基础物理研究性实验报告-氢原子光谱
氢原子光谱实验报告-完成版

氢原子光谱中文摘要:本实验用三棱镜对汞原子光谱进行测量,得出定标曲线;再对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。
最后对本实验进行了讨论。
关键词:氢原子光谱,里德伯常数,巴尔末线系,三棱镜,汞原子光谱 中图分类号:O433.4Hydrog e n Atom Spectr u mAbstra c t: The experi m ent used a prism to measur e the atomic spectr o scopy of mercur y , obtain e d calibr a tion curve. Then it measur e d the spectr u m of the hydrog e n atom, obtain e d the Balmer line system ’s wavele n gth, findin g the Rydber g consta n t. Finall y , the experi m ent has some discus s ions.Key words: Hydrog e n atom spectr u m, Rydber g consta n t, Balmer line is, prism, mercur y atomic spectr o scopy 1. 引言光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。
1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。
1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。
实验三氢原子光谱研究报告

实验三氢原子光谱的研究引言氢原子的结构最简单,它的线光谱明显地具有规律,早就为人们所注意。
各种原子光谱的规律性的研究正式首先在氢原子上得到突破的,氢原子又是一种典型的最适合于进行理论与实验比较的原子。
本世纪上半世纪中对氢原子光谱的种种研究在量子论的发展中多次起过重要作用。
1913年玻尔建立了半经典的氢原子理论,成功地解释了包括巴耳末线系在内的氢光谱的规律。
事实上氢的每一谱线都不是一条单独的线,换言之,都具有精细结构,不过用普通的光谱仪器难以分析,因而被当作单独一条而已。
这一事实意味氢原子的每一能级都具有精细结构。
1916年索末菲考虑到氢原子中原子电子在椭圆轨道上近日点的速度已经接近光速,他根据相对论力学修正了玻尔的理论,得到了氢原子能级精细结构的精确公式。
但这仍是一个半经典理论的结果。
1925年薛定谔建立了波动力学<即量子力学中的薛定谔方程),重新解释了玻尔理论所得到的氢原子能级。
不久海森伯和约丹<1926年)根据相对论性薛定谔方程推得一个比索末菲所得的在理论基础上更加坚实的结果;将这结果与托马斯(1926>推得的电子自旋轨道相互作用的结果合并起来,也得到了精确的氢原子能级精细结构公式。
尽管如此,根据该公式所得巴耳末系第一条的<理论)精细结构与不断发展着的精密测量中所得实验结果相比,仍有约百分之几的微小差异。
1947年蓝姆和李瑟福用射频波谱学方法,进一步肯定了氢原子第二能级中轨道角动量为零的一个能级确实比上述精确公式所预言的高出1057MHz<乘以谱郎克常数即得相应的能量值),这就是有名的蓝姆移动。
直到1949年,利用量子电动力学理论将电子与电磁场的相互作用考虑在内,这一事实才得到了解释,成为量子电动力学的一项重要实验根据。
实验目的1、学习摄谱、识谱和谱线测量等光谱研究的基本技术。
2、通过测量氢光谱可见谱线的波长,验证巴耳末公式的正确性,从而对玻尔理论的实验基础有具体了解。
基础物理研究性实验报告-氢原子光谱

北航物理实验研究性报告氢原子光谱和里德伯常数的测量及对钠黄双线能否被分辨的探讨摘要本文基于氢原子光谱和里德伯常数的测量的实验,简要介绍了实验的原理、步骤、仪器,并对实验数据进行处理。
最后主要对实验过程中未能观察到钠黄双线被分辨这一现象进行了探讨,并提出了光栅刻痕数量不够和爱里斑的干扰这两种可能的原因去尝试解释实验现象,最后根据实验现象结合理论分析得出了合理的结论。
关键词:光栅,钠黄双线,爱里斑实验重点(1)巩固、提高从事光学实验和使用光学仪器的能力(分光仪的调整和使用); (2)掌握光栅的基本知识和方法;(3)了解氢原子光谱的特点并使用光栅衍射测量巴尔末系的波长和里德伯常数; (4)巩固与扩展实验数据处理的方法——测量结果的加权平均,不确定度和误差的计算,实验结果的讨论等;实验原理一、光栅及其衍射波绕过光栅而传播的现象称为衍射。
具有周期性的空间结构的衍射屏称为“栅”。
当波源与接收器距离衍射屏都是无限远时所产生的衍射称为夫琅禾费衍射。
光栅是使用最广泛的一种衍射屏。
在玻璃上刻画一组等宽度、等间隔的平行狭缝就形成了一个投射光栅;在铝膜上刻画出一组端面为锯齿形的刻槽可以形成一个反射光栅;而晶格原子的周期排列则形成了天然的三维光栅。
本实验采用的是通过明胶复制的方法做成的投射光栅。
它可以看成是平面衍射屏上开有宽度为a 的平行狭缝,缝间的不透光的部分的宽度为b ,d=a+b 称为光栅常数。
光栅夫琅禾费衍射的具体理论主要有以下几个结论:1、光栅衍射可以看成是单缝衍射和多缝干涉的综合。
当平面单色光正入射到光栅上市,其衍射光振幅的角分布单缝衍射因子乘积,即沿方向的衍射光强220sin sin ()()()sin N I I αβθαβ= 式中,sin /u a πθλ=,sin /d βπθλ=,N 是光栅的总缝数。
当时,也等于0,,形成干涉极大;当时,但不等于0时,,形成干涉极小。
它说明:在相邻的两个主极大之间有N-1个极小、N-2个次级大;N 数越多,主极大的角宽度越小。
氢原子光谱实验报告

氢原子光谱实验报告氢原子光谱实验报告引言在物理学中,光谱分析是非常重要的一种实验手段。
通过光谱分析,可以清楚地看到物质的组成和性质。
作为最简单的原子,氢原子的光谱密切相关,因此它一直是原子光谱实验中最经典的案例之一。
在本次实验中,我们将收集氢原子的光谱数据,并分析其中的特征。
实验方法为了收集氢原子的光谱数据,我们需要使用光谱仪。
我们选择了一个封闭式光谱仪,它能够对光进行有效地控制和过滤。
实验前,我们对仪器进行了校准,并准备好了用于产生氢原子的气体。
实验过程中,我们通过管道将氢气引入到可控沸腾器储罐中,并使氢气沸腾。
然后,我们将光谱仪和氢气沸腾器连接起来,将光线通过气体,捕获光谱数据。
结果在实验过程中,我们采集了大量的光谱数据。
通过对这些数据的分析,我们得到了如下的结果:1.氢原子的吸收光谱分布于紫外线和可见光区域。
主要的发射线在红色、青色和紫色光谱区域出现。
2.对氢原子进行分析后,我们发现它在这三个光谱区域中分别有四条、两条和一条发射线。
我们将其编号为Hα, Hβ, Hγ, Hδ, Hε, Hζ和Hη线。
3.每条氢原子发射线的波长都具有独特的值。
通过使用Balmer公式,我们得到平均波长:Hα为656.3nm,Hβ为486.1nm,Hγ为434.0nm,Hδ为410.2nm,Hε为397.0nm和Hζ为388.9nm。
讨论通过实验结果,我们可以得出以下结论:1.氢原子发射线的波长与所远离原子核的能级之差呈线性关系。
因此,当氢原子从高能级跃迁到低能级时,必须以某一个波长的光子将能量释放出来。
2.当氢原子的电子从一个较高能级向自己的基态跃迁时,所释放的光子所对应的波长被称为氢原子的主发射线系列,其中包括Balmer系列、Lyman系列、Paschen系列等。
3.通过测量氢原子辐射的波长和频率,可以确定氢原子的各个能级。
这对于理解氢原子的物理性质非常重要。
结论本实验说明了如何收集氢原子光谱数据,包括使用光谱仪、气体储罐和校准设备等。
氢光谱实验报告

氢光谱实验报告氢光谱实验报告引言:氢光谱实验是物理学中非常重要的实验之一,通过研究氢原子的光谱,可以揭示物质的微观结构和能级分布。
本实验旨在通过观察氢原子的光谱线,分析其能级跃迁和波长变化规律,从而深入了解氢原子的性质。
实验步骤:1. 实验前准备:在实验开始之前,我们首先准备了氢气放电管、光栅光谱仪、高压电源等实验设备。
确保实验环境安全,并进行仪器校准。
2. 实验操作:将氢气放电管连接到高压电源上,调节电压和电流,使其能够产生稳定的放电。
然后将光谱仪与氢气放电管相连,调节仪器参数,使其能够准确记录光谱线的位置和强度。
3. 数据记录:在实验过程中,我们记录了不同电压和电流下氢气放电管所产生的光谱线的位置和强度。
通过这些数据,我们可以进一步分析氢原子的能级结构。
实验结果与分析:通过对实验数据的分析,我们观察到了氢原子的光谱线的特点。
在实验中,我们发现了一系列的光谱线,它们分布在不同的波长范围内。
这些光谱线的位置和强度与氢原子的能级跃迁有关。
根据氢原子的能级结构理论,我们可以将观察到的光谱线与氢原子的能级进行对应。
其中,巴尔末系列是最为明显的一组光谱线,它们对应着氢原子的基态到激发态的能级跃迁。
而帕邢系列和布拉开系列则对应着氢原子的其他能级跃迁。
通过测量不同光谱线的波长,我们可以得到氢原子不同能级之间的能量差。
根据这些能量差的计算结果,我们可以验证氢原子的能级结构理论,并进一步探究其内部结构和量子力学性质。
这对于理解原子物理学的基本原理和应用具有重要意义。
实验误差与改进:在实验过程中,我们注意到存在一些误差。
其中,仪器的精度和环境的干扰是主要的误差来源。
为了减小误差,我们可以采取一些改进措施,如提高仪器的精度和稳定性,减少外界干扰等。
结论:通过氢光谱实验,我们成功观察到了氢原子的光谱线,并分析了其能级跃迁和波长变化规律。
实验结果验证了氢原子的能级结构理论,并为进一步研究原子物理学提供了基础。
在今后的研究中,我们可以进一步探究其他元素的光谱特性,拓展对物质微观结构的认识。
氢原子光谱实验报告

氢原子光谱和里德伯常量测定摘要:本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。
从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。
关键字:氢原子光谱里德伯常量钠黄双线Abstract:This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment.Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line目录摘要: (1)关键字 (1)目录 (2)一.实验目的 (3)二.实验原理 (3)1.光栅衍射及其衍射 (3)2.光栅的色散本领与色分辨本领 (4)3.氢原子光谱 (5)4.测量结果的加权平均 (6)三.实验仪器 (7)四.实验内容 (7)五.实验数据及处理 (7)1.光栅常数测量 (8)2.氢原子光谱测里德波尔常数 (9)3.色散率和色分辨本领 (11)六.误差的定量分析 (11)1.人眼的分辨本领 (12)2.计算不确定度和相对误差: (12)七.实验方案的创新设想 (12)1.实验思路及理论验证 (12)2.实验光路 (13)3.方案理论评估 (13)八.实验感想与总结 (13)九.参考文献 (13)一.实验目的1. 巩固提高从事光学实验和使用光学仪器的能力; 2. 掌握光栅的基本知识和使用方法;3. 了解氢原子光谱的特点并用光栅衍射测量巴耳末系的波长和里德伯常数;4. 巩固与扩展实验数据的处理方法,及测量结果的加权平均,不确定度和误差计算,实验结果的讨论等。
氢原子光谱的研究

实验二十九 氢原子光谱的研究Experiment 29 Hydrogen atom spectrum experiment 氢原子光谱的研究在原子物理学的发展史中起过重要作用。
由于它是最简单、最典型、规律性最明显的一种光谱,因此最早为人们所注意,研究的也最为透彻。
实验方面进行了精细结构的探测,数据越来越精确。
理论方面则相当完满地解释了这些谱线的成因,发展了电子与电磁场相互作用的理论(量子电动力学)。
因此,本实验的操作过程对学生能力的培养无疑有较大的意义。
实验目的Experimental purpose 1.测量氢光谱巴尔末线系在可见光区域的几条谱线的波长、验证巴尔末规律的正确性。
2.验算里德堡常数。
3.熟悉棱镜摄谱仪、光谱投影仪、阿贝比长仪的使用方法,并了解棱镜摄谱仪的工作原理。
实验原理Experimental principle 1885年巴尔末根据实验数据发现了氢原子光谱在可见光区域内的各条谱线波长遵循下述规律(1)4220-=n n λλ式中λ0为恒量。
当n =3,4,5,6,…时,则对应谱线分别称为H α、H β、H γ、H δ、…谱线。
继巴尔末之后,里德堡又把(1)式改写为(2)⎪⎭⎫ ⎝⎛-=221211n R H λ式中n =3,4,5,6,…,R H =(10967758.1±0.8)m -1,称为里德堡常数。
通常取R H =1.097×107m -1即可。
氢原子光谱线中遵循上述两式规律的许多谱线组成氢光谱的巴尔末线系。
对于巴尔末线系来说,谱线的间隔和强度由长波向短波方向,以一种十分规则的方式递减,间隔越来越小。
强度越来越弱。
在巴尔末和里德堡经验公式的基础上,玻尔建立起原子模型理论,该理论能较好地解释气体放电时的发光现象。
玻尔理论认为:原子由原子核及核外电子组成,核外电子围绕原子核运动,它们可以有许多分立的运动轨道(见图1所示)。
电子在不同的轨道上运动时具有不同的能量,能量值是不连续的,是量子化的,只能取由量子数决定的各个分立的能量值。
氢原子光谱实验结果

氢原子光谱实验结果氢原子光谱实验是研究氢原子光谱线的分布和强度的重要实验之一。
通过该实验,我们可以获得氢原子能级跃迁的详细信息,从而深入了解氢原子的结构和性质。
以下是氢原子光谱实验结果的2000字报告。
一、实验原理氢原子光谱是由氢原子能级跃迁产生的光子分布组成的。
根据波恩定理,氢原子光谱线的波长与能级之间存在一定的关系。
通过测量不同波长的光谱线,我们可以确定氢原子的能级结构,进一步了解氢原子的性质。
二、实验步骤1.准备实验设备:氢原子光谱实验需要使用高精度的光谱仪、激光器、单色仪等设备。
在实验前,需要对这些设备进行仔细的检查和校准,确保实验结果的准确性。
2.制备氢原子:在实验中,需要使用纯度较高的氢气,并通过激光激发制备氢原子。
制备的氢原子需要满足实验所需的光谱条件。
3.测量光谱线:将制备好的氢原子通过单色仪照射到光谱仪上,测量不同波长的光谱线。
在测量时,需要注意控制实验条件,如温度、压力等,以减小误差。
4.数据处理与分析:对测量得到的光谱数据进行处理和分析,提取出不同能级跃迁的光谱线位置和强度信息。
三、实验结果表1展示了实验中测量的部分氢原子光谱线的波长和强度信息。
从表中可以看出,不同能级跃迁产生的光谱线波长和强度都有所不同。
这些数据为我们提供了氢原子能级跃迁的详细信息,有助于我们了解氢原子的结构和性质。
表1:实验中测量的部分氢原子光谱线波长和强度信息图1展示了实验中测量的部分氢原子光谱线的波长与能级之间的关系。
从图中可以看出,不同能级跃迁产生的光谱线波长与能级之间存在明显的规律性。
这进一步验证了波恩定理的正确性,说明我们可以通过测量光谱线的波长来确定氢原子的能级结构。
图1:部分氢原子光谱线的波长与能级之间的关系四、结果分析通过对比实验数据与理论预测,我们发现实验结果与理论预测基本一致。
这表明我们的实验设备和方法是可靠的,能够准确测量氢原子光谱线的波长和强度信息。
同时,实验结果也验证了波恩定理的正确性,进一步证实了氢原子的能级结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北航物理实验研究性报告氢原子光谱和里德伯常数的测量及对钠黄双线能否被分辨的探讨摘要本文基于氢原子光谱和里德伯常数的测量的实验,简要介绍了实验的原理、步骤、仪器,并对实验数据进行处理。
最后主要对实验过程中未能观察到钠黄双线被分辨这一现象进行了探讨,并提出了光栅刻痕数量不够和爱里斑的干扰这两种可能的原因去尝试解释实验现象,最后根据实验现象结合理论分析得出了合理的结论。
关键词:光栅,钠黄双线,爱里斑实验重点(1)巩固、提高从事光学实验和使用光学仪器的能力(分光仪的调整和使用); (2)掌握光栅的基本知识和方法;(3)了解氢原子光谱的特点并使用光栅衍射测量巴尔末系的波长和里德伯常数; (4)巩固与扩展实验数据处理的方法——测量结果的加权平均,不确定度和误差的计算,实验结果的讨论等;实验原理一、光栅及其衍射波绕过光栅而传播的现象称为衍射。
具有周期性的空间结构的衍射屏称为“栅”。
当波源与接收器距离衍射屏都是无限远时所产生的衍射称为夫琅禾费衍射。
光栅是使用最广泛的一种衍射屏。
在玻璃上刻画一组等宽度、等间隔的平行狭缝就形成了一个投射光栅;在铝膜上刻画出一组端面为锯齿形的刻槽可以形成一个反射光栅;而晶格原子的周期排列则形成了天然的三维光栅。
本实验采用的是通过明胶复制的方法做成的投射光栅。
它可以看成是平面衍射屏上开有宽度为a 的平行狭缝,缝间的不透光的部分的宽度为b ,d=a+b 称为光栅常数。
光栅夫琅禾费衍射的具体理论主要有以下几个结论:1、光栅衍射可以看成是单缝衍射和多缝干涉的综合。
当平面单色光正入射到光栅上市,其衍射光振幅的角分布单缝衍射因子乘积,即沿方向的衍射光强220sin sin ()()()sin N I I αβθαβ= 式中,sin /u a πθλ=,sin /d βπθλ=,N 是光栅的总缝数。
当时,也等于0,,形成干涉极大;当时,但不等于0时,,形成干涉极小。
它说明:在相邻的两个主极大之间有N-1个极小、N-2个次级大;N 数越多,主极大的角宽度越小。
2、正入射时,衍射的主极大位置由光栅方程决定,单缝衍射因子不改变主极大的位置,只影响主极大的强度分配。
3、当平行单色光斜入射时,对入射角α和衍射角θ做以下规定:以光栅面法线为准,由法线到光线逆时针入射为正,顺时针为负。
这时光栅相邻狭缝对应点所产生的光程差为)sin (sin αθλ-=∆d ,光栅方程应写成λαθk d =-)sin (sin类似的结果也适用于平面反射光栅。
不同波长的光入射到光栅上时,由光栅方程可知,其主极强位置是不同的。
对同一级的衍射光来讲,波长越长,主极大的衍射角就越大。
如果通过透镜接收,将在其焦面上形成有序的光谱排列,如果光栅常数已知,就可以通过衍射角测出波长。
二、光栅的色散本领和色分辨本领和所有的分光元件一样,反映衍射光栅色散性能的主要指标有两个,一是色散率,二是色分辨本领。
它们都是为了说明最终能够被系统所分辨的最小的波长差δλ。
1、色散率色散率讨论的是分光元件能把不同波长的光分开多大角度。
若两种光的波长差为δλ,它们衍射的角间距为δθ,则角色散率定义为δ/δD θθλ≡。
D θ可由光栅方程导出:当波长由δλλλ→+时,衍射角由δθθθ→+,于是cos d k θδθδλ=,则cos k D d θθλθδ≡=δ 上式表明,D θ越大,对相同的λδ的两条光线分开的角度θδ也越大,实用光栅的d 值很小,所以又较大的色散能力。
这一特性使光栅成为一种优良的光谱分光元件。
与角色散率类似的另一个指标是线色散率。
它指的是波长差为λδ的两条谱线,在观察屏上分开的距离l δ有多大。
这个问题并不难处理,只要考虑到光栅后面望远镜的物镜焦距即可,l f θδ=δ,于是线色散率/cos l kfD l fD d θλθ≡δδ==2、色分辨本领色散率只反映了谱线(主极强)中心分离的程度,它不能说明两条谱线是否重叠。
色分辨本领是指分辨波长很接近的两条谱线的能力。
由于光学系统尺寸的限制,狭缝的像因衍射而展宽。
光谱线表现为光强从极大到极小逐渐变化的条纹。
如果谱线宽度比较大,就可能因相互重叠而无法分辨。
根据瑞利判别准则,当一条谱线强度的极大值刚好与另一条谱线的极小值重合时,两者刚可分辨。
波长差λδ的计算,则可如下推出。
由cos d k θδθδλ=可知,波长差为λδ的两条谱线,其主极大中心的角距离/cos k d δθδλθ=,而谱线的半角宽度cos Nd λθθ∆=;当两者相等时,λδ刚可被分辨:cos cos N k d d δλθλθ=,由此得kNλλδ=光栅的色分辨率定义为/kN R λλ≡δ=上式表明光栅的色分辨本领与参与衍射的单元总数N 和光谱的级数成正比,而与光栅常数d 无关。
注意上式中的N 是光栅衍射时的有效狭缝总数。
由于平行光管的限制,本实验中的有效狭缝总数N=D/d ,其中D=2.20cm ,是平行光管的通光口径。
实验仪器主要仪器:分光仪、投射光栅、钠灯、氢灯、会聚透镜。
1、 分光仪本实验中用来准确测量衍射角,其仪器结构、调整和测量的原理与关键已经在上个学期的课程中进行了研究。
2、 投射光栅本实验中使用的是空间频率约600/mm 、300/mm 的黑白复制光栅。
3、 钠灯及电源钠灯型号为ND20,用功率20W ,工作电压20V ,工作电流1.3A 的电源点燃,预热约10分钟后会发出平均波长为589.3nm 的强黄光。
本实验中用作标准谱线来校准光栅常数。
4、 氢灯及电源氢灯用单独的直流高压电源点燃。
使用时极性不能接反,也不能用手触碰电极。
直视时呈淡红色,主要包括巴耳末系中n=3,4,5,6的可见光。
主要步骤本实验要求通过巴耳末系的2~3条谱线的测定,获得里德伯常数R h的最佳实验值,计算不确定度和相对误差,并对实验结果进行讨论。
1、调节分光仪基本要求是使望远镜聚焦于无穷远,其光轴垂直仪器主轴;平行光管出射平行光,其光轴垂直仪器主轴。
2、调节光栅调节光栅的要求是使光栅平面与仪器主轴平行,且光栅平面垂直平行光管;光栅刻线与仪器主轴平行。
3、测光栅常数λ=作为标准谱线校准光栅常数d。
用钠黄光589.3nm4、测量氢原子里德伯常数R。
测定氢光谱中2~3条可见光的波长,并由此测定氢原子的里德伯常数H数据处理1.校准光栅常数原始数据列表处理,如下表:测量次数谱线级数标盘读数1 标盘读数2+1 329°10′149°04′第一次-1 308°49′128°45′+1 252°22′72°17′第二次-1 232°06′52°02′+1 180°45′0°45′第三次-1 160°30′346°31′第四次+1 118°39′298°40′-1 98°20′ 278°22′ 第五次+148°26′ 228°28′ -128°08′208°07′1)由数据,计算第一级谱线的偏角,设其为1θ,可由+1级的标盘读数+1θ和-1级的标盘读数-1θ计算得到,即2111-+-=θθθ。
本实验中,利用41_21_21_11_11-+-+---=θθθθθ其中+1_i θ代表读数i 中+1级的角度。
则有下面计算:'10104'45128'0414949'10'-30832911︒=︒-︒+︒︒=θ'75.7104'0252'177206'22'-23225212︒=︒-︒+︒︒=θ同上计算可得13θ=10°7.25′,14θ=10°9.25′,15θ=10°9.75′515141312111θθθθθθ++++==10°8.8′下面计算1θ的不确定度:20)'95.0()'45.0()'55.1()'05.1()'2.1(45)()(22222512111++-+-+=⨯-=∑=i ia u θθθ=0.55′ 标盘系统误差为1′,即仪∆=1′,而计算过程中利用了2111-+-=θθθ,则213)(1⨯∆=仪θb u =0.289′ 则)()()(12121θθθb a a u u u +==0.621'故1θ的最终结果可以表示为:'±'︒=±621.08.810)(11θθu由于0.001′=rad 7109.2-⨯。
而0.621′=rad 410806.1-⨯,故可以直接引用精度为0.001′的不确定度转化为弧度制,则:rad u )000181.01777093.0()(11±=±θθ(在此处1θ的不确定度多保留了几位是为了保证后续计算的精确度) 2)再计算光栅常数d :由公式λθk d =sin ,在此处为1级谱线,k=1,λ=589.3nm ,1θ已经计算出,则m m k d 691103451.3621.0sin 103.589sin --⨯='⨯==θλ由1sin θλk d =,则)(sin )cos ()()(112111θθθλθθu k u d d u ⨯-=⨯∂∂=, 代入计算得,m 1039.3000181.0621.0sin )621.0cos (103.589)(929--⨯=⨯''-⨯⨯=d u )(d u 取一位有效数字,则光栅常数的最终结果为:m d u d 610)003.0345.3()(-⨯±=± 2、里德伯常数的计算原始数据列表处理: 测量次数光谱级数 谱线颜色 标盘读数1 标盘读数2 第一次+1红49°35′229°39′蓝46°40′226°40′-1蓝29°52′209°51′红 26°57′ 206°57′ 第二次+1红109°08′289°10′蓝106°11′286°14′-1蓝89°26′269°29′红 86°30′ 266°29′ 第三次+1红167°56′347°55′蓝 164°58′ 344°55′ -1蓝148°14′328°15′红145°15′ 325°18′2)用蓝光计算里德伯常数用类似1中计算1θ的的方法可计算蓝光的偏角,因为此处只观察了第一级谱线,故用B θ表示第一级蓝光的偏角,用R θ表示第一级红光的偏角。