2020赢在高考 数学压轴题突破精讲精练专题:以形助数,“数题形解”【全国版含解析】
2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题(解析版)

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题一、单选题1.已知集合{1A y y ==+,{}30B x x =-≤,则A B =I ( )A .[]1,2B .[]1,3C .[]2,3D .()2,+∞【答案】B【解析】首先分别化简集合A ,B ,再求交集即可. 【详解】{{}11A y y y y ==+=≥,{}{}303B x x x x =-≤=≤,所以[]1,3A B ⋂=. 故选:B. 【点睛】本题主要考查集合的交集运算,同时考查了函数的值域,属于简单题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式,设复数cos sin33z i ππ=+,则3z 等于( )A .12- B .1- C .12-D .12-+ 【答案】B 【解析】根据欧拉公式得到3i z e π=,再计算3z 即可. 【详解】由题意得3cossin33iz i e πππ=+=,333()cos sin 1ii z e e i ππππ====-+.故选:B本题主要考查三角函数求值问题,同时复数的概念,属于简单题.3.月形是一种特殊的平面图形,指有相同的底,且在底的同一侧的两个弓形所围成的图形.月形中的一种特殊的情形是镰刀形,即由半圆和弓形所围成的图形(如下图),若半圆的半径与弓形所在圆的半径之比为1:2,现向半圆内随机取一点,则取到镰刀形中的一点的概率为()A.423 3π-B.2313π-C.3πD.31π-【答案】B【解析】首先设半圆半径为r,分别计算半圆的面积和弓形的面积,再代入几何概型公式计算即可.【详解】如图所示:设半圆半径为r,半圆面积为22rπ,221(2)3OO r r r=-=弓形面积为()2221122233623r r r r rππ⨯⨯-⨯=-,概率为2222232312332rr rrπππ-+=-.故选:B本题主要以数学文化为背景考查几何概型,同时考查学生的逻辑思维能力,属于中档题. 4.数列{}n a的前几项是:0、2、4、8、12、18、24、32、49、50⋅⋅⋅其规律是:偶数项是序号平方再除2;奇数项是序号平方减1再除2.如图所示的程序框图是为了得到该数列的前100项而设计的,那么在两个判断框中,可以先后填入()n≤?A.n是偶数?,100n≤?B.n是奇数?,100n<?C.n是偶数?,100n<?D.n是奇数?,100【答案】A【解析】模拟程序框图的运行过程,结合输出的条件,即可得到答案.【详解】根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“n是偶数?”;n=>结束,执行程序框图,当101100n≤?.所以第二个框应该填100故选:A【点睛】本题主要考查程序框图的应用问题,解题时应模拟程序框图的运行过程,属于简单题.5.已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈都有21n n S a =-,设2log n n b a =,则数列{}n b 的前6项之和为( ) A .11 B .16 C .10 D .15【答案】D 【解析】首先根据21n n S a =-得到12n n a -=,代入2log n n b a =,再计算数列{}n b 的前6项之和即可. 【详解】因为21n n S a =-,当1n =时,11121S a a =-=,所以11a =.当2n ≥时,1n n n a S S -=-,所以121(21)n n n a a a -=---,即12n n a a -=. 所以数列{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=,12log 21n n b n -==-,11(2)1n n b b n n --=---=,所以数列{}n b 是以0为首项,以1为公差的等差数列, 数列{}n b 的前6项之和为1656152b d ⨯+= 故选:D 【点睛】本题主要考查由n S 求通项公式n a ,同时考查了等差数列的求和,属于中档题. 6.声音中包含着正弦函数.音的四要素:音调、响度、音长和音色都与正弦函数的参数有关.我们平时听到的音乐不只是一个音在响,是由基音和许多个谐音的结合,其函数可以是()11sin sin 2sin 323f x x x x =++,则()f x 的图象可以是( ) A . B .C .D .【答案】D【解析】首先根据()f x 为奇函数,排除C ,根据42f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,排除B ,根据()11111=236f x <++,排除A ,排除法即可得到答案.【详解】因为()f x 的定义域为R ,1111()sin()sin(2)sin(3)sin sin 2sin 3()2323f x x x x x x x f x -=-+-+-=---=-,所以()f x 为奇函数,排除C .221432f π⎛⎫=+ ⎪⎝⎭,223f π⎛⎫= ⎪⎝⎭,故42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ; 因为()11111=236f x <++,而A 选项的()max 2f x =,排除A. 故选:D 【点睛】本题主要考查根据解析式判断函数的图象,同时考查了函数的奇偶性,特值法以及函数的最值,属于中档题.7.过双曲线M :()22210y x b b-=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且54OB OA OC =+u u u r u u u r u u u r,则双曲线的离心率是( ) A .10B .132C 13D .133【答案】B【解析】首先设出直线l 的方程为1y x =+,与渐近线方程联立得到1(,)11bB b b -++, 1(,)11bC b b --.根据54OB OA OC =+u u u r u u u r u u u r 得到32b =,再计算离心率即可.【详解】由题可知(1,0)A -,所以直线l 的方程为1y x =+. 因双曲线M 的两条渐近线方程为y bx =或y bx =-.由1y bx y x =-⎧⎨=+⎩,解得1(,)11b B b b -++;同理可得1(,)11bC b b --. 又()1,0OA =-u u u r ,1,11b OB b b ⎛⎫=- ⎪++⎝⎭u u u r ,1,11b OC b b ⎛⎫= ⎪--⎝⎭u u u r因为54OB OA OC =+u u u r u u u r u u u r, 所以511b b b b =+-,解得32b =,2c =,2e =.故选:B 【点睛】本题主要考查双曲线离心率的求法,根据题意解出b ,c 的值为解题的关键,属于中档题.8.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,()20192020xf f x ⎡=⎤⎣⎦-.若()2sin 6g x x mx π⎛⎫=++ ⎪⎝⎭在3,22ππ⎡⎤⎢⎥⎣⎦上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(],1-∞- B .[)1,-+∞ C .(],2-∞-D .[]2,1--【答案】B【解析】首先设()2019xt f x =-,得到()2019xf x t =+在R 上的增函数,从而得到()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.再利用导数转化为max [2cos()]6m x π≥-+,即可得到答案. 【详解】由于()f x 连续可导且无极值,故函数()f x 为单调函数, 可令()2019xt f x =-(t 为常数),使()2020f t =成立,故()2019xf x t =+,故()f x 为R 上的增函数.故()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.()2cos 06g x x m π⎛⎫'=++≥ ⎪⎝⎭在3,22x ππ⎡⎤∈⎢⎥⎣⎦上恒成立, 即max [2cos()]6m x π≥-+. 因为3,22x ππ⎡⎤∈⎢⎥⎣⎦所以513,636x πππ⎡⎤+∈⎢⎥⎣⎦,故61cos ,12x π⎛⎫⎡⎤∈ ⎪⎢⎝⎭⎣+⎥⎦,[]2cos 2,16x π⎛⎫-+∈-- ⎪⎝⎭, 所以1m ≥-. 故选:B 【点睛】本题主要考查三角函数的值域问题,同时考查了导数的单调区间和极值,属于中档题. 9.在平面四边形ABCD 中,AB BD ⊥,60BCD ∠=︒,223424AB BD +=,若将ABD △沿BD 折成直二面角A BD C --,则三棱锥A BDC -外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】D【解析】首先根据二面角A BD C --为直二面角得到AB ⊥平面BCD .再将三棱锥的外接球转化为直三棱柱的外接球即可得到表面积. 【详解】 如图所示:因为二面角A BD C --为直二面角,且AB BD ⊥, 所以AB ⊥平面BCD .将三棱锥A BDC -放入三棱柱中,如图所示:1O ,2O 为底面外接圆的圆心,12O O 的中点O 为三棱锥A BDC -外接球的球心.在BDC V 中,2sin 60BD r =o,所以3r =. 因为222222221111()3234R r OO BD AB BD AB =+=+=+ 又因为223424AB BD +=,所以2211234BD AB +=所以22R =,外接球表面积 248S R ππ==. 故选:D 【点睛】本题主要考查三棱锥外接球的表面积,同时考查了二面角,将三棱锥的外接球转化为直三棱柱的外接球为解题的关键,属于中档题.10.若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a <<【答案】A【解析】首先利用指数函数和幂函数的单调性得到b c <和a b >,再构造函数,利用导数得到函数的单调性得到a c <,即可得到答案. 【详解】因为3xy =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()xf x x=,21ln ()xf x x-'=,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数.则()(3)f f π<,即ln ln 33ππ<,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 【点睛】本题主要考查指数和幂的比较大小,利用导数得到函数的单调性来比较大小为解决本题的关键,属于中档题.11.已知F 为抛物线C :28y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AD EB ⋅u u u r u u u r的最小值为( ) A .60 B .62C .64D .66【答案】C【解析】首先设出()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y ,联立直线1l ,2l 和抛物线得到()212242k x x k++=,124x x=,()234412x x k +=+,344x x =.利用向量的减法化简AD EB ⋅u u u r u u u r得到FD FE FA F AD B B E ⋅+⋅=⋅u u u r u u u r ,再利用焦半径公式和基本不等式从而得到最小值. 【详解】 如图所示:设()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y , 直线1l 方程为()()20y k x k =-≠,则直线2l 方程为()12y x k=--, 联立()228y k x y x⎧=-⎨=⎩得()22224840k x k x k -++=,()212242k x x k++=,124x x=;同理()223424211412k x x k k ⎛⎫+ ⎪⎝⎭+==+,344x x =. ()()AD EB FD FA FB FE FD FE FA FB ⋅=-⋅-=-⋅-⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()()()()12342222FD FE FA FB x x x x +++++⋅=+⋅()()12341234822x x x x x x x x =++++++()()2222282161681232163264k k k k k +=+++=++≥+=. 当且仅当1k =±时,取“=”. 故选:C 【点睛】本题主要考查直线与抛物线的位置关系,同时考查了抛物线的焦半径公式和基本不等式,属于中档题.12.已知函数()f x ,()g x 定义域为R ,()()1f x g x +=.若()()()()()()(),, ,,f x f xg x F x g x f x g x ⎧≥⎪=⎨<⎪⎩且()()2222F x x a x a a R =-+∈,则关于x 的方程()()1f x g x -=有两解时,a 的取值范围为( )A.{}1122⎛⎫--⋃ ⎪ ⎪⎝⎭B.2⎡⎤-⎢⎥⎣⎦C.{}112⎛⎤-⋃ ⎥ ⎝⎦D .1,12⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题知()()()()()2f xg x f x g x F x ++-=,根据题意得到:()12F x ≥恒成立且()1F x =有两解.分别讨论0a <和0a >时的情况,根据图象即可得到a 的取值范围. 【详解】由题意知:()()()()()2f xg x f x g x F x ++-=,则()()()210f x g x F x -=-≥对任意的x ∈R 恒成立, 又()()1f x g x -=有两解, 则()12F x ≥恒成立且()1F x =有两解. ()222222()F x x a x a x a a =-+=-+.当0a <时,如图所示:只需21212a ≤<,解得2122a -<≤-. 当0a >时,如图所示:只需212a ≥且221a <或者21a =即可,解得1a =. 综上所述:{}21,122a ⎛⎤∈--⋃ ⎥ ⎝⎦. 故选:C 【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解决本题的关键,属于中档题.二、填空题13.变量x ,y 满足约束条件220,240,10,x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则目标函数232z x y =--的取值范围是______. 【答案】[]3,2-【解析】首先根据不等式组画出可行域,根据可行域化简目标函数得到2633z y x +=-+,再根据z 的几何意义结合可行域即可得到z 的取值范围. 【详解】不等式的可行域如图所示:由图知:0x ≥,02y ≤≤,因此23(2)236z x y x y =+-=+-,此时2633z y x +=-+,直线的纵截距越大,z 越大,纵截距越小,z 越小. 当直线经过点()0,1A 时,min 363z =-=-,联立24010x y x y +-=⎧⎨-+=⎩,解得(1,2)C .当直线经过点(1,2)C 时,max 2662z =+-=, 所以z 的范围为[]3,2-. 故答案为:[]3,2- 【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于中档题.14.设1e u r ,2e u u r 为单位向量,非零向量()12,a xe ye x y R =+∈r u r u u r ,若1e u r ,2e u u r 的夹角为3π,则yar 的最大值等于______.【答案】3【解析】首先计算2a r ,化简22y ar 得到2221()1x x y y y a =++r ,再利用二次函数的最值得到yar 的最大值. 【详解】当0y =时,0ya=r . 当0y ≠时,222222211222=a x e xye e y e x xy y =++++r u r u r u u r u u r g, 则2222221()1y x x x xy y yy a y ==++++r , 因为22133()1()244xx x yy y ++=++≥ 所以()222140133()24y a y x y =≤≠++r所以y a r【点睛】本题主要考查平面向量模长的计算,同时考查了二次函数的最值,属于中档题.15.在数列{}n a ,{}n b 中,()12n n n a a b +=++,()12n n n b a b +=+-11a =,11b =.设11n n mc a b +=,则数列{}n c 的通项公式n c =______. 【答案】22n -【解析】首先让两式()12n n n a a b +=++和()12n n n b a b +=+-别相加和相乘得到212n n n a b -+=和13382n n n n a b --⋅==,再代入n c 即可得到通项公式.【详解】由()12n n n a a b +=++,()12n n n b a b +=+-两式相加可得:()114n n n n a b a b +++=+. 112a b +=,故数列{}nn a b +是以2为首项,4为公比的等比数列.212n n n a b -+=.两式相乘得:()()22211448n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,111a b =,故{}n n a b ⋅是以1为首项,8为公比的等比数列, 13382n n n n a b --⋅==,所以2123311222n n n n n n n n n n a b c a b a b ---⎛⎫+=+===⎪⋅⎝⎭. 故答案为:22n - 【点睛】本题主要考查利用定义求等差数列和等比数列的通项公式,同时考查了学生分析问题的能力,属于中档题.16.已知a R ∈,函数()sin 2cos x f x a a x =-++在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为12,则a的取值范围为______.【答案】1(,]4-∞ 【解析】首先令()sin 2cos xg x x=+,利用导数求出函数的单调区间和最值,再分类讨论a 的范围即可得到答案.【详解】 令()sin 2cos x g x x=+,()()22cos 12cos x g x x +'=+, 0,2x π⎡⎤∈⎢⎥⎣⎦,则()0g x '>,()g x 在0,2π⎡⎤⎢⎥⎣⎦为增函数,()00g =,122g π⎛⎫=⎪⎝⎭,()102g x ≤≤,()12a g x a a -≤-≤-.若0a ≤,()()1[0,]2f xg x =∈,此时()f x 最大值为12,成立; 若12a ≥,()()12[2,2]2f x a g x a a =-∈-,则()max 122x f a ==,14a =,不成立,舍去.若102a <<,()max 1max 2,2f x a ⎧⎫=⎨⎬⎩⎭,只需122a ≤,即104a <≤. 综上所述:14a ≤. 故答案为:1(,]4-∞【点睛】本题主要考查利用导数求函数的最值问题,构造函数()g x 为解题的关键,属于难题.三、解答题17.已知ABC V 的内角为A ,B ,C ,它们的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求角B 的大小;(2)若1cos 7A =,BA BC +=u uu r u u u r ABC V 的面积.【答案】(1)3B π=(2)【解析】(1)首先利用三角函数的诱导公式得到sin cossin 22BBa ab A π-==,再利用正弦定理的边化角即可得到1sin22B =,3B π=.(2)首先根据已知1cos 7A =和3B π=得到53sin 14C =,利用余弦定理得到2211129474c b cb +-=,再根据sin 7sin 5b B c C ==算出b ,c 值求面积即可. 【详解】 (1)因为sinsin 2A Ca b A +=,所以sin cos sin 22B B a a b A π-==, 由正弦定理:sin sin sin a b cA B C ==知,sin cos sin sin 2B A B A =, 而sin 0A ≠,则cos sin 2sin cos 222B B BB ==, 又0B π<<,022B π<<,cos 02B ≠,所以1sin 22B =. 26B π=,3B π=. (2)设ABC V 三边分别为a ,b ,c ,AC 中点为M , 如图所示:因为1cos 7A =,所以43sin A =. 又因为3B π=,()53sin sin sin cos cos sin C A B A B A B =+=+=. 因为1292BA BC BM +==u u u r u u u r u u u u r ,所以1292BM =.由余弦定理知2222cos BM AB AM AB AM A=+-⋅⋅2222111111292427474c b c b c b cb =+-⋅⋅=+-=,因为3sin72sin553b BcC===,75b c=.得到221717129()45754c c+⨯-⨯=解得5c=,7b=.1143sin5710322S bc A==⨯⨯⨯=.【点睛】本题第一问考查利用正弦定理的边化角求角,第二问考查余弦定理解三角形,同时考查正弦定理的面积公式,属于中档题.18.如图,三棱柱111ABC A B C-中,CA CB=,1AA BC⊥,145BAA∠=︒.(1)求证:平面11AA C C⊥平面11AA B B;(2)若122BB==,直线11B C与平面11ABB A所成角为45°,D为1CC的中点,求二面角11B AD C--的余弦值.【答案】(1)证明见解析;(2)31414【解析】(1)首先过点C作1CO AA⊥,垂足为O,根据1CO AA⊥,1AA BC⊥得到1AA⊥平面BOC,从而得到1AA OB⊥.又因为Rt AOC Rt BOC△≌△得到CO OB⊥,CO AO⊥,从而得到CO⊥平面11ABB A,由此即证平面11AA C C⊥平面11AA B B.(2)首先以O为坐标原点,OA,OB,OC所在直线为x,y,z轴,建立空间直角坐标系O xyz-,根据直线11B C与平面11ABB A所成角为45o得到2AB=,1AO BO CD ===,再利用向量法求二面角11B AD C --的余弦值即可.【详解】(1)过点C 作1CO AA ⊥,垂足为O . 因为1AA BC ⊥,BC 交CO 于点C , 所以1AA ⊥平面BOC .又因为OB ⊂平面BOC ,故1AA OB ⊥. 因为145A AB ∠=︒,1AA OB ⊥,所以AOB V 为等腰直角三角形,则OA OB =. 又因为CA CB =,CO CO =,所以Rt AOC Rt BOC △≌△,故90COA COB ∠=∠=︒, 故CO OB ⊥,CO AO ⊥.因为BO ,AO ⊂平面11ABB A ,BO AO O =I ,所以CO ⊥平面11ABB A . 又因为CO ⊂平面11AAC C ,故平面11AAC C ⊥平面11AA B B . (2)由(1)知CO ⊥平面11AA B B .以O 为坐标原点,OA ,OB ,OC 所在直线为x ,y ,z 轴, 建立空间直角坐标系O xyz -.因为直线11B C 与平面11ABB A 成角为45°,而11//BC B C , 所以直线BC 与平面11ABB A 成角为45︒,而CBO ∠是直线BC 与平面11AA B B 所成角,故45CBO ∠=︒.所以AB =,1AO BO CD ===,()1,0,0A ,()0,1,0B ,()0,0,1C ,()11,0,0A -,()12,1,0B -,()1,0,1D - ()2,0,1AD =-u u u r ,()11,1,1B D =-u u u u r设平面1AB D 的法向量为()111,,n x y z =r,则111111200n AD x z n B D x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v v u u u u v v ,令11x =,得()1,3,2n =r .因为OB ⊥平面11AAC C ,所以OB uuu r为平面1AC D 的一条法向量,()0,1,0OB =u u u r .所以cos ,14n OB n OB n OB⋅<>===⋅r u u u rr u u u r r u u u r ,二面角11B AD C --的余弦值为14. 【点睛】本题第一问考查面面的垂直的证明,第二问考查向量法求二面角,同时考查了学生的计算能力,属于中档题.19.某工厂质检部门要对该厂流水线生产出的一批产品进行检验,如果检查到第0n 件仍未发现不合格品,则此次检查通过且认为这批产品合格,如果在尚未抽到第0n 件时已检查到不合格品则拒绝通过且认为这批产品不合格.设这批产品的数量足够大,可以认为每次检查查到不合格品的概率都为p ,即每次抽查的产品是相互独立的. (1)若05n =,求这批产品能够通过检查的概率;(2)已知每件产品质检费用为50元,若04n =,设对这批产品的质检个数记作X ,求X 的分布列;(3)在(2)的条件下,已知1000批此类产品,若11,2010p ⎡⎤∈⎢⎥⎣⎦,则总平均检查费用至少需要多少元?(总平均检查费用=每批次平均检查费用⨯批数)【答案】(1)()51p -(2)详见解析(3)171950元【解析】(1)根据05n =,这批产品能够通过检查说明前5次都通过检查,即可得到()()51P A p =-.(2)根据题意得到1X =,2,3,4,分别计算概率再列出分布列即可.(3)首先计算数学期望,令()()32464f p E X p p p ==-+-+,利用导数求出其最小值,即可得到答案. 【详解】(1)因为05n =,记事件A 为“当05n =时,这批产品能够通过检查”, 则由题意知:()()51P A p =-. (2)由题可知1X =,2,3,4()1P X p ==,()()21P X p p ==-,()()231P X p p ==-,()()341P X p ==-所以X 的分布列为:(3)由(2)可知X 的数学期望为:()()()()2332213141464E X p p p p p p p p p =+-+-+-=-+-+.设()32464f p p p p =-+-+,()2386f p p p '=-+-,因为64720∆=-<,所以()0f p '<, 所以()f p 在11,2010p ⎡⎤∈⎢⎥⎣⎦单调递减, 所以()min 11464 3.43910100010010f p f ⎛⎫==-+-+=⎪⎝⎭所以每批次平均检查费用至少为50 3.439171.95⨯=(元)所以1000批次此类产品总平均检查费用至少需要1000171.95171950⨯=(元)【点睛】本题主要考查离散型随机变量,同时考查了数学期望的应用,利用导数思想求最值为解题的关键,属于中档题.20.平面内与两定点()12,0A -,()22,0A 连线的斜率之积等于14-的点的轨迹,加上1A 、2A 两点所成的曲线为C .若曲线C 与y 轴的正半轴的交点为M ,且曲线C 上的相异两点A 、B 满足0MA MB ⋅=u u u r u u u r.(1)求曲线C 的轨迹方程; (2)求ABM V 面积S 的最大值.【答案】(1)2214x y +=(2)6425【解析】(1)首先设出(),P x y ,根据斜率之积等于14-得到()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-,再化简即可得到曲线C 的轨迹方程. (2)分别讨论AB 的斜率存在和不存在时,根据0MA MB ⋅=u u u r u u u r,设出直线方程与椭圆联立,利用根系关系得到直线恒过30,5N ⎛⎫- ⎪⎝⎭,再将ABM V 面积转化为ABM AMN BMN S S S =+V V V ,利用根系关系和对勾函数的单调性即可得到面积的最大值.【详解】(1)设曲线C 上任意一点(),P x y ,12A P y k x =+,22A P y k x =-, ()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-, 整理得:()22124x y x +=≠±.又曲线C 加上1A ,2A 两点,所以曲线C 的方程是:2214x y +=.(2)由题意可知()0,1M ,设()11,A x y ,()22,B x y , 当AB 的斜率存在时,设直线AB :y kx m =+,联立方程组:2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得到()222148440k x kmx m +++-=,则122814km x x k -+=+,21224414m x x k -⋅=+.()11,1MA x y =-u u u r ,()22,1MB x y =-u u u r,因为0MA MB ⋅=u u u r u u u r,所以有()()1212110x x kx m kx m ⋅++-+-=,()()()()2212121110k x xk m x x m +⋅+-++-=,()()()2222244811101414m km k k m m k k--++-+-=++, ()()()()()22222144811140k mk m m m k +---+-+=化简得到()()1530m m -+=,解得:35m =-或1m =(舍). 当AB 的斜率不存在时,易知满足条件0MA MB ⋅=u u u r u u u r的直线AB 为:0x =.因此,直线AB 恒过定点30,5N ⎛⎫- ⎪⎝⎭.所以1212ABM AMN BMN S S S MN x x =+=-=V V V1212MN x x ==-ABMS =V , 因为35m =-,所以2322514ABM S k =+V .设2t =≥,()2323229494t S t t t t==≥++. 由对勾函数的单调性得到94y t t=+在[2,)+∞为增函数,所以92542t t +≥. 即:6425S ≤(0k =时取到最大值). 所以ABM 面积S 的最大值为6425.【点睛】本题第一问考查圆锥曲线的轨迹方程,第二问考查直线与椭圆的位置关系,同时考查了学生的计算能力,属于难题.21.已知函数()()ln f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[)0,x ∈+∞,有()2f x kx ≤恒成立,求实数k 的最小值;(3)记()12ln 2121nn i S n i ==-+-∑,[]x 为不超过x 的最大整数,求[]n S 的值. (参考数据:ln 20.7≈,ln3 1.1≈,ln5 1.6≈) 【答案】(1)1a =(2)12(3)[]0,1,1, 2.n n S n =⎧=⎨≥⎩ 【解析】(1)首先求导()1x a f x x a+-=+',求出函数的单调区间,根据单调区间得到最小值,即可得到a 的值.(2)当0k ≤时,易证不合题意,当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,()()2121x kx k g x x ⎡⎤---⎣⎦'=+,令()0g x '=,可得10x =,2122k x k-=.分类讨论12k ≥和102k <<时()g x 的单调性和最值即可得到实数k 的最小值.(3)当1n =时,()12ln30,1S =-∈,[]10S =.当2n ≥时,()1122ln 212121nnn i i f n S i i ==⎛⎫==-+= ⎪--⎝⎭∑∑,取12k =,得()21()20f x x x ≤≥,从而得到()()()*222,N 212321f i i i i i ⎛⎫<≥∈ ⎪---⎝⎭,所以12ln 31221nS n <-+-<-.又因为10n n S S -->,得到123012n S S S S <<<<<⋅⋅⋅<<,即可得到[]0,11,2n n S n =⎧=⎨≥⎩.【详解】 (1)()()111x a x a x a f x x a+-=-+'=>-+,令()0f x '=,得1x a =-,()f x 在(),1a a --单调递减,()1,a -+∞单调递增,()()min 110f x f a a =-=-=,所以1a =.(2)当0k ≤时,取1x =,有()11ln 20f =->,故0k ≤不合题意. 当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,求导函数可得()()21211211x kx k g x kx x x ⎡⎤---⎣⎦'=--=++,令()0g x '=,可得10x =,21212kx k-=>-. ①当12k ≥时,1202k k-≤, 所以[)0,x ∈+∞,()0g x '≤恒成立, 因此()g x 在[)0,+∞上单调递减,从而对任意的[)0,x ∈+∞,总有()()00g x g ≤=,即对任意的[)0,x ∈+∞,有2()f x kx ≤成立,故12k ≥符合题意; ②当102k <<时,1202k k->, 对于120,2k x k -⎛⎫∈ ⎪⎝⎭,()0g x '>,因此()g x 在120,2k k -⎛⎫ ⎪⎝⎭内单调递增, 从而当0120,2k x k -⎛⎫∈ ⎪⎝⎭时,()()000g x g ≥=, 即有()200f x kx ≤不成立,故102k <<不合题意.综上, k 的最小值为12. (3)当1n =时,()12ln30,1S =-∈,[]10S =. 当2n ≥时,11222ln 1212121nn i i f i i i ==⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎣⎦∑∑ ()12ln 2121nn i n S i ==-+=-∑由(2)知,取12k =,得()21()20f x x x ≤≥,从而()()()()2*2212222,N 21221232121f i i i i i i i ⎛⎫⎛⎫≤=<≥∈ ⎪ ⎪----⎝⎭⎝⎭-, 所以()()()12222222ln 233212211nnnn i i i S f f fi i i i ===⎛⎫⎛⎫==+<-+ ⎪ ⎪--⎝⎭⎝--⎭∑∑∑ 21112ln 32ln 312232121ni i i n =⎛⎫=-+-=-+-< ⎪---⎝⎭∑. 又()()1112ln 21221n n i S n n i --==--≥-∑, 所以122122ln ln 121212121n n n S S n n n n -+⎛⎫-=-=-+ ⎪----⎝⎭. 令221t n =-,则()0,1t ∈,设()()ln 1h t t t =-+, ()11011th t t t'=-=>++,所以()h t 在()0,1单调递增,则()()00h t h >=,所以{}n S 单调递增,即1230n S S S S <<<<⋅⋅⋅<,又222ln 513S =+->, 所以123012n S S S S <<<<<⋅⋅⋅<<,所以[]0,11,2n n S n =⎧=⎨≥⎩. 【点睛】本题主要考查利用导数求函数的最值,利用导数解决恒成立问题,同时考查了分类讨论和构造函数的思想,属于难题.22.已知在极坐系中,点(),P ρθ绕极点O 顺时针旋转角α得到点(),P ρθα'-.以O 为原点,极轴为x 轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线E :1xy =绕O 逆时针旋转4π得到曲线C . (1)求曲线E 的极坐标方程和曲线C 的直角坐标方程;(2)点M 的极坐标为4,4π⎛⎫⎪⎝⎭,直线l 过点M 且与曲线E 交于A ,B 两点,求MA MB⋅的最小值.【答案】(1)2sin 22ρθ=;22122y x -=(2)14【解析】(1)首先根据题意得到E 的极坐标方程为2sin 22p θ=,设(),P ρθ为曲线C 上任意一点,得到点,4P πρθ⎛⎫'-⎪⎝⎭在曲线E 上,即2sin 222πρθ⎛⎫-= ⎪⎝⎭,再化简得到曲线C 的直角坐标方程为22122y x -=.(2)首先设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy =得到()2cos sin sin cos 70t αααα+++=,利用直线参数方程的几何意义得到1214sin 2MA MA t t α⋅==,再利用三角函数的性质即可得到最小值.【详解】(1)由E 的直角坐标方程为1xy =可得cos sin 1ρθρθ⨯=即:2sin 22p θ=,设(),P ρθ为曲线C 上任意一点, 则P 绕O 顺时针旋转4π得到点,4P πρθ⎛⎫'- ⎪⎝⎭在曲线E 上,则2sin 222πρθ⎛⎫-= ⎪⎝⎭,即2cos 22ρθ=-, ()22222si cos n 2x y ρθθ-=-=-所以曲线C 的方程为22122y x -=.(2)M的直角坐标为(,设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy=,整理后可得()2cos sin sin cos 70t αααα+++=.127cos sin t t αα=g所以1271414cos sin sin 2MA MA t t ααα⋅===≥.当且仅当4k παπ=+或()4k k Z παπ=-∈时取等号,此时>0∆,符合条件.故MA MB ⋅的最小值为14【点睛】本题第一问考查直角坐标方程和极坐标方程的互化,第二问考查直线参数方程的几何意义,属于中档题.23.已知函数()21f x x x =+-的最小值为M . (1)求M ;(2)若正实数a ,b ,c 满足a b c M ++=,求证:2222221a b a c b cc b a+++++≥.【答案】(1)12M =(2)证明见解析; 【解析】(1)首先化简解析式得到()31,01=1,02131,2x x f x x x x x ⎧⎪-+<⎪⎪-≤<⎨⎪⎪-≥⎪⎩,根据函数的单调性即可得到()f x 的最小值.(2)首先利用重要不等式得到222222222a b a c b c ab ac bcc b a c b a+++++≥++,再根据均值不等式和12a b c ++=即可证明. 【详解】(1)()31,0,1=211,0,2131,.2x x f x x x x x x x ⎧⎪-+<⎪⎪+-=-≤<⎨⎪⎪-≥⎪⎩因为函数13(0)y x x =-<是减函数,11(0)2y x x =-≤<是减函数;131()2y x x =-≥是增函数,故当12x =时,()f x 取得最小值11()22M f ==.(2)222222222a b a c b c ab ac bcc b a c b a+++++≥++()()()2()1b c a c c ba b c a b c c b c a b a=+++++≥++=,当且仅当16a b c ===取等号.【点睛】本题第一问考查求绝对值函数的最值,把绝对值函数变为分段函数为解题的关键,第二问考查利用均值不等式的性质证明不等式,属于中档题.。
2020年新高考全国Ⅰ卷压轴题的解法赏析及思考

• 12 .理科考试研究•数学版2021年1月1日=6 13sin ()+ sin~-I .设x =汐2 2^~,所以 7=38^(02—6) + sin 沒2 2 沒1=3 sin 2x + sirn : = sim : (1 + 6c o sa ;).所以 y 2 = sin2x ( 1 + 6cosx )2= ^•(15 - 15cosx ) (3 +3cos ^) (1 +6cos %) (1 +6c o s a :)1 ,15 - 15cos ^ +3 +3cos ^ +1 +6cos ^ +1 +6c o sa :、4^45( 4 )=丄 x 5445 3=竺当且仅当 15 - 15cosi = 3 + 3cos % = 1 + 6cosx ,即 cosx = ~|■时,等号成立•故丨;K 丨《¥,从而 S a /ms <6x ¥=1〇A所以S A W B 的最大值为1〇居.评注本解法从点运动变化的角度思考,利 用圆的参数方程解答.思路独特,涉及较多的知识,运 算量不小,难度较大.3试题探源由解法3,可知S A W B =6(sin 0-3sin 20);由解法7,可知y =3sin 2* + situ :.因此试题实际上可以看成是考 查三角函数的最值问题,因此2020年考题的“母题” 应该来源于下面的高考题,只是进行适当的改编 而已.试题(2018年全国I 卷理数第16题)已知函 数/(x ) =2sirw + sin 2x ,则/(a 〇 的最小值是______.可以看出,2020年高考试题是在2018年试题的 基础上,赋予更丰富的图形及相关知识,以此来考查 学生的转化与化归、数形结合等思想.4解后启示学数学离不开解题,在解题过程中,要引导学生 多探究一题多解,品味解题方法和思维的关键点.这 种一题多解的训练,增加了题目涉及的知识广度,以 一带多,减少了考查同样多的知识所需的题量.从数 学知识的角度来看,通过解题体会知识之间的转化过 程,发现知识的相互联系,构建知识网络体系.这样, 在学习基础知识、掌握基本技能的同时,能使学生将 知识融会贯通,开阔眼界,活跃思维.另外要充分认识 高考题所蕴含的价值,挖掘高考题的导向功能,发挥 其内在的作用,并以此来促进教学,提高教学效率.参考文献:[1]林国红.多视角巧突破—2018年全国I 卷理数第 16题解法赏析与探究[J ].中学数学研究(华南师范大学版), 2018(09) :44 - 46.(收稿日期:2020 - 09 -19)2020年斩高考全国I 卷压轴题的鮮法貴析及思考岳增华蒋兰兰(临沂第四中学山东临沂276001)摘要:本文以2020年新高考全国I 卷压轴题为例,从不同角度探究试题的几种解法,思考学法,以期更好地指导 教学,让学生达到触类旁通,举一反三的效果.关键词:导数的应用;分类讨论;隐零点;构造函数1真题再现题目(2020年新高考全国I 卷山东21题、海南 22 题)已知函数/(*) s a e * — 1 -lrw +lna .(1)当a = e 时,求曲线y =/(*)在点(1,/( 1))处 的切线与两坐标轴围成的三角形的面积;(2) 若/(*)&1,求a 的取值范围.本题题干简单明了,直入主题,能力要求高,方法灵活,需要有良好的数学素养.本文探究此题第(2)问 (第(1)问解法略)的解题思路,赏析解法,思考学法.2第(2)问解法分析解法 1 由/(a ;) =aeI_l -I n A :+lna ,当 a = 1 时x ) = e **丨-Inx )/’(;<)1 -丄.当:C E (0,1)时,/'(*) <0,所以函数/(X )单调递作者简介:岳增华(1970 -),男,山东沂南人,本科,中学高级教师,研究方向:高中数学教学.2021年1月1日理科考试研究•数学版• 13•减;当*e(l,)时,厂(幻>0,所以函数/(幻单调递增.所以/U)m i…=/U) =1,从而/U)身1.当0<a<l 时,因为/(I) = a+ lna < a < 1,所以/(l) <1.则/u)>i不是恒成立.当 a > 1时,/(尤)=ae*-1- lm;+ lna >_1 - lr n; >1.综上,a的取值范围是[1,+a).评注此解法利用了讨论法,讨论的界点a = 1 (lna二0)是解题的关键.解法 2 因为/(幻=c i e x_1 -In%+lna,所以厂(x) =ae*_1 -丄,且a >0•x设尽U) =/'U),则尽'(幻=a Z_1 +^>0.x所以g(幻在(0, +〇〇)上单调递增•BP/'U)在(0,+〇〇)上单调递增.当0<尤<1且0<%<丄时,/'(幻二狀文-1 -丄<a xael~l - —= a-—<0;x x当x > 1 且 x 时,/’(尤)=ae*_1 -丄〉似-y a xi= ^z l>0.x x所以存在唯一的〜使得/•'(*〇):以―1_丄=〇•尤0所以 ae*0_1 =丄.艮P lna + »〇 —1 = _ l r u:0.xo当*E(0,%)时,/'(;〇 <0,所以函数/(幻单调递减;当*E(*。
2020年全国卷1函数与导数压轴题一题多解,深度解析

全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D12已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D135已知sin2()=,则sin()=()A B﹣C D﹣6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D199将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82820(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D1【分析】利用复数的运算法则、复数相等可得a,b,再利用模的计算公式即可得出【解答】解:(1+ai)(2﹣i)=3+bi,化为:2+a+(2a﹣1)i=3+bi,∴2+a=3,2a﹣1=b,解得a=1,b=1∴z=1+i,则|z|==,故选:C【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题2已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}【分析】求出集合A,B,再由交集的定义求出A∩B【解答】解:∵集合A={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},B={x|y=}={x|x≤0},∴A∩B={﹣1,0}故选:D【点评】本题考查交集的求法,交集定义等基础知识,考查运算能力,是基础题32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数【分析】根据题中给出的图形中的数据,对四个选项逐一分析判断即可【解答】解:由题意,2015年至2019年这五年内每年第二产业增加值占国内生产总值比重都在39%~40.8%,故选项A正确;2015年至2019年每年第一产业增加值占国内生产总值比重先下降后上升,但无法据此判断第一产业产值是否在下降,故选项B错误;第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加,第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数,故选项C,D正确故选:B【点评】本题考查了条形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D13【分析】根据等差数列的通项公式和前n项和公式列方程组求出首项a1和公差d,即可求出a10的值【解答】解:等差数列{a n}中,a3=5,S3=12,所以,解得a1=3,d=1,所以a n=3+(n﹣1)×1=n+2,a10=10+2=12故选:C【点评】本题考查了等差数列的通项公式和前n项和公式应用问题,是基础题5已知sin2()=,则sin()=()A B﹣C D﹣【分析】利用二倍角公式化简已知等式可得cos(2α﹣)=,进而根据诱导公式即可化简求解【解答】解:因为sin2()==,可得cos(2α﹣)=,所以sin()=sin[+(2α﹣)]=cos(2α﹣)=故选:A【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a【分析】判断a<0,由幂函数y=x0.2的单调性得出0.70.2>0.30.2,由指数函数y=0.3x 的单调性得出0.30.2>0.30.5,判断b>c>0,即可得出结论【解答】解:因为a=5=﹣log35<0,由幂函数y=x0.2在(0,+∞)上是单调增函数,且0.7>0.3,所以0.70.2>0.30.2,又指数函数y=0.3x是定义域R上的单调减函数,且0.2<0.5,所以0.30.2>0.30.5,所以0.70.2>0.30.5>0,即b>c>0所以b>c>a故选:D【点评】本题考查了根据函数的单调性判断函数值大小的应用问题,是基础题7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】x2﹣mx+4>0对于∀x∈[3,+∞)恒成立,可得m<x+,求出x+的最小值,可得m的取值范围,再根据充要条件的定义即可判断【解答】解:∵x∈[3,+∞),由x2﹣mx+4>0x>0,得m<x+,∵当x∈[3,+∞)时,x+≥,当x=3时,取得最小值∴m<,∵{m|m<4}⫋{m|m}∴“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的充分不必要条件,故选:A【点评】本题考查了不等式恒成立问题和充要条件的判断,属于基础题8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D19【分析】根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,利用垂径定理得到E、F分别为AB、CD的中点,由AB=CD得到弦心距OE=OF,可得出四边形EMFO 为正方形,由M与O的坐标,利用两点间的距离公式求出OM的长,即为正方形的对角线长,求出正方形的边长OE,由圆的方程找出半径r,得OA的长,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,进而求出AB与CD的长,再利用对角线互相垂直的四边形面积等于两对角线乘积的一半,即可求出四边形ACBD的面积【解答】解:由x2﹣2x+y2﹣15=0,得(x﹣1)2+y2=16,则圆心坐标为O(1,0),根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,∴E为AB的中点,F为CD的中点,又AB⊥CD,AB=CD,∴四边形EMFO为正方形,又M(﹣1,3),∴|OM|=,∴|OE|=×=,又|OA|=4,∴根据勾股定理得:|AE|=,∴|AB|=|CD|=2|AE|=,则S四边形ACBD=|AB|•|CD|=19故选:D【点评】本题考查了直线与圆相交的性质,涉及的知识有:垂径定理,勾股定理,正方形的判定与性质,两点间的距离公式,以及对角线互相垂直的四边形面积求法,当直线与圆相交时,常常由垂径定理根据垂直得中点,然后由弦心距,弦长的一半及圆的半径构造直角三角形,利用勾股定理来解决问题,是中档题9将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z【分析】首先利用关系式的平移变换和伸缩变换的应用,求出函数的关系式,进一步利用正弦函数的性质的应用求出结果【解答】解:将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数g(x)=sin(ωx+ω+φ)的图象,因为函数y=g(x)的周期为π=,可得ω=2,所以g(x)=sin(2x++φ),因为函数y=g(x)图象的一条对称轴为直线x=,且g(x)是由f(x)的图像向左平移个单位长度得到,所以f(x)的一条对称轴为x=+=,所以2×+φ=kπ+,k∈Z,解得φ=kπ﹣,k∈Z,因为|φ|<,可得φ=,可得f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,函数y=f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z故选:B【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于中档题10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)【分析】设出点P的坐标,根据椭圆方程求出左右焦点的坐标,然后利用点P在椭圆上以及点P满足的向量关系联立求出点P的坐标,然后利用点到直线的距离公式建立不等关系,进而可以求解【解答】解:设点P的坐标为(x0,y0),则x0>0,y0>0,由椭圆的方程可得:a2=30,b2=5,则c=,所以F1(﹣5,0),F2(5,0),则=(﹣5﹣x0,﹣y0)•(5﹣x0,﹣y0)=x…①又…②,联立①②解得:x(负值舍去),所以点P的坐标为(2,1),则点P到直线AB的距离为d==,解得﹣10,即实数m的取值范围为(﹣10,0),故选:C【点评】本题考查了椭圆的性质以及向量的坐标运算性质,考查了学生的运算能力,属于中档题11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D【分析】取AD中点M,连接PM,ON,MN,求解三角形证明OM=MA=MD=MP,说明三棱锥P﹣AOD的外接球的球心O,在PM上,求出外接球的半径,然后求解外接球的体积【解答】解:如图,取AD中点M,连接PM,∵平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA=PD=3,AD=2,所以M为底面△AOD的外心,PM⊥平面AOD,所以三棱锥P﹣AOD的外接球的球心在PM上,球心为O,设球的半径为R,PM==2,所以R2=(2R)2+12,解得R=,∴PD⊥AD,PD⊥ON,三棱锥P﹣AOD的外接球的体积:=故选:D【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m【分析】利用极值点的定义,结合题意得到方程f'(x)=0有两个正解,从而求解得出正确结论【解答】解:∵函数的定义域为:x∈(0,+∞),∴函数有两个极值点,即得f'(x)=0有两个正解,∵f'(x)=∴方程x2﹣x﹣m=0有两个正解x1,x2,故有x1+x2=1,即得B正确;根据题意,可得△=1+4m>0⇒m>,且有x1•x2=﹣m>0⇒m<0所以可得<m<0,故D正确;又因为根据二次函数的性质可知,函数y=x2﹣x﹣m的对称轴为x=,由上可得0<x1<,<x2<1,故C正确;∴﹣ln2<lnx2<0,∴x1+lnx2∈(﹣ln2,),故A错误故选:A【点评】本题考查函数极值点的定义,以及函数零点与方程的根的关系属于基础题二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=﹣4【分析】根据y=f(x)+3是R上的奇函数,并且f(1)=﹣2即可得出f(﹣1)+3=﹣(﹣2+3),然后解出f(﹣1)即可【解答】解:∵y=f(x)+3是R上的奇函数,且f(1)=﹣2,∴f(﹣1)+3=﹣[f(1)+3],即f(﹣1)+3=﹣(﹣2+3),解得f(﹣1)=﹣4 故答案为:﹣4【点评】本题考查了奇函数的定义,考查了计算能力,属于基础题14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为【分析】根据条件可得出,进而可求出的值,从而可得出与的夹角【解答】解:∵,∴,∴,且,∴,且,∴故答案为:【点评】本题考查了向量垂直的充要条件,向量数量积的运算,向量夹角的余弦公式,考查了计算能力,属于基础题15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为【分析】由|OA|=c,得到AF1⊥AB,运用双曲线的定义和直角三角形的勾股定理,可得a,c的关系,进而得到离心率【解答】解:设双曲线的半焦距为c,由|OA|==c=|OF1|+|OF2|,可得AF1⊥AB,由|BF1|=5a,可得|BF2|=5a﹣2a=3a,设|AF1|=m,可得|AF2|=m+2a,|AB|=m+3a,由直角三角形ABF1,可得(m+3a)2+(m+2a)2=(5a)2,化为m2+5ma﹣6a2=0,解得m=a,则|AF1|=3a,|AF2|=a,所以(3a)2+a2=(2c)2,即为c=a,则离心率e==故答案为:【点评】本题考查双曲线的定义和性质,以及勾股定理法运用,考查方程思想和运算能力,属于中档题16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为1010【分析】根据已知关系式推出,然后利用累乘法求出a n,再利用裂项相消法求出S n,进而可以求解【解答】解:由已知(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),则(2n2﹣n﹣1)a,即(2n+1)(n﹣1)a n=(2n﹣3)(n﹣1)a n﹣1,所以,则a×==,则S=,因为S,则,解得n,所以n的最小值为1010,故答案为:1010【点评】本题考查了数列的递推式的应用,涉及到利用累乘法求解数列的通项公式以及裂项相消求和的应用,考查了学生的运算能力,属于中档题三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值【分析】(1)由已知结合正弦定理及和差角公式进行化简可求cos B,进而可求B;(2)由余弦定理可求bc的范围,然后结合三角形的面积公式可求【解答】解:(1)因为a=b cos C+c,所以sin A=sin B cos C+sin C=sin(B+C)=sin B cos C+sin C cos B,即sin C=sin C cos B,因为sin C>0,所以cos B=,由B∈(0,π)得B=;(2)由余弦定理得b2=9=a2+c2﹣ac≥ac,当且仅当a=c时取等号,故ac≤9,△ABC面积S==故面积的最大值【点评】本题主要考查了余弦定理,正弦定理,和差角公式在三角化简求值中的应用,还考查了三角形的面积公式的应用,属于中档题18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积【分析】(1)由已知可得D1D⊥平面ABCD,则D1D⊥BC,再证明BC⊥BD,由直线与平面垂直的判定可得BC⊥平面BDD1;(2)由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,求得DD1=5,再由棱锥体积公式求四棱锥D1﹣ABCD的体积【解答】(1)证明:已知直四棱柱ABCD﹣A1B1C1D1,则D1D⊥平面ABCD,∵BC⊂平面ABCD,∴D1D⊥BC,在直角梯形ABCD中,过B作BE⊥CD,则BE=AD=2,CE=DC﹣DE=DC﹣AB=4,∴BC=,BD2=AD2+AB2=5,∴BC2+BD2=CD2,即BC⊥BD,∵BD∩DD1=D,∴BC⊥平面BDD1;(2)解:由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,且tan∠D1BD=,则DD1=5∴四棱锥D1﹣ABCD的体积V=【点评】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【分析】(1)求出平均值,由72与平均值比较大小得结论;(2)由题意填写2×2列联表,再求出K2的观测值k,与临界值表比较得结论;(3)利用分层抽样求出8人中文理科所占人数,再由古典概型概率计算公式求解【解答】解:(1)由表可得高三600名文科生的成绩的平均值为:=70,∴某文科生72分的成绩达到该校高三年级文科生的平均水平;(2)2×2列联表:文科理科总计较好掌握125 75 200非较好掌握475 725 1200 总计600 800 1400 K2的观测值k=≈36.762>10.828,故有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”;(3)由分层抽样方法从200名学生中抽取8名,文科所占人数为人,则理科有3人在8人中随机抽取2人,2人中至少有1人学理科的概率为P==【点评】本题考查频率分布表,考查独立性检验,训练了古典概型概率的求法,是中档题20(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值【分析】(1)由抛物线的定义和范围,可得|PF|的最小值为,可得所求抛物线的方程;(2)设直线l的方程为x=my+1,与抛物线的方程联立,运用韦达定理和弦长公式,以及中点坐标公式和两直线垂直的条件,求得|DF|,即可得到定值【解答】解:(1)抛物线C:y2=2px(p>0),焦点F(,0),准线方程为x=﹣,设P(x0,y0),x0≥0,可得x0+的最小值为=1,即p=2,所以抛物线的方程为y2=4x;(2)证明:设直线l的方程为x=my+1,与抛物线的方程y2=4x联立,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,所以AB的中点坐标为(1+2m2,2m),AB的垂直平分线方程为y﹣2m=﹣m(x﹣1﹣2m2),令y=0,解得x=2+2m2,即D(3+2m2,0),|DF|=2(1+m2),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4,则为定值【点评】本题考查抛物线的定义、方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力,属于中档题21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3【分析】(1)f′(x)=1﹣cos x,可得f′(π),又f(π)=π,利用点斜式即可得出曲线y=f(x)在点(π,f(π))处的切线方程(2)令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0多次利用导数研究函数的单调性极值与最值即可证明结论【解答】解:(1)f′(x)=1﹣cos x,f′(π)=1﹣cosπ=2,又f(π)=π﹣sinπ=π,∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣π=2(x﹣π),即y=2x ﹣π(2)证明:令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0 g′(x)=1﹣cos x﹣x2=h(x),h(0)=0,x∈(0,π),h′(x)=sin x﹣x=u(x),u(0)=0,x∈(0,π),u′(x)=cos x﹣1<0,x∈(0,π),∴u(x)在x∈(0,π)上单调递减,∴h′(x)=u(x)<u(0)=0,∴h(x)在x∈(0,π)上单调递减,∴g′(x)=h(x)<h(0)=0,∴函数g(x)在x∈(0,π)单调递减,∴g(x)<g(0)=0∴x﹣sin x﹣x3<0,即当x∈(0,π)时,6f(x)<x3【点评】本题考查了利用导数研究函数的单调性极值、证明不等式,考查了推理能力与计算能力,属于难题选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换,再利用三角函数的关系式的变换和三角函数的性质的应用求出结果(2)利用直线与圆的位置关系和一元二次方程根和系数关系式的应用求出直线的方程【解答】解:(1)曲线C的参数方程为(φ为参数),转换为直角坐标方程为x2+(y﹣1)2=4,根据,转换为极坐标方程为ρ2﹣2ρsinθ﹣3=设曲线上的点的坐标为P(2cosθ,1+2sinθ),原点的坐标为O(0,0),所以,当(k∈Z)时,|PO|max=3(2)直线l的参数方程为(t为参数),转换为极坐标方程为θ=α(ρ∈R),由于直线与圆相交,故,整理得ρ2﹣2ρsinα﹣3=0,所以ρA+ρB=2sinα,ρAρB=﹣3,故|OA|+|OB|==,整理得sinα=0,所以直线与x轴平行,故直线的方程为y=0【点评】本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,三角函数关系式的变换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围【分析】(1)把a=3代入函数解析式,然后根据f(x)≥6,利用零点分段法解不等式即可;(2)根据绝对值不等式性质可得f(x)≥|a+2|,把不等式f(x)≥2a,对任意x∈R 恒成立转化为|a+2|≥2a恒成立,然后求出a的取值范围【解答】解:(1)把a=3代入f(x)=|x+2|+|x﹣a|,可得f(x)=|x+2|+|x﹣3|=,当x≤﹣2时,f(x)≥6等价于﹣2x+1≥6,解得x≤,则x≤﹣,当﹣2<x<3时,f(x)≥6等价于5≥6,此式不成立,当x≥3时,f(x)≥6等价于2x﹣1≥6,解得x,则x综上,不等式f(x)≥6的解集为:(﹣∞,]∪[,+∞)(2)∵f(x)=|x+2|+|x﹣a|=|x+2|+|a﹣x|≥|x+2+a﹣x|=|a+2|,∴不等式f(x)≥2a,对任意x∈R恒成立转化为|a+2|≥2a恒成立,若2a<0,即a<0,则不等式|a+2|≥2a成立,若2a≥0,即a≥0,则a2+4a+4≥4a2,即3a2﹣4a﹣4≤0,解得≤a≤2,则0≤a≤2综上,实数a的取值范围是(﹣∞,2]【点评】本题考查绝对值不等式的解法和不等式恒成立问题,考查分类讨论思想和转化思想,属于中档题。
2020届全国普通高等学校统一招生考试高三压轴(一)数学(文)试题(解析版)

2020 届一般高等学校招生全国一致考试高三数学(文)压轴(一)试题一、单项选择题1.已知会集M x y x和N y y x2,则以下结论正确的选项是()A.M =N B.MN C.M UN R D.MN【答案】 A【分析】利用函数的定义域可知x 0 求出会集 M ,依据二次函数值域的求法求出N ,再利用会集之间的基本关系即可求解.【详解】M0,,N0,,因此M=N,应选: A.【点睛】本题主要观察了会集的基本运算,同时观察了函数的定义域、值域的求法,属于基础题.2.复数z 2 2i在复平面内对应的点在()i1A.第一象限B.第二象限C.第三象限D.第四象限【答案】 C【分析】利用复数的乘、除运算可得z 1 3i ,再利用导数的几何意义即可求解.【详解】2 2i 2 2i i1 z1i1i 1 3i ,i1对应点的坐标为1,3,应选: C.【点睛】本题观察了导数的几何意义以及导数的四则运算,属于基础题.3.中央电视台每天夜晚的“焦点访谈”是时势、政治性较强的一个节目,其播出时间是在夜晚看电视节目人数最多的“黄金时间”,即夜晚 7 点与 8 点之间的一个时辰开始播出,这一时辰是时针与分针重合的时辰,以高度显示“聚焦”之意,比喻时势、政治的“焦点”,则这个时辰大体是()A.7点36分B.7点38分C.7点39分D.7点40分【答案】 B【分析】设 7 点t分0 t 60 时针 OA 与分针 OB 重合,在7点时,时针、分针所成的夹角为 210 ,依据时针每分钟转0.5 ,分针每分钟转 6 ,可得6 t0.5 t 210 ,解方程即可 .【详解】设 7 点t分0t 60 时针 OA 与分针 OB 重合.在 7 点时,时针OC与分针 OD 所夹的角为210,时针每分钟转 0.5 ,分针每分钟转 6 ,则分针从 OD 到达OB需旋转6 t,时针从OC到达OA需旋转0.5 t,于是 6 t0.5 t 210 ,解得t 38238(分),11应选: B.【点睛】本题观察了任意角的表示以及终边同样角的表示,观察了基本运算能力,属于基础题.4.以椭圆y2x21的长轴端点作为短轴端点,且过点4,1 的椭圆的焦距是()94A. 16B. 12C. 8D. 6【答案】 D【分析】设所求椭圆的方程为x2y21,将点4,1 代入,求出a,由c2a2 b 2a29即可求解 .【详解】设所求椭圆的方程为x2y23) ,a21,( a9将点4,1 代入,解得a218 ,则c2a2b218 99 ,即 c 3 , 2c 6 ,应选: D.【点睛】本题观察了待定系数法求椭圆的标准方程,椭圆的简单几何性质,属于基础题. 5.2019 年北京世园会的吉祥物“小萌芽、小萌花”,是一对代表着生命与希望、勤劳与美好、爽朗可爱的园艺小兄妹,造型创意来自东方文化中百子图的“吉祥娃娃”,通过头饰、道具、衣饰创意的奇妙组合,被给予了普及园艺知识、流传绿色理念的特别使命 . 现将三张分别印有“小萌芽”、“小萌花”、“牡丹花”这三个图案的卡片(卡片的形状和大小同样,质地也同样)放入盒子中 . 若从盒子中挨次有放回的拿出两张卡片,则一张为小萌芽,一张为小萌花的概率是()A.2B.1C.2D.1 3399【答案】 C【分析】将卡片分别为 A 、B、 C ,依据抽取方法列出基本领件个数,而后再利用古典概型的概率计算公式即可求解.【详解】记印有“小萌芽”、“小萌花”、“牡丹花”图案的卡片分别为A、B、C,则基本领件分别为A,B , A,C, B,C, A,A,B,B,C,C , B,A,C,A,C,B,共9种状况 .此中一张为小萌芽,一张为小萌花是A, B, B,A 共2种状况,因此所求的概率为2P9,应选: C.【点睛】本题主要观察了古典概型的概率计算公式,解题的要点是列出基本领件个数,属于基础题 .6.古代人家修建大门时,切近门墙搁置两个石墩. 石墩其实算是门墩,又称门枕石,在最先的时候起支撑固定院门的作用,为的是让门栓基础坚固,防范大门前后晃动此后不停演变,一是起到装饰作用,二是寓意“方方圆圆”. 以以下图,画出的是某门墩的三视图,则该门墩从上到下分别是(). 但是A.半圆柱和四棱台B.球的1和四棱台4C.半圆柱和四棱柱D.球的1和四棱柱4【答案】 D【分析】依据几何体的三视图直观想象出几何体的直观图,从而可得几何体的结构特色.【详解】由几何体的三视图可知:该几何体上边是球的1,下边是放倒的四棱柱. 4应选: D【点睛】本题观察了几何体的三视图还原直观图,观察了空间想象能力,属于基础题.7.已知等比数列a的前 n 项和为 S ,若公比为q 1S621a的,,则数列n n24n前 n 项之积n)T 的最大值为(A. 16B. 32C. 64D. 128【答案】 C【分析】利用等比数列的前n 项和公式求出a8,从而可求出前n 项之积n1T 的最大值.【 解】6a 1 11121 221,解得 a 1由 q, S ,得8,26 41412因此数列a n 8, 4, 2,1, 1 ,1 ,⋯⋯,前4 乘 最大 64.24故 : C.【点睛】本 主要考 了等比数列的前n 和公式基本量的运算,需熟 公式,属于基.8.若函数 f xln x 与 g x1 x2 2x k 的 象只有一个公共点,且在 个公共63点 的切 同样, 数 k ()A .1B .2C .1D .53366【答案】 D【分析】 公共点 P x 0 , y 0f x 0g x 0 ,依据 数的几何意 可得x 0g,依据函f x 0数表达式以及 函数解方程 即可.【 解】两个函数 象的公共点P x 0 , y 0 ,f x 0g x 0 ln x 01x 022x 0 k, 1依据 意,得,63fx 0g x 0即12,,1x 0 , 2x 03 3 解 2 式得 x 01 或 x 0 3 (舍去),代入第5 1 式,解得 k .6故 : D.【点睛】本 考 了 数的几何意 以及基本初等函数的 数公式,熟 数公式、 运算法 是解 的关 ,属于基.9. 了 算 S 3 33 333 3333 33333 , 了如 所示的程序,判断框内填入()A.i3?B.i4?C.i5?D.i6?【答案】 C【分析】依据流程图,写出每次循环运转的结果即可得出结果.【详解】a13, S1 3 ,i 2 ;a233, S2333 ,i3;a3333, S3333 333 ,i 4 ;a43333 , S43333333333 ,i 5 ;a533333, S53333333333 33333 ,i 6 ,此时满足 i5,则输出 S5 3 33 3333333 33333 .应选: C.【点睛】本题观察了程序框图,观察了基本的运算能力,属于基础题.10.某纺织企业经过电脑设计各种漂亮的布料图案,设计者考虑用一条长度为 a 的线段EF,其端点 E 、F在边长为 3 的正方形ABCD 的四条边上滑动,以以下图,当EF绕着正方形的四边滑动一周时,以 A 为原点,AB 、AD 所在直线分别为x 轴、y 轴,探究 EF 的中点M所形成的轨迹. 此中a 2 时,点M的轨迹是()A.B.C.D.【答案】 B【分析】依据题意可得AM 1EF ,设 E 0, m , F n,0, M x, y,利用两点2间的距离公式直接列方程即可求解.【详解】由题意,得AM 1EF ,2设 E 0,m , F n,0, M x, y,则 x2y21m2n2121,解得y 1 x20x 1 ,22将函数y 1 x2 0x1的图象(记为 C1)关于直线 x 3对称,2可得函数y1322x 3 的图象(记为C2);x将 C1和 C 2的图象分别关于直线y 3对称,2可分别获取以正方形ABCD 的极点D、 C 为圆心、1为半径的1圆弧.4应选: B.【点睛】本题观察了圆的轨迹方程,解题的要点是列出方程,属于基础题.11.已知双曲线C :x2y20 的左、右焦点分别为F1、F2,过点F2作221 a 0,ba b一条直线与 C 的右支交于 A 、B两点,且F1AB 90 ,若 VF1 AB 的内切圆直径等于实轴的长,则 C 的离心率为()A . 5B .6 C .10D .152222【答案】 C【分析】 设 AF 1m , AF 2 n m n ,依据双曲线的定义可得 m n 2a ,结合m2n24c 2 ,解得 2mn 4b 2 ,在 Rt VF 1 AB 中,内切圆直径2r m AB F 1 B m nF 2 BF 1B ,再依据 2 c 2 b 22a2a 即可求解 .【详解】设 AF 1m , AF 2 n m n ,由题意,得 m 2 n 24c2, m n2a ,解得 2mn4b 2,则 m n2n 22mn 4c24b 2 ,即 m n 2 c 2 b 2m2;RtVF 1AB的内切圆直径2r m AB F 1 B m nF 2 B F 1B 2 c 2 b 22a ,依据题意,得 2c 2 b 22a2a,解得e10 ,2应选: C.【点睛】本题观察了双曲线的简单几何性质、双曲线的定义以及焦点三角形,属于中档题.12.若定义在 R 上的偶函数 f x 满足 f 2 x f x ,且在区间 1,2 上是减函数,f 11, f 01现有以下结论,此中正确的选项是:()① fx 的图象关于直线x 1 对称;② fx 的图象关于点3 对称;③ fx 在,02区间3,4 上是减函数;④f x 在区间4,4 内有 8 个零点 .A .①③B .②④C .①③④D .②③④【答案】 C【分析】 依据题意可得f 2 xf x,再由函数为偶函数可得f 2 x f x ,从而可判断①;没法推出f 3 xf x ,可判断②;利用周期为2 可判断③;利用对称性可判断④.【详解】由 f 2 x f x ,得 f 2 x f x ,结合 f x 为偶函数,得 f 2 x f x ,则曲线 y f x 关于直线 x 1 对称,则①正确;没法推出 f 3 x f x ,则②不必定正确;由曲线 y f x 1 x 2 可得曲线 y f x 0 x 1 ,即得曲线y f x 0 x 2 ,恰好是在一个周期内的图象;再依据 f x 是以2为周期的函数,获取曲线y f x 2 x 4 ,由于在 y f x 在1,2上是减函数,由于 y f x 在1,2上是减函数,y f x 在 3,4 上是减函数,则③正确;f 1 1 0 , f 210 ,因此 y f x 在1,2上有独一的一个零点,依据对称性, f x 在区间4,4 内有 8 个零点 .应选: C.【点睛】本题观察了函数的奇偶性、周期性、单调性的应用,观察了函数性质的应用,属于基础题 .二、填空题r r r r r r r r 13.已知a k,1 ,b2, 4 ,c 4, 3 ,若c a b R ,则a与b的夹角为 ______.【答案】 90°1 , k r【分析】利用向量线性运算的坐标表示求出2,从而可得 a 2,1,再利用向量数目积的坐标表示即可求解.【详解】由已知,得4, 3k,12, 4 ,即 4,3k 2 ,14,解得 1 , k 2 ,r2,1r r r r则 a,因此a b0,从而a与b的夹角为 90°.故答案为: 90°【点睛】本题观察了向量线性运算的坐标表示、向量数目积的坐标表示,依据向量的数目积求向量的夹角,属于基础题.14.已知S n为等差数列{ a n}的前n项和,公差d0 ,且 S1224 , a1, a7, a5成等比数列,则 a1__________ .【答案】 -9【分析】由 S1224 ,利用等差数列的前n 项和公式,求得2a111d 4 ,又由 a1,a7,a5 成等比数列,利用等差数列的通项公式,求得2a19d 0,联立方程组,即可求解 .【详解】由题意知 S12 24 ,则12a11211d24 ,即2a111d 4 ,2又由 a1, a7, a5成等比数列,则a72a1 a5,因此a12a1 a14d ,即6d2a1 9d 0 ,联立方程组,解得a19 .【点睛】本题主要观察了等差数列的通项公式,以及前 n 项和公式的应用,此中解答中熟记等差数列的通项和前n 项和公式,正确计算是解答的要点,侧重观察了运算与求解能力,属于基础题 .15.已知函数 f x sin x0,02满足:① f x 的图象关于点,0 对称;②f x的图象关于直线 x对称 . 则满足①和②的,的一组值126分别是 ______.【答案】 2;6【分析】依据题意可得 T4,再由 T 22 ,将点求出612,0π 代入表达式求出 即可 .126【详解】可将,0 和 x视为 f x 在一个周期内的相邻的对称中心与对称轴,126则 T 412,于是2 ;6将,0 代入 y sin 2x ,得 sin 2 0,1212结合 02 π,可取.6故答案为: 2;6【点睛】本题观察了利用三角函数的性质求分析式,需熟记三角函数的对称轴以及对称中心与函数周期的关系,属于基础题.三、双空题16.在圆锥 SO 中, A 、 B 、 M 是底面圆周上的点,且 OA OB , N 是线段 OA 上的一点, 且 MN //OB , SO OA 2 ,则三棱锥 S MON 体积 V 的最大值是 ______;当 V 获得最大值时, SM 与 OB 所成角的大小为 ______.【答案】260°3【分析】 由题意设 ON x 0 x2 ,可得 MN4x 2 ,利用三棱锥的体积公式可得 V1 2 1 x 4 x 2 ,利用基本不等式即求出体积的最大值;依据题意求出3 2 SMN60 ,由 MN // OB 即可求解 .【详解】由 MN //OB 及 OA OB ,得 OA MN ;设 ON x 0 x2 ,则MN4 x 2 ,因此三棱锥 S MON 体积为:V1SO 1ON MN1 2 1 x 4 x 21x 4 x21 x 24 x222323 2333(当且仅当x 2 时取等号),即V max 2 . 3由 SO 平面AOB,得SO MN,结合OA MN,得MN平面SOA,从而MN SN.由ON2及OM2,得MN 2 ,结合 SM 2 2,得 SMN60 ;由 MN //OB ,得 SM 与 OB 所成角为SMN 60 .故答案为:2;60°3【点睛】本题观察了三棱锥的体积公式、异面直线所成的角,同时观察了线面垂直的判判定理,属于基础题 .四、解答题17.某市数学教研室对全市2018 级 15000 名的高中生的学业水平考试的数学成绩进行调研,随机采用了200 名高中生的学业水平考试的数学成绩作为样本进行分析,将结果列成频率分布表以下:数学成绩频数频率40,50550,601560,705070,807080,904590,10015合计2001依据学业水平考试的数学成绩将成绩分为“优秀”、“合格”、“不合格”三个等级,此中成绩大于或等于80 分的为“优秀”,成绩小于60 分的为“不合格”,其他的成绩为“合格”.( 1)依据频率分布表中的数据,预计全市学业水平考试的数学成绩的众数、中位数(精确到);( 2)市数学教研员从样本中又随机采用了n n N *名高中生的学业水平考试的数学成绩,假如这 n 名高中生的学业水平考试的数学成绩的等级状况恰好与依据三个等级分层抽样所得的结果同样,求n 的最小值;( 3)预计全市2018 级高中生学业水平考试“不合格”的人数.【答案】( 1)众数、中位数分别为75,;( 2)n的最小值为10;( 3) 1500 .【分析】( 1)由频率分布表中的数据,众数为7080,设中位数为70 x,依据各组2频率可得 0.025 0.075 0.25 0.035 x 0.5,解方程即可.( 2)第一求出“优秀”、“合格”、“不合格”的人数,再依据分层抽样法可得n k 6k 3k 10k k N*即可.( 3)依据“不合格”的人数所占的比率即可预计出整体.【详解】7080解:( 1)此样本的众数为75 ;2设中位数为 70x ,则0.0250.075 0.25 0.035x 0.5,解得 x 4.3 ,因此中位数约为.运用此样本的数字特色,可以预计整体的数字特色,因此全市学业水平考试的数学成绩的众数、中位数分别为75, .( 2)“优秀”、“合格”、“不合格”的人数分别为60, 120, 20,则“优秀”、“合格”、“不合格”的比率为3: 6: 1,因此依据分层抽样法,采用的人数为n k6k 3k 10k k N *,故 n 的最小值为10.( 3)全市 2018 级高中生学业水平考试“不合格”的人数为1500011500 .10【点睛】本题观察了样本的数字特色、分层抽样的特色、依据样本数字特色预计整体,观察了考生的数据分析、办理能力,属于基础题.18.在V ABC中,BAC 120 ,sin ABC 21,D是CA延长线上一点,且7AD 2AC 4.( 1)求sin ACB 的值;(2)求BD的长.【答案】( 1)21(2)13 14【分析】( 1)第一利用同角三角函数的基本关系求出cos ABC 2 7,依据三角形的内角和7性质可得 sin ACB sin 180 120ABC,利用引诱公式以及两角差的正弦公式即可求解 .( 2)在V ABC中,利用正弦定理求出AB ,在△ABD 中,利用余弦定理即可求解.【详解】解:( 1)由sin ABC21 ,72得cos ABC12127 ,77因此 sin ACB sin 180120ABCsin 60ABCsin60cos ABC cos60sin ABC32712121272714.( 2)由正弦定理,得AB ACsin ACB ,sin ABC21AC sin ACB2即 AB14 1.sin ABC217由余弦定理,得BDAB 2 AD 22AB ADcos BAD12 422 14 113 .2【点睛】本题观察了正弦定理、余弦定理解三角形、同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.19.在三棱柱ABC A 1B 1C 1 中,侧面 ACC 1 A 1 底面 ABC , AA 1 BC 1,A 1B AC2, AB5, E 为 AB 的中点 .( 1)求证: BC 1 // 平面 A 1CE ;( 2)求 A 1C 的长 .【答案】( 1)证明见分析; ( 2) 3【分析】( 1)连接 AC 1 ,设 A 1C AC 1 F ,可得 EF //BC 1 ,再利用线面平行的判断定理即可证出 .( 2)由题意可得 AC BC ,结合面面垂直的性质定理可证出 BC ⊥ 平面 ACC 1 A 1 ,从而可得 BCA 1 A ,依据线面垂直的判判定理可得A 1 A平面 A 1BC ,即可证出A 1 A AC 1 ,在 RtVAAC 1 中,利用勾股定理即可求解【详解】解:( 1)连接 AC1,设A1C AC1 F ,则 F 为AC1的中点,由于 E 为 AB 的中点,因此 EF //BC1.又 BC1平面 A1CE ,EF平面 A1CE ,因此 BC1 // 平面 A1CE .( 2)在V ABC中,由 BC1,AC2,AB 5 ,得 ACB 90,即 AC BC ;在 VA1 AB 中,同理可得 A1 A A1B .由于侧面 ACC1A1底面ABC,侧面 ACC1 A1I 底面ABC AC ,因此 BC ⊥平面ACC1A1,又 A1A平面 ACC1 A1,因此 BC A1A ,又 A1BI BC B,因此 A1A平面 A1BC .由于 A1A平面 A1BC , AC1平面 A1BC ,因此 A1A AC1.在 RtVAAC1中,由 AA11及AC 2 ,得AC1AC 2AA1222 12 3 .【点睛】本题观察了线面平行的判判定理、线面垂直的判判定理、线面垂直的性质定理,面面垂直的性质定理,观察了学生的逻辑推理能力,属于基础题.20.在平面直角坐标系xOy 中,已知 F1、 F2分别为椭圆x2y2 1 的左、右焦点,43直线 l1过点 F1且垂直于椭圆的长轴,动直线 l 2垂直于直线 l1于点P,线段 PF2的中垂线交 l2于点 Q .记点 Q 的轨迹为曲线 E .( 1)求曲线E的方程,并说明 E 是什么曲线;( 2)若直线l : y x2y2 2 上是k 与曲线E交于两点A、B,则在圆C : x 2否存在两点 M 、 N ,使得 MA MB,NA NB 若存在,央求出 k 的取值范围;若不存在,请说明原由 .【答案】( 1)y24x ;E是以F21,0为焦点, l1 : x=-1 为准线的抛物线(2)存在;0 k1【分析】( 1)依据题意可得QP QF2,再依据抛物线的定义即可求出曲线E的方程.( 2)将直线l : y x k 与曲线E :y24x 联立,由直线l与曲线 E 交于点A x , y1 1 ,B x2, y2,,利用韦达定理可得x1 x2 4 2k ,从而求出AB 的中垂线方程,由 MA MB,NA NB ,可得 AB 的中垂线与圆C 交于两点M 、 N ,利用点到直线的距离公式使圆心到直线的距离小于半径即可求解.【详解】( 1)由题意,得QP QF,则动点 Q 的轨迹是以F21,0为焦点,2l1 : x=-1为准线的抛物线,因此点Q 的轨迹E的方程为 y 24x .y x k,2k 4 x k 20 .( 2)由得 x2y24x,由直线 l 与曲线 E 交于点 A x1, y1, B x2 , y2,得△ 2k420,解得 k 1 . 4k2由韦达定理,得x1 x242k .设 AB 的中点为 G x0 , y0,x1x22 k ,y0x0 k 2 k k 2,则 x02即 G 2 k,2 ,因此 AB 的中垂线方程为y 2x 2 k ,即 x y k 4 0 ,由 MA MB,NA NB ,得 AB 的中垂线与圆 C 交于两点 M 、 N ,20 k 4k 4 .因此2,解得02由①和②,得0 k1.综上,当 0 k 1时,圆 C 上存在两点 M 、 N ,使得 MA MB , NA NB .【点睛】本题观察了抛物线的定义、直线与抛物线的地址关系,观察了考生的运算求解能力,属于难题 .21.已知函数f x ax2ln x a a R .x( 1)谈论函数f x 的极值;( 2)设0 a 1 ,若曲线 y f x 在两个不一样的点M m, f m, N n, f n 处的切线相互平行,求证: f m f n0.【答案】( 1)答案不独一,详尽见分析(2)证明见分析;【分析】( 1)求出f x ax22x a,分类谈论 a 0 或a0,判断 f x的正负x2即可求解 .( 2)依据题意可得f m f n ,代入导函数整理可得a m n m n 2 m n,利用基本不等式证出mn a2,从而m2n2mnf m f n2mn2ln mn 2 ,令 mn t ,不如设g t2t2ln t 2 t a2,利用导数判断g t 的单调性,求出最小值即可证出.【详解】解:( 1)f x a2a ax 22x a, x0,.x x2x2( i )当a0 时,f x 0 ,则 f x 在 0,上是减函数,此时 f x无极值 .( ii )当a0 时,考虑二次函数h x ax22x a ,则△ 4 1 a2 4 a 1 a 1 .当 a 1 时,0 ,则 h x0,即对任意的 x0,恒建立,因此在0,上是增函数,此时 f x无极值 .当 0 a1时,,则 h x0 的两根为x111a2,x211a2.a a当 0 x x1时,f x0;当x1x x2时,f x0;当 x x2时, f x0 ,因此 f x 在 0, x1上是增函数,在 x1 , x2上是减函数,在x2 ,上是增函数,因此 f x在 x x1处有极大值,在x x2处有极小值.( 2)由题意,得f m f n ,m0,n0 , m n ,2aa 2a且 am 2n n2.m移项整理,得 a m n m n 2 m n.m2 n2mn由于 m0, n0 , m n ,因此 2mn a m n a 2 mn ,即mn a2 .f m f n am 2ln m aan2ln na m na m n2ln mn a m n2mn2ln mn2.mn令 mn t ,则t a2 .设 g t2t2ln t2t a2,则g t2 2 t 12.t t当a2t1时, g x0 ;当 t1时, g t0 ,因此 g t在 a2 ,1 上是减函数,在1,上是增函数,因此t1是 g t的极小值点,也是g t的最小值点,即 g t g 10 ,故 f m f n0 建立.【点睛】本题观察了利用导数研究函数的单调性、利用导数证明不等式,观察了分类谈论的思想,属于难题 .22.在平面直角坐标系x a5 cos ,xOy 中,圆C的参数方程为(为参数),y 5 sinx2t,直线 l 的参数方程为( t 为参数),设原点 O 在圆 C 的内部,直线 l 与圆 C 交y2t,于M、 N 两点;以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系.( 1)求直线l和圆C的极坐标方程,并求 a 的取值范围;2 2(2)求证:OMON 为定值.【答案】( 1)R ;22a cos a2 5 0 ;a的取值范围是5,5 4( 2)证明见分析;【分析】( 1)消参可得直线l 的直角坐标方程,利用直角坐标与极坐标的互化可得直线l 和圆 C 的极坐标方程,依据原点在圆的内部可得0a 25 ,解不等式即可.02( 2)将直线的极坐标方程代入圆的极坐标方程可得22a a2 5 0,由2222,利用韦达定理即可求解 .OM ON12【详解】解( 1)将直线l的参数方程化为直角坐标方程,得y x ,因此直线 l 的极坐标方程为R ;4将圆 C 的参数方程化为直角坐标方程,得x a 2y2 5 ,因此圆 C 的极坐标方程为22a cos a250.由原点 O 在圆 C 的内部,得020255a5 ,a,解得故 a 的取值范围是5,5.( 2)将代入22a cos a250 ,4得22a a250 .则122a , 1 2a2 5 ,2222221 2因此OM ON121222a 2 a2510 ,2 2故OMON 为定值.【点睛】本题观察了直线的参数方程与一般方程的互化、一般方程与极坐标方程的互化、极坐标方程的应用,属于基础题.23.( 1)已知x0 ,y 0,z 0,证明:y z x111x2y2z2x y;z(2)已知a1,b 1, c1,且 abc 8 ,若log b a log 2 a log c b log 2b log a c log 2 c k 恒建立,务实数k 的最大值.【答案】( 1)证明见分析;( 2)实数k的最大值为3【分析】( 1)利用基本不等式可得y1y12同向相加即x22x2y,再依据不等式的性质:y x可求解 .( 2)利用换底公式可得原式log22 a log 22b log22 c log b 2log c 2log a2log 2 b log 2c log2 a log a2 2log b2 2log c2,结2合( 1)即可证出 .【详解】( 1)证明:由 x0 , y0 ,得y1 2 y 12y 1 2 ,即 x 2 y,x 2yx 2 yx xz 1 2x 1 2同理z, ,y 2y z 2 xz以上三式相加,得y z x11 12 2 2x2y2z2x y z x y z(当且仅当 xy z 时取等号),y zx1 11故x 2 y 2 z 2 x y z 建立.( 2)解: log b a log 2 a log c b log 2 b log a c log 2 clog 22 a log 22 b log 22 c log 2 b log 2 c log 2 alog b 2log c 2 log a 2log a 2 2 log b 2 2log c 2 ,2log b 2 log c 2log a 2 1 1 1依据( 1),得log b 2 2 log c 2 2 log a 2log b 2 log c 2log a 2 2 log 2 a log 2 b log 2 c log 2 abclog 2 8 3 ,因此, k 3 ,故实数 k 的最大值为 3.【点睛】本题观察了基本不等式证明不等式、不等式的性质、换底公式,属于基础题 .。
2020年高考数学压轴题系列训练含答案及解析详解1

2020年高考数学压轴题系列训练含答案及解析详解一1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴c=1…………………(2分) 对于椭圆,1222a MF MF =+=+(222222211321a ab ac ∴=∴==+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴='∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}nb 中,点(),nnB n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n,不等式1120111111n n n a bb b +-≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分) ()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
2020年高考数学仿真押题试卷及答案(推荐)

2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(1)(3)i i -+的虚部是( ) A .4 B .4-C .2D .2-【解析】解:.∴复数(1)(3)i i -+的虚部是2-.【答案】D . 2.若集合,,则(A B = )A .{|12}x x -B .{|02}x x <C .{|12}x xD .{|1x x -或2}x >【解析】解:;.【答案】B .3.已知向量a ,b 的夹角为60︒,||1a =,||2b =,则|3|(a b += ) A .5B .17C .19D .21【解析】解:向量a ,b 的夹角为60︒,||1a =,||2b =,∴,则,【答案】C .4.设375()7a =,573()7b =,373()7c =,则a ,b ,c 的大小关系为( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【解析】解:由函数3()7x y =为减函数,可知b c <,由函数37y x =为增函数,可知a c >, 即b c a <<, 【答案】B .5.等差数列{}n a 的前n 项和为n S ,且21016a a +=,811a =,则7(S = ) A .30B .35C .42D .56【解析】解:等差数列{}n a 的前n 项和为n S ,且21016a a +=,811a =,∴,解得112a =,32d =,.【答案】B .6.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( ) A .30种B .50种C .60种D .90种【解析】解:①甲同学选择牛,乙有2种,丙有10种,选法有121020⨯⨯=种, ②甲同学选择马,乙有3种,丙有10种,选法有131030⨯⨯=种,所以总共有203050+=种. 【答案】B .7.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥ B .若c ⊥平面α,则//a α,//b α C .存在平面α,使得c α⊥,a α⊂,//b α D .存在平面α,使得//c α,a α⊥,b α⊥【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c ⊂平面α,则a 与α相交、平行或a α⊂,故A 错误;在B 中,若c ⊥平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α⊥,a α⊂,//b α,故C 正确;在D 中,若存在平面α,使得//c α,a α⊥,b α⊥,则//a b ,与已知a ,b 是两条异面直线矛盾,故D 错误.【答案】C .8.将函数()f x 的图象上的所有点向右平移4π个单位长度,得到函数()g x 的图象,若函数,0ω>,||)2πϕ<的部分图象如图所示,则函数()f x 的解析式为( )A .B .C .D .【解析】解:由图象知1A =,,即函数的周期T π=,则2ππω=,得2ω=,即,由五点对应法得23πϕπ⨯+=,得3πϕ=,则,将()g x 图象上的所有点向左平移4π个单位长度得到()f x 的图象, 即,【答案】C .9.已知定义域R 的奇函数()f x 的图象关于直线1x =对称,且当01x 时,3()f x x =,则5()(2f = )A .278-B .18-C .18D .278【解析】解:()f x 是奇函数,且图象关于1x =对称;;又01x 时,3()f x x =;∴.【答案】B .10.已知a R ∈且为常数,圆,过圆C 内一点(1,2)的直线l 与圆C 相切交于A ,B 两点,当弦AB 最短时,直线l 的方程为20x y -=,则a 的值为( ) A .2B .3C .4D .5 【解析】解:化圆为,圆心坐标为(1,)C a -,半径为21a +. 如图,由题意可得,过圆心与点(1,2)的直线与直线20x y -=垂直. 则21112a -=---,即3a =. 【答案】B .11.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为( ) A .479B .480C .455D .456【解析】解:根据题意,分3种情况讨论:①,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有553360A ⨯=种情况,即有360个大于420789的正整数, ②,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有44372A ⨯=种情况,即有72个大于420789的正整数,③,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有4424A =种情况,其中有420789不符合题意,有24123-=个大于420789的正整数,则其中大于420789的正整数个数有个;【答案】C .12.某小区打算将如图的一直三角形ABC 区域进行改建,在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知20AB m =,10AC m =,则DEF ∆区域内面积(单位:2)m 的最小值为( )A .253B .75314C .10037D .7537【解析】解:ABC ∆是直三角形,20AB m =,10AC m =,可得103CB =,DEF 是等边三角形,设CED θ∠=;DE x =,那么;则cos CE x θ=,BFE ∆中由正弦定理,可得可得,其中23tan 3α=; 1037x ∴;则DEF ∆面积【答案】D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量(,1)a x =,(3,2)b =-,若//a b ,则x = 32- .【解析】解:向量(,1)a x =,(3,2)b =-,//a b ,∴132x =-,解得32x =-. 故答案为:32-.14.若,则a 的值是 2 .【解析】解:,1a >,,解得2a =,故答案为:2;15.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知1b =,,当ABC ∆的面积最大时,cos A = . 【解析】解::,,,,由A ,(0,)B π∈,B A B ∴=-,或,2A B ∴=,或A π=(舍去). 2A B ∴=,.由正弦定理sin sin AC BCB A=可得,2cos a B ∴=,,30B π->,3B π∴<,∴当22B π=时S 取得最大值,此时.故答案为:0.16.设不等式组表示的平面区域为D ,在区域D 内随机取一个点,则此点到直线50x -=的距离大于7的概率是 .【解析】解:如图,不等式对应的区域为DEF ∆及其内部. 其中(6,2)D --,(4,2)E -,(4,3)F , 求得直线DF 、EF 分别交x 轴于点(2,0)B -,当点D 在线段2x =-上时,点D 到直线50x -=的距离等于7,∴要使点D 到直线的距离大于2,则点D 应在BCD ∆中(或其边界)因此,根据几何概型计算公式,可得所求概率.故答案为:425.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.设各项均为正数的数列{}n a 的前n 项和为n S ,满足:对任意的*n N ∈,都有111n n a S +++=,又112a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2log n n b a =,求【解析】解:(Ⅰ)根据题意,由111n n a S +++=,①, 则有1n n a S +=,②,(2)n①-②得:12n n a a +=,即112n n a a +=,又由112a =, 当1n =时,有221a S +=,即,解可得214a =, 则所以数列{}n a 是首项和公比都为12的等比数列, 故12n na =; (Ⅱ)由(Ⅰ)的结论,12n n a =,则,则.18.如图1,在直角梯形ABCD 中,//AB CD ,AD CD ⊥,2AD AB ==,作BE CD ⊥,E 为垂足,将CBE ∆沿BE 折到PBE ∆位置,如图2所示. (Ⅰ)证明:平面PBE ⊥平面PDE ;(Ⅱ)当PE DE ⊥时,平面PBE 与平面PAD 所成角的余弦值为255时,求直线PB 与平面PAD 所成角的正弦值.【解析】证明:(Ⅰ)在图1中,因为BE CE ⊥,BE DE ⊥, 所以在图2中有,BE PE ⊥,BE DE ⊥,又因,所以BE ⊥平面PDE ,因BE ⊂平面PBE ,故平面PBE ⊥平面PDE . 解:(Ⅱ)因为PE DE ⊥,PE BE ⊥,,所以PE ⊥平面ABED .又BE ED ⊥,以E 为原点,分别以ED ,EB ,EP 所在直线为x 轴,y 轴,z 轴,建立如图1所示的空间直角坐标系,设PE a =,(2D ,0,0),(0P ,0,)a ,(2A ,2,0), 则(2PD =,0,)a -,(2PA =,2,)a -. 设平面PAD 的法向量为(n x =,y ,)z ,由00n PD n PA ⎧=⎪⎨=⎪⎩,即.取2z =,得(n a =,0,2),取平面PBE 的法向量为(2ED =,0,0),由面PBE 与平面PAD 所成角的余弦值为255,得,即,解得4a =,所以(4n =,0,2),(0PB =,2,4)-,设直线PB 与平面PAD 所成角为α,.所以直线PB 与平面PAD 所成角的正弦值为25.19.为了保障某种药品的主要药理成分在国家药品监督管理局规定的值范围内,某制药厂在该药品的生产过程中,检验员在一天中按照规定每间隔2小时对该药品进行检测,每天检测4次:每次检测由检验员从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:)mg .根据生产经验,可以认为这条药品生产线正常状态下生产的产品的其主要药理成分含量服从正态分布2(,)N μσ. (Ⅰ)假设生产状态正常,记X 表示某次抽取的20件产品中其主要药理成分含量在之外的药品件数,求(1)P X =(精确到0.001)及X 的数学期望;(Ⅱ)在一天内四次检测中,如果有一次出现了主要药理成分含量在之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查;如果在一天中,有连续两次检测出现了主要药理成分含量在之外的药品,则需停止生产并对原材料进行检测.(1)下面是检验员在某一次抽取的20件药品的主要药理成分含量: 10.02 9.78 10.04 9.92 10.14 10.04 9.22 10.13 9.91 9.95 10.099.969.8810.019.989.9510.0510.059.9610.12经计算得,.其中i x 为抽取的第i 件药品的主要药理成分含量,1i =,2,⋯,20.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对本次的生产过程进行检查? (2)试确定一天中需停止生产并对原材料进行检测的概率(精确到0.001). 附:若随机变量Z 服从正态分布2(,)N μσ,则,,,,.【解析】解:(Ⅰ)抽取的一件药品的主要药理成分含量在之内的概率为0.9974,从而主要药理成分含量在之外的概率为0.0026,故.因此, X 的数学期望为;(Ⅱ)(1)由9.96x =,0.19s =,得μ的估计值为ˆ9.96μ=,σ的估计值为ˆ0.19σ=, 由样本数据可以看出有一件药品的主要药理成分(9.22)含量在ˆˆ(3μσ-,,10.53)之外,因此需对本次的生产过程进行检查.(2)设“在一次检测中,发现需要对本次的生产过程进行检查”为事件A ,则P (A );如果在一天中,需停止生产并对原材料进行检测,则在一天的四次检测中,有连续两次出现了主要药理成分含量在之外的药品,故概率为3[P P =(A )2][1P ⨯-(A ).故确定一天中需对原材料进行检测的概率为0.007.20.已知椭圆的离心率为22,且过点(2,2). (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设A 、B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记ABM ∆,ABN ∆的面积为1S ,2S ,求12||S S -的最大值.【解析】解:(Ⅰ)根据题意可得:22c a =,22421a b+=,222a b c =+, 解得:28a =,2b =.故椭圆C 的标准方程为:22184x y +=.(Ⅱ)由(Ⅰ)知(2,0)F ,当直线l 的斜率不存在时,12S S =,于是12||0S S -=; 当直线l 的斜率存在时,设直线,设1(M x ,1)y ,2(N x ,2)y , 联立22(2)184y k x x y =-⎧⎪⎨+=⎪⎩,得.,,于是.当且仅当22k =±时等号成立,此时12||S S -的最大值为4. 综上,12||S S -的最大值为4. 21.已知函数.(Ⅰ)讨论()f x 的单调性.(Ⅱ)若()0f x =有两个相异的正实数根1x ,2x ,求证.【解析】解:(Ⅰ)函数的定义域为(0,)+∞..①当0a 时,()0f x '<,()f x ∴在(0,)+∞上为减函数;②当0a >时,,()f x ∴在1(0,)a 上为减函数,在1(,)a +∞上为增函数.(Ⅱ)证明:要证.即证,即12112a x x <+. 由得,∴只要证.不妨设120x x >>,则只要证即证明:.令121x t x =>,则只要证明当1t >时,12lnt t t<-成立. 设,1t >,则,∴函数()g t 在(1,)+∞上单调递减,()g t g <(1)0=,即12lnt t t<-成立.由上分析可知,成立.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分。
全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3a
3a
所以
IN PEMN ME Nhomakorabea
ac 3a c
,即
IN
(a c) y0 , 3a c
S 因为 PF1F2
1 2
(
PF1
PF2
F1F2 ) IN
1 2
F1F2
PE
2
即 1 (2a 2c) (a c) y0
2
3a c
1 2
(2c)
y0
,解得
c a
1
,所以答案为 A.
第五章 数形结合思想的应用
专题 19 以形助数,“数题形解”
【压轴综述】
1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形: 一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象 来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段, 形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.
因为
G
为
PF1F2
的重心,所以
G(
x0 3
,
y0 3
)
,
因为 IG x 轴,所以 I 点横坐标也为 x0 , ON x0 ,
3
3
因为 PM 为 F1PF2 的角平分线,
则有
PF1
PF2
F1N
NF2
( F1O
ON ) ( OF2
ON ) 2 ON
2 x0 3
,
又因为
3
例
2(. 2018·四川高考模拟(文))过曲线 C1 :
x2 a2
y2 b2
1(a
0,b
0) 的左焦点 F1 作曲线 C2
: x2
y2
a2
的切线,设切点为 M , 延长 F1M 交曲线 C3 : y2 2 px( p 0) 于点 N , 其中 C1,C3 有一个共同的焦点,若 MF1 MN 0, 则曲线 C1 的离心率为( ).
y 21和
C2 : x 2 2 y 2 1上的点,则 PM PN 的最小值和最大值分别为( )
D. 6 3
【答案】A
【解析】
如图,令 P 点在第一象限(由椭圆对称性,其他位置同理),连接 PO ,显然 G 点在 PO 上,连接 PI 并延 长交 x 轴于点 M ,连接 GI 并延长交 x 轴于点 N , GI x 轴,过点 P 作 PE 垂直于 x 轴于点 E ,
设点 P(x0 , y0 ) , F1( c, 0), F2 (c, 0) ,则 OE x0, PE y0 ,
A. 5 1 2
B. 5
C. 2 1 2
【答案】A
【解析】
设双曲线的右焦点为 F2 ,则 F2 的坐标为 c, 0 .
D. 2
因为曲线 C1 与 C3 有一个共同的焦点,所以曲线 C3 的方程为 y2 4cx .
因为 MF1 MN 0 ,
所以 MF1 MN NM , 所以 M 为 F1N 的中点, 因为 O 为 F1F2 的中点, 所以 OM 为 NF1F2 的中位线, 所以 OM∥ NF2 . 因为|OM|=a,所以 NF2 2a .
【压轴典例】
例 1.
(2019·江苏扬州中学高二期中)已知椭圆
x2 a2
y2 b2
1(a
b
0)
的左、右焦点分别为 F1 , F2 , P
为
椭圆上不与左右顶点重合的任意一点, I , G 分别为 PF1F2 的内心和重心,当 IG x 轴时,椭圆的离心
1
率为( )
1
A.
3
1
B.
2
C. 3 2
即 y2 4a2 4b2 ,
所以 4c(2a c) 4a 2 4(c 2 a 2) ,
整理得 e2 e 1 0 ,解得 e 5 1 . 2
故选 A.
例
3.(2019·江苏启东中学)设 P 是椭圆
x2 9
y2 5
1上一点, M
,
N
分别是两圆 C1 : x 2 2
PF1
+
PF2
2a ,所以可得
PF1
a
x0 , 3
PF2
a
x0 3
,
又由角平分线的性质可得,
F1M F2 M
= PF1 PF2
a x0 3
a x0
,而
F1M F2 M
c OM = c OM
3
所以得 OM cx0 , 3a
所以 MN ON OM (a c)x0 , ME OE OM (3a c)x0 ,
3
又 NF2 NF1 , F1F2 2c ,
所以 NF1 2c2 2a2 2b .
设 N(x,y),则由抛物线的定义可得 x c 2a , 所以 x 2a c . 过点 F1 作 x 轴的垂线,点 N 到该垂线的距离为 2a , 在 Rt F1PN 中,由勾股定理得 |F1P|2 +|PN|2 |F1N|2 ,