(2)由(1)知,.,16.(15分)解:(1),,化简得.由余弦定理得,,故;(2)设,,在中,由得,解得.①在中,.②由①、②得.,,从而.二面角为直二面角,,平面平面,平面,10324e 2881{}n a 2213a a a =()()()2755177λλλ-=--()()210λλ-+=0λ>2λ=()()()11122122131n n nn n n n n a b b +++⎡⎤=-=+--+-=--⎣⎦{}n a ()231nn c n=--22222291293123489135T c c c ⎡⎤=++⋯+=-⨯-+-+-+-=⎣⎦ sin sin sin sin A B B C c a b ++=-a b b c c a b++∴=-222b c a bc +-=-2221cos 22b c a A bc +-==-23A π=BD x =2CD x =ACD △sin sin CD AD DAC C ∠=22sin30sin x C=1sin 2C x=ABD △2sin sin 3AD B C BD x π⎛⎫===- ⎪⎝⎭sin B x ==BD ∴=CD =AB = B AD C '--AB AD '⊥AB D ' ACD AD =AB '⊂AB D '平面建立如图所示的空间直角坐标系,易知,,,,,,.设平面的法向量,则有,即令,解得.故直线与平面.17.(15分)解:(1)若两人交换的是玩具车,则概率为,若两人交换的是玩偶,则概率也为,故两人进行一次交换后,小明仍有2台玩具车和2个玩偶的概率为.(5分)(2)可取的值为0、1、2、3、4,一次交换后,小明有1个玩偶和3台玩具车的概率为,有3个玩偶和1台玩具车的概率也为,经过两次交换后,,AB ∴'⊥ACD()0,0,0A ()D ()C (B '(AB ∴='(B C =' (B D '=B CD '(),,n x y z = 00n BC n BD ⎧⋅=⎪⎨⋅=⎪'⎩'x ⎧-=⎪⎨-=⎪⎩1y =()4n =cos ,n AB n AB n AB ⋅∴=''='AB 'B CD '111224⨯=111224⨯=111442+=X 111224⨯=111224⨯=()1111044464P X ==⨯⨯=()1131331117144444422232P X ==⨯⨯+⨯⨯+⨯⨯=()13313311111117244444422222232P X ==⨯⨯+⨯⨯+⨯⨯+⨯⨯=()1131311117344444422232P X ==⨯⨯+⨯⨯+⨯⨯=,故随机变量的分布列为:01234.18.(17分)解:(1)设椭圆左顶点为,则坐标为.由,解得.因为椭圆的离心率为,得.所以椭圆的标准方程为:;(2)设坐标为,坐标为,由于和为椭圆上两点,两式相减,得,整理得.(*)设坐标为,由得为线段的中点,,.由在线段所在直线上,且坐标为,则有,即.由(*)得,故.设直线方程为,联立直线与椭圆的方程,得,整理得.()1111444464P X ==⨯⨯=X X P1647321732732164()1717710123426432323264E X ∴=⨯+⨯+⨯+⨯+⨯=C D D (,0)a -PD ==2a =C c e a ==c =1b =C 2214x y +=A (),A A x y B (),B B x y A B C 22221414A AB Bx y x y ⎧+=⎪⎪∴⎨⎪+=⎪⎩()222204A B A B x x y y -+-=222214A B A B y y x x -=--Q (),Q Q x y 2AB QB =Q AB 2A B Q x x x +∴=2A BQ y y y +=Q OP P (2,1)12OQ OP k k ==12Q A B OQ QA B y y y k x x x +===+222214A B A B A B A B A B A B y y y y y y x x x x x x -+-=⨯=--+-12A B AB A B y y k x x -==--l 1,02y x m m =-+≠l C 221412x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩()222210x mx m -+-=由,得且.因为直线与椭圆相交于和两点,所以,.点到直线的距离为且.记,.由,及得即当时,取最大值.此时直线方程为,与坐标轴交点为,19.(17分)证明:(1)设,,则,在上连续,在上可导.又,由罗尔中值定理知:至少存在一个,使得成立,.故方程在内至少有一个实根.(2),在区间内有零点,不妨设该零点为,则,.0>△m <<0m ≠l C A B 2A B x x m +=()221A B x x m =-B AB x ∴=-==P l d 122APB S AB d ∴==-=△m <<0m ≠()()()2222f m mm =--()()()2421f m m m m =---'()0f m '=m <<0m ≠m =m =APB S △l 12y x =-()1M -N ⎛ ⎝12MON S OM ON ∴== △()()5432F x ax bx cx dx a b c d x =+++-+++[]0,1x ∈()()4325432F x ax bx cx dx a b c d '=+++-+++()F x ∴[]0,1(0,1)()()010F F ==()00,1x ∈()00F x '=()432000054320ax bx cx dx a b c d ∴+++-+++=()43254320ax bx cx dx a b c d +++-+++=(0,1)()()2222222xf x emx e m x =----- m R ∈(0,1)1x ()10f x =()10,1x ∈由于,易知在和上连续,且在和上可导.又,由罗尔中值定理可得,至少存在一个,使;至少存在一个,使得.方程在上至少有两个不等实根和.设,,则.,.当,即时,,故在上单调递增;方程在上至多有一个实根,不符合题意,舍去当,即时,,故在上单调递减.方程在上至多有一个实根,不符合题意,舍去当时,由得,时,有单调递减;时,有单调递增.在上的最小值.注意到,则有.方程在上至少有两个不等实根,,解得.结合,且,,()()224222xf x e mx e m '=----()f x '[]10,x []1,1x ()10,x ()1,1x ()()()1010f f x f ===()210,x x ∈()20f x '=()31,1x x ∈()30f x '=∴()()2242220x f x e mx e m '=----=(0,1)2x 3x ()()()224222xg x f x emx e m ==--'--()0,1x ∈()282x g x e m =-'()0,1x ∈ ()2288,8x e e ∴∈1 28m ≤4m ≤()()0820g x g m >=-'≥'()g x (0,1)()0g x =(0,1)2 228m e ≥24m e ≥()()21820g x g e m <=-'≤'()g x (0,1)()0g x =(0,1)3 244m e <<()0g x '=()1ln 0,124mx =∈10,ln 24m x ⎛⎫∴∈ ⎪⎝⎭()()0,g x g x '<1ln ,124m x ⎛⎫∈ ⎪⎝⎭()()0,g x g x '>()g x ∴(0,1)()min 1ln 24m g x g ⎛⎫= ⎪⎝⎭()221422525202g e e e e e e ⎛⎫=+-<-=-<⎪⎝⎭()min 11ln 0242m g x g g ⎛⎫⎛⎫=≤< ⎪ ⎪⎝⎭⎝⎭()0g x =(0,1)()()2206201220g m e g e m ⎧=+->⎪∴⎨=-+>⎪⎩222622e m e -<<+244m e <<22262 2.564e ->⨯->222222224e e e e +<+=故的取值范围为.m ()2226,22e e -+。
广东省莞佛深部分学校2024-2025学年高三上学期10月联考试题 数学含答案

高三数学(答案在最后)注意事项:1.答题前,请将姓名、班级和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并正确粘贴条形码.2.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔把答案写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.3.本试卷共4页,19小题,满分150分.考试时间120分钟.4.考试结束后,请将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上.1.样本数据1,1,5,7,8,8,9,10,10,11的平均数和第40百分位数分别为()A.7,7B.7,7.5C.7.5,7D.7.5,7.52.已知集合{}205A x x =<<,{}Z 12B x x =∈-<,则A B = ()A.{}1,0,1,2- B.{}0,1,2 C.{}1,2 D.{}1,0,1,2,3-3.若12i z z-=-,则z =()A.1i2+ B.1i 2+-C.1i 2- D.1i2-+4.已知向量()1,1a = ,(),b x y =,若()4a b a ⊥- ,()//b b a + ,则2x y +为()A.12B.8C.9D.4-5.已知α、3π,π2β⎛⎫∈ ⎪⎝⎭,()()sin cos αβαβ-=+,则sin 2α=()A.12-B.1C.0D.1-6.一个正四面体边长为3,则一个与该正四面体体积相等、高也相等的圆柱的侧面积为()A.B.C.D.7.已知函数为3211,1()3e ln(2),1x x ax x x f x x x +⎧++<-⎪=⎨⎪++≥-⎩,在R 上单调递增,则实数a 的取值范围是()A.7[1,]3B.7(,]3-∞ C.[]71,3- D.(,1]-∞8.函数π()|cos |)6f x x x =-在13π[0,]6上的零点个数为()A.3B.4C.5D.6二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.已知变量X 服从正态分布()20,X N ~σ,当σ变大时,则()A.11(22P X -<<变小 B.11()22P X -<<变大C.正态分布曲线的最高点下移 D.正态分布曲线的最高点上移10.已知命题p :对于正数a ,b ,[)00,x ∞∀∈+使()00e 1x bx a ++⋅>.若p 为假命题,则()A.e 1b a ⋅> B.1eab ≤C.1a b +≤D.224e ab ≤11.函数()f x 的定义域为R ,若(1)()()f x y f x f y m ++=+-,且(0)f n =,,Z m n ∈,n m >则()A.(1)f m -=- B.()f x 无最小值C.401()860820i f i n m==-∑ D.()f x 的图象关于点(2,2)m n --中心对称三、填空题:本题共3小题,每小题5分,共15分.12.已知直线:l y kx =是曲线()1ex f x +=和()ln g x x a =+的公切线,则实数a =______.13.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c 且2cos a B c a =-.当3c ab+取最小值时,则A =______.14.为了回馈长期以来的顾客群体,某健身房在五周年庆活动期间设计出了一种游戏活动.顾客需投掷一枚骰子三次,若三次投掷的数字都是奇数,则该顾客获得该健身房的免费团操券5张,且有2次终极抽奖机会(2次抽奖结果互不影响);若三次投掷的数字之和是6,12或18,则该顾客获得该健身房的免费团操券5张,且有1次终极抽奖机会;其余情况顾客均获得该健身房的免费团操券3张,不具有终极抽奖机会,已知每次在终极抽奖活动中的奖品和对应的概率如下表所示.奖品一个健身背包一盒蛋白粉概率3414则一位参加游戏活动的顾客获得蛋白粉的概率为______.三、解答题:本题共5小题,共77分.15.如图,在直角三角形POA 中,PO AO ⊥,24PO AO ==,将POA 绕边PO 旋转到POB 的位置,使2π3AOB ∠=,得到圆锥的一部分,点C 为 AB上的点,且 14AC AB =.(1)在A 上是否存在一点D ,使得直线OA 与平面PCD 平行?若存在,指明位置并证明,若不存在,请说明理由;(2)设直线OC 与平面PAB 所成的角为θ,求sin θ的值.16.已知数列{}n a 满足()121221333334n nn n a a a +-⋅++++=.(1)求{}n a 的通项公式;(2)设21n n b a =,记{}n b 的前n 项和为n T ,求证:4121nn nT n n <<++.17.已知O 为坐标原点,点2在椭圆C :22221x y a b+=,()0a b >>上,过左焦点1F 和上顶点A 的直线1l 与椭圆相交于点A ,B .记A ,B 的中点为M ,有12OM k =-.过上顶点A 的直线2l 与椭圆相交于点C (C 点异于B 点).(1)求椭圆C 的方程;(2)求ABC V 面积的最大值,18.甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分,答错不得分:然后换对方抽题作答,甲乙两人各完成一次答题记为一轮比赛.比赛过程中,有选手领先2分者立即晋级,比赛结束(不管该轮比赛有没有完成).已知甲答对题目的概率为13,乙答对题目的概率为p ,答对与否相互独立,抽签决定首次答题方,已知第一轮答题后甲乙两人各积1分的概率为16.记比赛结束....时甲乙两人的答题总次数为()2n n ≥.(1)求p ;(2)求在4n =的情况下,甲晋级的概率;(3)由于比赛时长关系,比赛答题不能超过3轮,若超过3轮没有晋级者,则择期再进行比赛.求甲在3轮比赛之内成功晋级的概率.19.函数()ln f x x =,2()2g x x x m =--+.(1)若e m =,求函数()()()F x f x g x =-在1[,2]2的最小值;(2)若2()()(2)e x f x g x x x +≤--在(0,](1)x t t ∈>上恒成立时,实数m 的取值范围中的最小值为ln 2,求实数t 的值.高三数学注意事项:1.答题前,请将姓名、班级和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并正确粘贴条形码.2.作答选择题时,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔把答案写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.3.本试卷共4页,19小题,满分150分.考试时间120分钟.4.考试结束后,请将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】C二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.【9题答案】【答案】AC 【10题答案】【答案】BD 【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】3【13题答案】【答案】π4【14题答案】【答案】37384三、解答题:本题共5小题,共77分.【15题答案】【答案】(1)存在,3AD AB =;(2)17.【16题答案】【答案】(1)n a n =(2)证明见解析【17题答案】【答案】(1)2212x y +=;(2)2323+.【18题答案】【答案】(1)12(2)1 5(3)17 216【19题答案】【答案】(1)e4ln2-+;(2)2.。
2025届西安市高三数学上学期第一次质量检测考试卷附答案解析

2025届西安市高三数学上学期第一次质量检测考试卷本卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,1=-=-A x x B x log x x ,则A B ⋂=()A.{}10x x - B.{}10x x -< C.{}10x x -< D.{}10x x -<<2.“01a <<”是“函数()log (2)a f x a x =-在(,1)-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数()()2sin x xf x x e e x-=-+-在区间[]2.8,2.8-的大致图像为()A. B. C. D.4.已知5log 2a =,2log b a =,1()2bc =,则()A.c b a >> B.c a b>> C.a b c>> D.b c a>>5.已知定义在R 上的函数()f x 满足3(2)()f x f x +=,且(2)1f =-,则(100)f =()A.3B.1C.1-D.3-6.已知函数1,0,()()12,0,x e x f x g x kx x x⎧-⎪==-⎨<⎪⎩ ,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[,)e +∞ C.1(,0){}8e -⋃ D.1(,){}8e -∞-⋃7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.直线2y x =是曲线()y f x =的切线D.点(0,1)是曲线()y f x =的对称中心8.已知函数24,0(),0x x f x x log x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28-B.28C.14- D.14二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211(x x'=- B.()x xe e '--= C.21(tan )x cos x'=D.1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种11.已知0c b a <<<,则()A.ac b bc a+<+ B.333b c a +< C.a c ab c b+<+ D.>三、填空题:本题共3小题,每小题5分,共15分.12.某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],则该班学生化学测试成绩的第40百分位数为__________.13.若曲线x y e x =+在点(0,1)处的切线也是曲线ln(1)y x a =++的切线,则a =__________.14.5(1)(2)y x y x-+的展开式中,23x y 的系数为__________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线bx a y e +=的附近,请根据下表中的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数a 和b 的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.98 3.87 3.46 3.29附:经验回归方程:ˆˆˆybx a =+中,1221ˆniii nii x ynx y b xnx ==-⋅=-∑∑,ˆˆay bx =-;参考数据:6123.52i i z ==∑,6177.72i ii x z==∑,62191i i x ==∑,ln10 2.30.≈17.已知函数()log (1)a f x x =+,()2log (2)(a g x x t t =+∈R ),0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x 的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布2(,)N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+≈,(22)0.9545P μσξμσ-<<+≈,(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ⅱ)该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.19.已知函数1()ln (1).x f x ae x a x -=+-+(1)当0=a 时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12.6513.ln 214.40三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)解:(1)1a =时,3213()2,()(1)(2)32f x x x x f x x x '=-+=--,所以1x <或2x >时,()0f x '>;12x <<时,()0f x '<则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞上递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =...............................5分陕西省西安中学高2025届高三第一次质量检测数学参考答案题号12345678答案CBABDCDA题号91011答案ACDBCDABD3212(2)()232a f x x x ax +=-+,则()()(2)f x x a x '=--,当2a =时,()0f x ' ,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,()0f x '>;2x a <<时,()0f x '<,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,()0f x '>;2a x <<时,()0f x '<所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减................................8分(2)令-+<=≈,所以,解得,由于,所以,所以从第十个月开始,该年级体重超标的人数降至10人以下................................5分17.(本小题满分15分)解:(1)1=- t 时,()()2log 1log 21a a x x +- ,又01a <<,21(21)210x x x ⎧+-∴⎨->⎩,2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩,∴解集为:15{|}24x x <;...............................6分(2)解法一:()222F x tx x t =+-+,由()0F x =得:22(2x t xx +=-≠-且12)x -< ,22(2)4(2)2x t x x +∴=-+-++,设2U x =+(14U < 且2U ≠,则212424U t U U U U=-=--+-+,令2()U U Uϕ=+, 当1U <<时,()U ϕ4U <<时,()U ϕ单调递增,且9(1)3,(4).2ϕϕϕ===9()2U ϕ∴且() 4.U ϕ≠12402U U∴---< 或2044U U<--- ,t 的取值范围为:2t - 或224t +解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得:24t =,又1212x x t ==-(]1,2,∈-24t +∴=;②()F x 在(1,2]-上只有一个零点,且不是方程的重根,则有()()120F F -<,解得:2t <-或1t >,又经检验:2t =-或1t =时,()F x 在(1,2]-上都有零点;2t ∴- 或 1.t ③方程()0F x =在(1,2]-上有两个相异实根,则有0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩或0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,解得:214t +<<,综上可知:t 的取值范围为2t - 或224t +...............................15分18.(本小题满分17分)(1)(1)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=即69x μ≈=11s σ≈≈,所以X ∽2(69,11)N ,因为质量指标值X 近似服从正态分布2(69,11)N ,所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+== 10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16................................5分(2)()(0.010.01)1010020i +⨯⨯=,所以所取样本的个数为20件,质量指标值在[85,95]的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:3010103202(0)19C C P C η===,21101032015(1)38C C P C η===,12101032015(2)38C C P C η===,0310103202(3)19C C P C η===,随机变量η的分布列为:η0123P21915381538219所以η的数学期望2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分()ii 设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以Y ∽(100,0.16)B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-,令()1684ln(25)(124)f x x x x =+-<<84()16025f x x '=-=-得,794x =,又79(1,)4x ∈,()0f x '>,()f x 递增79;(,24)4x ∈,()0f x '<,()f x 递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大................................17分19.(本小题满分17分)(1)解:当0=a 时,()ln =-f x x x ,且知11()1-'=-=xf x x x,在(0,1)上,()0'>f x >,()f x 在(0,1)上单调递增;在(1,)+∞上,()0'<f x ,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞..............................4分(2)证明:因为1a =,所以1()ln 2x f x e x x -=+-,且知11()2x f x e x-'=+-,要证函数()f x 单调递增,即证()0f x ' 在(0,)+∞上恒成立,设11()2x g x ex -=+-,0x >,则121()x g x e x-'=-,注意1x y e -=,21y x=-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g = ,即()0f x ' ,因此函数()f x 在(0,)+∞上单调递增;...............................10分(3)由11()1x f x ae a x -'=+--,有(1)0f '=,令11()1x h x ae a x -=+--,有121()x h x ae x-'=-,①当0a 时,11()0x xh x aex -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1x y ae -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞..........................17分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学试题第I卷(选择题共40 分)符合题目要求的一项选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出1•若集合A {x|0 x 3},B {x| 1 x 2},则AU B(A){x| 1 x 3} (C) {x|0 x 2} (B){x| 1 x 0} (D){x|2 x 3}2 .在复平面内,复数旦对应的点的坐标为1 i(A) (1,1) ( B) ( 1,1) (C) ( 1, 1) (D) (1, 1)3 .下列函数中,在区间(0,)上单调递增的是(A) y x 1 (B) y (x 1)2(C) y sinx 1(D) y x"4 •执行如图所示的程序框图,输出的S值为(A)2(B)6(C)30(D)2705 .若log 2 a log^b 2,则有(A) a 2b (B) b 2a (C) a 4b6 •一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去.的几何体是(A)三棱锥(B)三棱柱(C)四棱锥7.函数f (x) sin(xn )的图象记为曲线c.则“ f(o) f( n”是“曲线C关于直线x -对称”的xx210.已知双曲线—a2每1的一个焦点是F(2,0),其渐近线方程为b3x , 该双曲线的方程是11.向量a,b 在正方形网格中的位置如图所示.如果小正方形网格的边长为1,那么a b _____ .12•在△ ABC 中,a 3, C , △ ABC 的面积为①空,则b ______________ ; c3 413.已知点M(x,y)的坐标满足条件x 1 < 0,x y 1> 0,设O 为原点,则 OM 的最小值是 x y 1 > 0.14.已知函数f(x)2x x, 2 w x w c,1若c 0 ,贝y f(x)的值域是, c x w 3. ;若 f(x)的值域是[丄,2],则实数c 的取值范围是4第H 卷(非选择题共110 分)(A )充分而不必要条件 (B )必要而不充分条件 (D )既不充分也不必要条件&已知 A , B 是函数y2x的图象上的相异两点 .若点则点 A , B 的横坐标之和的取值范围是(A ) ( ,1)(B ) ( , 2) (C )1y 2的距离相等,(D) ( , 4)、填空题:本大题共 6小题,每小题5分,共30 分.9 .若函数f(x) x(x b)是偶函数,则实数b(C )充分必要条件 A , B 到直线 (,3)三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分13分)已知函数f (x) 2sin2 x cos(2x n).(I)求f (x)的最小正周期;(n)求证:当x [0,n]时,f (x) > 丄.2 216. (本小题满分13分)1已知数列{a n}是公比为-的等比数列,且a2 6是印和a3的等差中项.3(I)求{a n}的通项公式;(n)设数列{a n}的前n项之积为T n,求T n的最大值.17. (本小题满分13分)某市高中全体学生参加某项测评,按得分评为A, B两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为A1的学生中有40%是男生,等级为A的学生中有一半是女生.等级为A和A的学生统称为A类学生,等级为B1和B2的学生统称为B类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图.表1 图2(I)已知该市高中学生共 20万人,试估计在该项测评中被评为 A 类学生的人数;(n)某5人得分分别为45,50,55,75,85 .从这5人中随机选取2人组成甲组,另外 3人组成乙组,求“甲、乙两组各有1名B 类学生”的概率;(川)在这10000名学生中,男生占总数的比例为 51% , B 类女生占女生总数的比例为 k i , B类男生占男生总数的比例为 k 2 .判断k 1与k 2的大小.(只需写出结论)18. (本小题满分14分)如图,在三棱柱 ABC A 1B 1C 1中,AB 平面AA 1C 1C , AA 1 AC .过AA 1的平面交B 1C 1 于点E ,交BC 于点F .(I)求证:AC 平面ABC 1 ; (n)求证:AA//EF ;A 20 <x 5019. (本小题满分14分)(I)求椭圆C 的方程及离心率;(n)设点Q 在椭圆C 上.试问直线x y 4 0上是否存在点P ,使得四边形PAQB 是平 行四边形?若存在,求出点 P 的坐标;若不存在,说明理由.20. (本小题满分13分)已知函数f(x) x 2lnx 2x .(I)求曲线y f(x)在点(1,f(1))处的切线方程; (n)求证:存在唯一的x o (1,2),使得曲线y f(x)在点(x o ,f(x o ))处的切线的斜率为f(2) f(1);(川)比较f(1.01)与2.01的大小,并加以证明.(川)记四棱锥BAA 1 EF 的体积为V ,三棱柱 ABC的值.2 2已知椭圆C:务告1(aa 2b 2b 0)过 A(2, 0) , B(0,1)两点.ABC 的体积为V.若v i '求北京市西城区2017 —2018学年度第一学期期末高三数学(文科)参考答案及评分标准2018.1一、选择题: 本大题共8小题,每小题5分,共40分.1. A2. B3. D4. C5. C6. B7. C8. B二、填空题: 本大题共6小题,每小题5分,共30分.29. 010. x2- 111. 43.2 1 112. 1 ; .1313. 14. [ —, ) ;[―,1]2 4 2注:第12, 14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.其他正确解答过程,请参照评分标准给分15. (本小题满分13分)解:(I)因为f(x) 2sin2x cos(2x n)3n n1 cos2x (cos2x cos sin 2x sin ) [ 4 分]3 33sin2x -cos2x 1 [ 5 分]2 2 3sin(2 x16. (本小题满分13分)解:(I)因为a 2+ 6是a 1和a 3的等差中项,所以 2(a 2 6) a 1 a 3. [ 2 分]1因为数列{a n }是公比为1的等比数列,3所以2(旦6) a 1去,[4分]3 9解得a 1 27 . [ 6分]所以 an d q n1 (3)n 4. [ 8分](n)令 a n > 1,即(^广4》1,得 n < 4 , [10 分]3故正项数列{a n }的前3项大于1,第4项等于1,以后各项均小于1. [11分] 所以当n 3,或n 4时,T n 取得最大值,[12分] T n 的最大值为T 3 T 4耳a 2 a 3 729 . [13分]17. (本小题满分13分) 解:(I)依题意得,样本中B 类学生所占比例为(0.02 0.04) 10 60% , [ 2分]所以A 类学生所占比例为 40% . [ 3分]所以 f(x)的最小正周期T2n~2 (n)因为2x所以 sin(2x¥,[12分]所以 f(x) >2.[13分]因为全市高中学生共20万人,所以在该项测评中被评为A类学生的人数约为8万人.[4分](H)由表1得,在5人(记为a,b, c, d,e)中,B类学生有2人(不妨设为b, d ).将他们按要求分成两组,分组的方法数为10种.[6分]依次为:(ab,cde),(ac,bde),( ad,bce),(ae,bcd),(bc, ade),(bd,ace),(be, acd),( cd,abe), (ce,abd),(de,abc) . [ 8 分]所以“甲、乙两组各有一名B类学生”的概率为6 3. [10分]10 5(川)k1 k2. [ 13 分]18. (本小题满分14分)解:(I)因为AB 平面AA1C1C,所以AC AB . [2分]在三棱柱ABC A1B1C1中,因为AA1 AC,所以四边形AA1C1C为菱形,所以AC AC1 . [3分]所以AC 平面ABC1. [5分](H)在三棱柱ABC A1B1C1中,因为A1A//B1B , A1A 平面BB1C1C , [6 分]所以A,A〃平面BB1C1C . [8分]因为平面AA1EF I平面BB1C1C EF ,所以AA//EF . [10 分](川)记三棱锥B1 ABF的体积为V,三棱柱ABF 厲B1E的体积为V3.因为三棱锥B1 ABF与三棱柱ABF A1B1E同底等高,所以业1, [11分]V3 3所以百1冷2V3 V3 3V 3 13 1 . 所以一 .[12分]V 6 2 4ABE 与三棱柱 ABC A i B 1C 1等高,所以△ ABF 与厶ABC 的面积之比为19. (本小题满分14分)解:(I )由题意得,a 2, b 1 . [2分]2 所以椭圆C 的方程为—y 21 . [3分]4设椭圆C 的半焦距为c ,则c . —b 2 3 , [ 4分] 所以椭圆C 的离心率e -乜.[5分]a 2(H)由已知,设 P(t,4 t) , Q(x 0,y 0)18 2此时P (—,),或P (2,2) •经检验,符合四边形 PAQB 是平行四边形,5 518 2所以存在P (7,),或P (2,2)满足题意.[14分]5 520. (本小题满分13分)解:(I)函数f(x) x 2lnx 2x 的定义域是(0,),导函数为 f (x) 2xln x x 2.[ 1 分]若PAQB 是平行匹 【边形, 则 uua PA uu u PB所以(2t,t 4) (t,t 3) (X 0 t, 整理得 X 02 t,y ot 3 .[10分]将上式代弋入 2 X 4y 024 ,得(2t)2 4(t 3)2 4 , [11 分]整理得 5t 2 28t 36 0 ,解得t 18 或t2 . [13 分]5uurPQ , [ 8 分]y 0 4 t), 因为V 1, 因为三棱柱ABF所以BFBC所以 f (1) 1,又f (1) 2 ,所以曲线y f (x)在点(1,f (1))处的切线方程为y x 1 . [ 3分](n)由已知f(2) f (1) 41 n 2 2 . [ 4 分]所以只需证明方程2xln x x 2 4ln2 2在区间(1,2)有唯一解.即方程2xlnx x 4ln2 0在区间(1,2)有唯一解.[ 5分]设函数g(x) 2xln x x 4ln 2,[ 6 分]则g (x) 2ln x 3 .当x (1,2)时,g (x) 0,故g(x)在区间(1,2)单调递增.[7分]又g(1) 1 4ln 2 0,g(2) 2 0,所以存在唯一的x0 (1,2),使得g(x0) 0.[ 8分]综上,存在唯一的x o (1,2),使得曲线y f(x)在点(x o,f(x。