硫酸铝混凝剂处理图

合集下载

混凝沉淀实验

混凝沉淀实验
Al2 ( SO4 ) 3 + 3CaCl2 = 3CaSO4 + 2AlCl3
熟化反应
Al (O H) 2 Cl -Al2 (O H) 4 Cl2 -[ Al2 (O H) 5 Cl ]2 -[ Al2 (O H) 4 Cl2 ]3⋯-[ Al2 (O H) n Cl6 - n ] m .
聚 合 氯 化 铝 简 称 PAC , 其 化 学 通 式 为 [ Al2 (O H) n Cl6 - n ] m ( 1 ≤n ≤5 , m ≤10 ) , 是一种新 型高效无机高分子絮凝剂 。PAC 具有混凝能力强 , 用量少 ,净化性能高 ,适应力强等特点 ,净化效果是 传统净水剂硫酸铝的 3 ~ 5 倍 。PAC 是介于 AlCl3和 Al ( O H) 3 之 间 的 中 间 水 解 产 物 , 常 温 下 有 固 体 (白色) 和液体 (无色) 两种形态 。固体产品具有吸附 活性高 、澄清泥少 、时间短 、适应 p H 值范围宽 、不需 助凝剂和不受水温影响等优点 。PAC 现已被广泛 用于净水处理和工业废水的处理 。还可用于制革的 鞣软剂 、造纸的施胶剂 、印染的漂染剂 、精密铸造的 硬化剂 、耐火材料的粘结剂等
01
启动搅拌机,先中速运转数分钟,然后快速运转,稳定后再1—6 号烧杯中分别加入3、6、9、12、15、18ml的硫酸铝混凝剂。快速搅拌半分钟、转速约 300r/min。
03
用 6 个 1000mL 的烧杯,分别放入 1000mL 原水,置实验搅拌机平台上。
02
确定最佳投药量
四.实验步骤
中速搅拌 5分钟,转速约 120r/min; 慢速搅拌 10 分钟、转速约 80r/min。
关闭搅拌机,静置1 5 分钟,取上清液(用浊度仪测定浊度,记入表 2 中。

硫酸铝絮凝处理垃圾渗滤液的特性研究

硫酸铝絮凝处理垃圾渗滤液的特性研究

第33卷第10期辽宁化工Vol.33,No.10 2004年10月Liaoning Chemical Industry October,2004三废治理硫酸铝絮凝处理垃圾渗滤液的特性研究张东翔,陆英梅,黎汉生(北京理工大学化工与环境学院,北京100081)摘要:采用硫酸铝为絮凝剂对垃圾渗滤液进行了前期强化处理特性研究,探讨了絮凝剂用量、垃圾渗滤液的酸度以及温度对城市垃圾渗滤液絮凝效果的影响。

结果表明,在垃圾渗滤液絮凝处理过程中,硫酸铝用量约0.5%为宜;絮凝过程中酸度和温度对垃圾渗滤液的絮凝效果有很大的影响,对不同的垃圾渗滤液类型和附属资源选择适宜的酸度和温度可以降低后续处理过程的负荷与处理成本,在室温下,用硫酸铝絮凝垃圾渗滤液的处理过程中,在pH=6.5左右处理效果最好。

关键词:硫酸铝;化学絮凝;垃圾渗滤液中图分类号:TQ125.1+4文献标识码:A文章编号:10040935(2004)10060103随着我国经济的迅速发展,城镇居民生活水平日益提高,垃圾产生的总量逐年增大,种类也越来越多。

许多垃圾若不加以妥善处理,会对城市及周边地区的生态环境和人民生活造成巨大的危害,甚至会殃及子孙后代[1]。

目前,国内外常采用焚烧、堆肥、填埋和综合利用等方法对垃圾进行处理。

垃圾卫生填埋具有工艺简单、技术成熟、处理费用低、管理和运输方便等优点,因而被国内外广泛采用[2]。

垃圾在填埋腐化过程中将产生有机污染物含量很高的垃圾渗滤液,这是垃圾卫生填埋需考虑的关键问题之一[3]。

国内外对垃圾渗滤液的处理进行了大量的研究,并采用多种串联工艺进行了大量处理垃圾渗滤液的试验,但是由于垃圾渗滤液是一种成分复杂,水质水量变化大的高浓度有机废水,达到国家排放标准的处理成本仍不能令人满意[4~7]。

另外,垃圾焚烧站及焚烧发电站也会在运储过程中产生垃圾渗滤液,目前的处理办法是喷入锅炉焚烧,但是这种处理方法能耗较高,没有充分利用焚烧发电站的废热与电力资源。

沉淀实验实验报告

沉淀实验实验报告

沉淀实验实验报告篇一:自由沉淀实验报告六、实验数据记录与整理1、实验数据记录沉降柱直径水样来源柱高静置沉淀时间/min表面皿表面皿编号质量/g表面皿和悬浮物总质量/g水样中悬浮物质量/g水样体积/mL悬浮物沉降柱浓度/工作水(g/ml)深/mm颗粒沉沉淀效速/率/%(mm/s)残余颗粒百分比/%0 5 10 20 30 60 1200 1 2 3 4 5 679.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.124131.0 30.0 30.0 30.0 30.0 31.0 31.00.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363846.0 808.0 780.0 724.0 664.0 500.0 361.01.860 0.883 0.395 0.230 0.069 0.02111.40 20.44 26.28 30.11 32.30 33.76100 87.96 79.56 73.72 69.89 67.70 66.242、实验数据整理(2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下:图2.2:沉淀时间t与沉淀效率E的关系曲线2-2、绘制去除率与沉淀速度的曲线如下:图2.2:颗粒沉速u与沉淀效率E的关系曲线2-3、绘制去除率与沉淀速度的曲线如下:图2.3:颗粒沉速u与残余颗粒百分比的关系曲线(1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。

原水悬浮物的浓度:C0?水样中悬浮物质量1.6974??0.0548g/ml水样体积31.0悬浮物的浓度:C5?水样中悬浮物质量1.1508??0.0371g/ml水样体积31.0沉淀速率:u?h?10(500-250)??0.069mm/sti?6060?60C0-C50.0548-0.0371?100%??100%?32.30 C00.0548C50.0371?100%??100%?67.70 C00.0548沉淀效率:E5?残余颗粒百分比P5?篇二:混凝沉淀实验报告实验名称:混凝沉淀实验一、实验目的1、通过实验观察混凝现象、加深对混凝沉淀理论的理解;2、掌握确定最佳投药量的方法,选择和确定最佳混凝工艺条件;3、了解影响混凝条件的相关因数。

混凝沉淀实验

混凝沉淀实验

40
Residual Turbidity
30
20
10
0
3
4
5
6
7
8
pH
图 2-5 原水 pH – 剩余浊度关系曲线图
图 2-5 是根据表 2-2 所测的实验数据绘制得到的原水 pH 与剩余浊度关系曲 线图。由该图可以看出,在 pH = 3~6.11 时原水絮凝沉淀后剩余浊度随着 pH 值的 增大而迅速下降,在试验点 pH=6.11 时达到最小值(NTU=1.84) ,在 pH=6.11-~9 时剩余浊度随 pH 值的增大而缓慢上升。 铝盐加入到水溶液中,不仅会发生水解反应,也会发生羟基桥联作用,从而 产生 Al 的单体、低聚物、多核羟基聚合物、多核羟基聚合物的聚集体或者 Al OH 3 溶胶等多种水解聚合形态; Al 的不同水解聚合形态决定了铝盐对水中 浊度的去除以吸附电中和、吸附桥联、卷扫作用中哪种机理为主。而 Al 的各种 水解聚合形态所占百分比受水质的 pH、颗粒物浓度以及水流扰动状况等条件的 影响。 本次实验采用控制变量,只改变原水的 pH。 图 2-6 为铝盐的水解聚合形态随 pH 变化规律图。从图中可以看出,在低 pH 时,Al 的主要形态为Al H2 O
Residual Turbidity
50
慢速搅拌转速:50 r/min 慢速搅拌时间:20 min 水温:20℃ 混凝剂浓度:10 g/L 原水 pH 值:7.21
1 3.16 45.10
2 4.10 43.60
3 5.16 16.06
4 6.11 1.84
5 7.13 2.44
6 8.03 3.21
一、投药量对混凝效果的影响 1、实验记录 ⑴基础资料 实验日期:2014.3.18 快速搅拌转速:150 r/min 混凝剂名称: 硫酸铝 原水浊度: 45.0 慢速搅拌转速:50 r/min 混凝剂浓度:10 g/L 原水 pH 值:7.20

水处理实验报告-混凝实验

水处理实验报告-混凝实验
根据步骤3得出的形成矾花的最小混凝剂投加量取其13作为1号烧杯的混凝剂投加量取其2倍作为6号烧杯的混凝剂投加量用依次增加相等混凝剂投加量的方法求出25号烧杯的混凝剂投加量把混凝剂分别加号烧杯中
降低或降低不多,胶粒不能相互接触,通过高分子链状物吸附胶粒,一般形成絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花,自投加混凝剂直至形成矾花的过程叫混凝。投加混凝剂的多少,直接影响混凝效果。水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。
2.确定最佳PH值实验步骤
(1)用6只1000ml烧杯,分别取1000ml原水,将盛装有水样的烧杯置于搅拌机平台上。
(2)调节原水PH值,用移液管依次向1号2号3号装有原水的烧杯中,分别加入2.5ml,1.5ml,1.2ml的10% HCL、在向4号5号6号装有原水的烧杯中加入0.2 ml,0.7ml,1.2ml的10% NaOH,用玻璃棒快速搅拌均匀,依次用精密PH仪测各水样PH值,记录在表中。
(5)、启动搅拌机,快速搅拌一分半钟,转速为500r/min 1min,中速搅拌5min,转速约250r/min;慢速搅拌5min,转速约为100r/min。上述搅拌速度可进行适当调整;
(6)、关闭搅拌机,静置沉淀5min,用50mL注射管抽出烧杯中的上清液(共抽3次约100mL)放入200mL烧杯内,立即用浊度仪测定浊度(每杯水样测定2次),并对测定结果进行纪录。
实验
名称
混凝实验
姓名
同组者
实验目的:
1、通过实验学会求一般天然水体最佳混凝条件(包括投药量、PH、水流速度梯度)的基本方法。
2、加深对混凝机理的理解。
实验原理:
混凝阶段所处理的对象主要是水中悬浮物和胶体杂质,是水处理工艺中十分重要的一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降,而胶体颗粒不能靠自然沉降得以去除。胶体表面的电荷值常用电动电位ξ表示,又称为Zeta电位。一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。相反,当电位降到零,往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负电的粘土颗粒。胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需克服特殊的阻力,这种阻力阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没有

给水处理厂课程设计计算书.doc

给水处理厂课程设计计算书.doc

给水处理厂课程设计计算书1.1 工艺流程方案水厂采用如图1所示的工艺流程。

通过对主要处理构筑物的分析比较,从中制定出水厂处理工艺流程如图2所示。

↓↑图1 水厂处理工艺流程↓↓↓↓↓↓↓↓图2 水厂处理工艺流程框图(构筑物)1.2水处理构筑物计算 1.2.1配水井设计计算 1. 设计参数配水井设计规模为4012.5m 3/h 。

2. 设计计算(1)配水井有效容积配水井水停留时间采用2~3min ,取 2.5min T =,则配水井有效容积为:34012.5 2.5/60167.19W QT m ==⨯=(2)进水管管径1D配水井进水管的设计流量为334012.5/ 1.11/Q m h m s ==,查水力计算表知,当进水管管径11100D mm =时, 1.179/v m s =(在1.0~1.2/m s 范围内)。

(3)矩形薄壁堰进水从配水井底中心进入,经等宽度堰流入2个水斗再由管道接入2座后续处理构筑物。

每个后续处理构筑物的分配水量为334012.5/22006.25/0.557/q m h m s ===。

配水采用矩形薄壁溢流堰至配水管。

① 堰上水头H因单个出水溢流堰的流量为30.557/557/q m s L s ==,一般大于100/L s 采用矩形堰,小于100/L s 采用三角堰,所以本设计采用矩形堰(堰高h 取0.5m )。

矩形堰的流量公式为:3/2q =式中q ——矩形堰的流量,3/m s ;m ——流量系数,初步设计时采用0.42m =;b ——堰宽,m ,取堰宽 6.28b m =;H ——堰上水头,m 。

已知30.557/q m s =,0.42m =, 5.71b m =,代入下式,有:2/32/30.14H m ===② 堰顶宽度B 根据有关试验资料,当0.67BH<时,属于矩形薄壁堰。

取0.05B m =,这时0.36BH=(在0~0.67范围内),所以,该堰属于矩形薄壁堰。

乳化液废水硫酸铝混凝破乳与硫酸溶解絮渣研究

乳化液废水硫酸铝混凝破乳与硫酸溶解絮渣研究

2 结果与讨论
2.1 硫酸铝最佳投加量 在使用酸碱控制 pH相同(7.0)情况下依次 投加不同量的混凝剂(干式投加).以刚开始出现 沉淀时作为基础投加浓度. 图 1为 Al2(SO4)3·18H2O投加量对 COD去 除率的影响,由图可知在 Al2(SO4)3·18H2O固 体投加量为 21g/L时,此时 COD的去除率达到 最大,为 78.91%.实际硫酸铝用量为 3.76g/L. 对于无机絮凝剂[9],其性质及结构对絮凝作用影 响巨大,因为不同的官能团,其极性、亲水性、电荷 性质及电荷中和对于胶体颗粒的吸附及反映效果 均不相同.由于硫酸铝水溶液呈酸性(pH≤25), 与碱性原水可以更好的作用,乳化液废水表面通 常带有负电[5],而酸性的高质子浓度会使得金属 阳离子存在方式得到增强,从而使溶液离子电性 作用增强.存在吸附电性中和与压缩双电层的作 用,破坏乳化液稳定性,增强破乳目的.同时,在酸 性条件下会破坏这些表面活性剂的平衡状态,使 这些脂肪酸和脂肪醇从水中游离出来,其混凝后
有限公司)、982磁力搅拌器(巩义市子华仪器有 限责任公司)、CP214电子天平(奥豪斯上海有限 公司)、DGG9070A型电热恒温鼓风干燥箱(上海 一恒科技有限公司);pHS25实验室 pH计(上海 今迈仪器仪表公司)、DDS11A数显电导率仪(上 海雷磁新泾 仪 器 有 限 公 司 )、5000可 见 分 光 光 度 计(上海元析仪器有限公司)、SPX250BSⅡ生化 培养箱(上海跃进仪器). 药 品:重 铬 酸 钾、硫 酸 亚 铁 铵、硫 酸 银、浓 硫 酸、氢 氧 化 钠、钼 酸 铵、酒 石 酸 锑 氧 钾、磷 酸 二 氢 钾、邻菲罗啉、碘化钾、碘化汞、酒石酸钾钠、抗坏 血酸、氯化铵、混凝剂为工业硫酸铝(Al2(SO4)3· 18H2O),硫酸铝含量为 17.9%、阴离子型聚丙烯 酰胺(分子量 1200万)、阳离子型聚丙烯酰胺(分子 量 800万)、非离子型聚丙烯酰胺(分子量 700万). 1.4 实验方法 在常温下(22℃)通过 6组烧杯实验对 100mL 乳化液进行处理,用磁力搅拌器进行搅拌 8min, 后静置 30min.通过对上层清液 COD去除率的研 究,从而选择最佳混凝剂投加量及最佳助凝剂与 pH值.因为 COD可以有效反应一定条件下有机 物相对含量的指标,它反映了水中受还原物质的 污染程度[8].

不同pH的硫酸铝混凝剂水处理效果对比

不同pH的硫酸铝混凝剂水处理效果对比

不同pH的硫酸铝混凝剂水处理效果对比夏添;薛松;别宏宇;夏萍【摘要】针对水厂原水水质情况,选择3种不同pH的硫酸铝混凝剂进行混凝效果对比试验,研究不同pH的硫酸铝混凝剂对pH、碱度、浊度、残铝的控制效果.结果表明,相同投加量下,pH为2.92、3.07和3.58这三种不同pH的硫酸铝混凝剂对混凝出水pH、残铝、浊度影响不大.【期刊名称】《净水技术》【年(卷),期】2016(000)0z2【总页数】3页(P19-21)【关键词】硫酸铝;混凝;效果;残铝【作者】夏添;薛松;别宏宇;夏萍【作者单位】上海城市水资源开发利用国家工程中心有限公司,上海200082;上海城投水务(集团)有限公司,上海200002;上海城市水资源开发利用国家工程中心有限公司,上海200082;上海城市水资源开发利用国家工程中心有限公司,上海200082【正文语种】中文【中图分类】TU991强化混凝环节是提高水处理系统除污染效率的关键,而选择适合处理原水水质的优质高效的混凝剂则是提高混凝效率的重要途径之一[1]。

在混凝设施水力条件一定的情况下,混凝剂种类的选定、混凝剂投加量的多少直接影响混凝效果及其后续处理,更是水厂制水成本的直接影响因素[2]。

利用水厂现有的混凝搅拌设备和实验室检测设备,根据水厂的原水水质,选用3种不同pH的硫酸铝混凝剂进行混凝效果对比研究,研究不同pH的硫酸铝混凝剂对pH、碱度、浊度、残铝的控制效果。

1.1 混凝剂试验所用三种不同pH硫酸铝混凝剂氧化铝含量均为7.8%,混凝剂硫酸铝A的pH为2.92,混凝剂硫酸铝B的pH为3.07,混凝剂硫酸铝C的pH为3.58。

使用液浓度为10 mg/mL(以折固硫酸铝为标准计算浓度)。

1.2 混凝试验参数搅拌试验设备为武汉恒岭科技有限公司制造的TA6-1程控混凝试验搅拌仪,试验参数设置为:①快速300 r/min,2 min;②200 r/min,3 min;③50 r/min,5 min;④静沉,15 min,取上清液进行测定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档