模拟量和数字量的转换-经典
模拟量和数字量的转换—D_A转换器(电子技术课件)

2 LSB
FSR
1
2
≤ 0.05%,即 ×
1
2 −1
≤ 0.05% ⇒
1
由于10位D/A转换器分辨率为 10
2 −1
的D/A转换器。
=
1
2 −1
1
1023
≤ 0.1%。
= 0.097%,故应取十位或十位以上
总结
DAC主要技术指标: VLSB 、 VFSR 、分辨率、转换速度、
转换精度
倒T形电阻网络D/A转换器
位数比较多时问题更突出。难以在极为宽广的阻值范围内保证每个电阻
都有很高的精度,对制作集成电路不利且影响转换器精度。
总结
权电阻网络DAC:结构比较简单,所用电阻元件数很少。
但各个电阻阻值相差较大,尤其在输入信号位数比较多时
问题更突出,影响转换器精度。
开关树型DAC
分压器型
双积分型ADC
间接ADC
权电容网络DAC
V-F变换型ADC
总结
1. DAC:数模转换器
ADC:模数转换器
2. DAC的分类、ADC的分类
D/A转换器的应用
以AD7520为例,介绍D/A转换器的应用。
AD7520是一种10位CMOS型的D/A转换集成
芯片,与微处理器完全兼容。该芯片以接口
1
对于n位D/A转换器,分辨率也可表示为:分辨率= 。如10位D/A转换器
2 −1
1
的分辨率为 10
2 −1
=
1
1023
≈ 0.001。DAC输入位数n越多,电路的分辨率越高。
分辨率体现D/A转换器对输入微小量变化的敏感程度。
4. 转换速度:指从输入数字量到转换成稳定的模拟输出电压所需要的时间。
模拟量与数字量转换-电子技术_图文

增益误差
非线性误差
二、 D/A转换器的构成
不论模拟开关接到运算放大器的反相输入端(虚地)还 是接到地,也就是不论输入数字信号是1还是0,各支路的电流不 变的。
设RF=R/2
对于权电阻DAC而言,n位二进制数转换 为模拟量:
输出模拟电压的大小直接与输入 二进制 数的大小成正比,实现了数字量 到模拟量的 转换 。
集成ADC0809: 8位、前置8选1模拟开关、 后置三态输出数据锁存器,
另有相应的控制端,便于程序控制,易于直接微机 。
思考题 1、DAC和ADC有什么用途? 2、 R-2R T形电阻网络有什么特点? 为什么通常采用R-2R T 形电阻网络DAC而不用权电阻DAC? 3、什么是DAC、 ADC的分辨率和转换精度? 4、比较并联比较型ADC和逐次比较型DAC的优缺点?
将输入的每一位二进制代码按其权的大小转 换成相应的模拟量,然后将代表各位的模拟 量相加,所得的总模拟量就与数字量成正比 ,这样便实现了从数字量到模拟量的转换。
基本原理
转换特性
D/A转换器的转换特性,是指其输出模拟量和输入数字 量之间的转换关系。图示是输入为3位二进制数时的D/A转换 器的转换特性。理想的D/A转换器的转换特性,应是输出模
如果输入的是n位二进制数,则D/A转换器 的输出电压为:
第2节 A / D 转换器
A/D转换器的任务是将模拟量转换 成数字量,它是模拟信号和数字仪器 的接口。
一、 A/D转换器的基本原理
模数转换一般分为取样、保持和量化、编码两步进行。
时间上和量值上都连续
模拟信号
时间上和量值上都离散
数字信号
编码 取样
取样和保持是由取样-保持电路完成的。
vI S(t)
电子技术基础- 模拟量和数字量的转换

EOC D0--7
第10章 模拟量和数字量的转换
10.2 A/D转换器
ADC0809管脚功能 8个模拟量输入端
启动A/D转换 转换结束信号
IN3 IN4 IN5 IN6 IN7 START
EOC
D0
输出允许信号
OE
实时时钟 CLK
电源电压
UCC
正负参考电压 VREF(+)
地 GND D1
1
28
IN2
第10章
模拟量和数字量的转换
10.1 D/A转换器
能将模拟量转换为数字量的电路称为模数转换器,简称A/D转换器或ADC。 能将数字量转换为模拟量的电路称为数模转换器,简称D/A转换器或DAC。 1.D/A转换器的基本原理及主要技术指标
d0
输入
d1
dn-1
…
D/A
输出
u o K u (d n1 2 n1 d n2 2 n2 d 1 21 d 0 2 0 )
10.2 A/D转换器
1. A/D转换器的基本原理及主要技术指标 A/D转换器的转换过程
ui(t)
CPS S
C
uS(t)
ADC的数字 化编码电路
输入模拟电压 采样保持电路 采样展宽信号
…
Dn-1 d1
d0 数字量输出
第13章 模拟量和数字量的转换
10.2 A/D转换器
采样-保持电路
A1 _
+ +
A2 _
2.D/A转换器的构成
+VREF
IREF
R
I3 2R
S3
S2
二进制权电阻网络D/A转换器
I2 4R S1
I1 8R S0
数字量转换模拟量公式

数字量转换模拟量公式摘要:1.数字量转换模拟量概述2.数字量与模拟量的关系3.数字量转换模拟量的公式4.公式应用实例5.总结与建议正文:在前文《数字量转换模拟量公式》中,我们了解了数字量和模拟量的基本概念,以及它们在实际应用中的重要性。
为了帮助大家更好地理解和掌握数字量转换模拟量的方法,本文将详细介绍数字量与模拟量之间的关系,并提供一个实用的转换公式。
首先,我们来回顾一下数字量和模拟量的定义。
数字量是指可以用整数或浮点数表示的量,通常用于计算机处理和存储信息。
而模拟量是指连续变化的物理量,例如温度、压力等,它们可以通过传感器或其他测量设备转换为数字信号。
数字量与模拟量之间的关系密切,数字量往往是模拟量通过一定方式转换得到的。
在实际应用中,我们需要将模拟量转换为数字量进行处理,或者将数字量转换回模拟量以满足设备或系统的需求。
这就涉及到数字量转换模拟量的关键步骤——公式应用。
为了方便理解和计算,我们可以将数字量转换模拟量的过程表示为一个公式:模拟量= 数字量× 转换系数+ 偏置其中,转换系数和偏置是根据实际应用场景和设备要求来确定的。
例如,在某些传感器中,数字量的每个单位可能对应着模拟量的某个固定范围,这时转换系数就是传感器灵敏度,而偏置则是传感器零点。
接下来,我们通过一个实例来说明如何使用这个公式进行数字量到模拟量的转换。
假设某个温度传感器输出的数字量为1234,传感器灵敏度为10,零点为-50,求温度传感器的实际温度。
根据公式,我们可以得到:实际温度= 1234 × 10 + (-50) = 12840 - 50 = 12790因此,该温度传感器的实际温度为12790。
最后,总结一下数字量转换模拟量的方法和注意事项:1.了解数字量和模拟量的基本概念,明确它们之间的关系。
2.确定合适的转换系数和偏置,以便进行准确的数字量转换。
3.熟练掌握公式应用,灵活应对不同场景和设备要求。
4.在实际应用中,注意传感器和设备的调试与校准,确保数字量转换结果的准确性。
模拟量和数字量的转换例题

置数控制逻辑电路逐次逼近寄存器D/A 转换器 ++-A Ux 数字量输出Uod 0d 1d n-1例1:四位逐次逼近ADC已知:U X =5.52VDAC 的U R =8V , R F =R试分析转换过程。
1)清零:d 3 d 2 d 1 d 0=00002)将最高位置“1”;即d 3 d 2 d 1 d 0=1000 ;3)DAC 将逐次逼近寄存器输出的数字量1000转换为模拟量U O ;4)U O <U X ,置数控制逻辑电路使d 3=1保留;U O =8/16(1·23+ 0· 22+ 0· 21+ 0· 20 )=4Vd 3 d 2 d 1 d 0=10005)将d2置“1”;即d3 d2 d1 d0=1100 ;6)DAC将逐次逼近寄存器输出的数字量1100转换为模拟量U O;U O=8/16(1·23+ 1· 22+ 0· 21+ 0· 20 )=6V7)U O >U X,置数控制逻辑电路使d2=1去掉,使d2=0;d3 d2d1 d0=10008)将d1置“1”;即d3 d2 d1 d0=1010 ;9)DAC将逐次逼近寄存器输出的数字量1010转换为模拟量U O;U O=8/16(1·23+ 0· 22+ 1· 21+ 0· 20 )=5V10)U O <U X,置数控制逻辑电路使d1=1保留;d3 d2 d1d0=101011)将d0置“1”;即d3 d2 d1 d0=1011;12)DAC将逐次逼近寄存器输出的数字量1011转换为模拟量U O;U O=8/16(1·23+ 0· 22+ 1· 21+ 1· 20 )=5.5V10)U O <U X,置数控制逻辑电路使d0=1保留;d3 d2 d1d0=1011ADCU X=5.52V d3 d2 d1d0=1011转换误差=0.02V,输出位数越多,误差越小。
第十章 模拟量和数字量的转换.ppt

顺 序 d3 d2 d1 d0 1 1 000 2 1 100 3 101 0 4 101 1
UA(V) 比较判断 “1”留否
4
UA < Ui 留
6
UA > Ui 去
5
UA < Ui 留
5. 5 UA Ui 留
返回
逐次逼近转换过程
UA / V
5.52
6 5
4 3
2
1
0
清 10 1 1
零
t
返回
三、ADC的主要技术指标
AD574A AD7541A
12位A/D转换器 12位乘法型A/D转换器
AD375
12位高速A/D转换器
ADC71 16位高分辨率A/D转换器
返回
1. 分辨率 以输出二进制数的位数表示分辨率。 位数越多,误差越小,转换精度越高。
2. 相对精度 实际转换值和理想特性之间的最大误差。
3. 转换速度 完成一次转换所需要的时间,即从接到
转换控制信号起,到输出端得到稳定的数 字量输出所需要的时间。
返回
常用A/D转换器
ADC0809 8位逐次比较型A /D转换器
10位COMS D/A转换器 12位乘法型D/A转换器
DAC63 12位超高速D/A转换器
DAC729 18位超高分辨率D/A转换器
返回
第二节 模拟-数字转换器
并联比较型ADC 逐次逼近型ADC ADC的主要技术指标
返回
模拟-数字转换的过程包括取样、保持、 量化、编码四个步骤。
一般取样、保持用一个取样保持电路完 成,量化与编码用ADC完成。
输出数字量d
输入电压Ui
基准UR
逐次逼近 寄存器
模拟量与数字量的相互转换

OE : 允许输出控制端 ,高电平有效 。
CLOCK :时 钟信 号输入 端 ,外 接时钟 频率一 般为 5 00 kH Z 。 V c c : + 5 V 电 源供电 。
GN D : 地 端。
ADC0809连接电路如图所示,OE、ALE通过一电阻接+5V电源,处于高电平有 效状态。将EOC连接到START,一旦在START引脚上施加一个触发启动脉冲后,集成 电路便处于一种连续转换的工作状态 ,因为EOC端在转换结束时送出的脉冲提供了 下一个触发启动脉冲。
(3)电子模拟开关Si 由于开关Si的作用是在输入数码信号Di控制下,将电阻 网络接到放大器的输入端或地端去,它好像一个单刀双掷开关,故常称它为模拟开 关,电子模拟开关可以由场效应管或三极管构成。
模拟开关电路图
模拟开关等效电路
导通能力加强,使V4导通,将电阻网络接至运放的反相输入端。 当Di=0时,Vl导通能力加强,使V3导通,与地端接通;此时由于V1的发射极 电压降低,相应的V2导通能力减弱,使V4截止,与运放的反相输入端断开,将电阻 网络接至地端。
2 . 逐次逼 近 ADC 的 组成框 图
逐次逼近 ADC 由比较器、 D / A 转换器、数码寄存器、控制电路以及时钟 信号等几部分组成。
逐次逼近ADC组成框图
(1)转换开始先将数码寄存器清零。开始转换后,时钟信号将数码寄存 器的最高位置1,使输出数字为1000。这个数码被D/A转换器转换成相应的模 拟电压vF,送到比较器中与输入的模拟量vi比较。若vF>vi,说明数字过大了,
DAC0832典型应用电路
第二节 模数转换
一 、 模 数 转 换原理
模 / 数转换器 ADC 的功能是把模拟信号转换为二进制数码 。
10模拟量和数字量的转换.

2018-10-06
第10章 模拟量和数字量的转换
图10.6 ADC0809符号图
20பைடு நூலகம்8-10-06
第10章 模拟量和数字量的转换
10.1.4 A/D转换器的主要技术指标 1. 分辨率与量化误差 A/D转换器的分辨率用输出二进制数的位数表示, 位数越多,误差越小,转换精度越高。例如,输入模拟 电压的变化范围为0~5V,输出8位二进制数可以分辨的 最小模拟电压为 5V×2-8=20mV;而输出 12位二进制数 可以分辨的最小模拟电压为5V×2-12≈1.22mV。 量化误差则是由于 A/D 转换器分辨率有限而引起的 误差,其大小通常规定为±(1/2)LSB。该量反映了A/ D转换器所能辨认的最小输入量,因而量化误差与分辨 率是统一的,提高分辨率可减小量化误差。LSB是指最 低一位数字量变化所带来的幅度变化。
2018-10-06
第10章 模拟量和数字量的转换
图10.4 逐次逼近比较式A/D转换原理框图
2018-10-06
第10章 模拟量和数字量的转换
10.1.3 集成ADC0809简介 ADC0809是一种采用 CMOS 工艺制成的 8 路模拟输 入的8位逐次逼近型ADC,它由单一+5V供电,片内带 有锁存功能的8路模拟开关,可对8路0~5V的输入模拟 电压分时进行转换,完成一次转换约需100s,其原理 框图如图10.5所示。
2018-10-06
第10章 模拟量和数字量的转换
显然,其工作过程可与天平称重物类比,并得到 解释。图中的电压比较器相当于天平,被测模拟电压 输入 ui 相当于重物,基准电压 Vref 相当于电压砝码,且 电压砝码具有按8421编码递进的各种规格。根据ui<Vr ef或ui>Vref,比较器有不同的高低电平输出,从而输出 由大到小的基准电压砝码,与被测模拟输入电压ui比较, 并逐次减小其差值,使之逼近平衡。当ui=Vref,比较器 输出为零,相当于天平平衡,最后以数字显示的平衡 值即为被测电压值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:一个八位倒 T 型电阻网络数 / 模转换器,
当输入数字量为 00000001 时,输出电压值 为-0.02V, 若输入二进制数为 11010101时, 输出电压为多少?
解: ∵ 输入数字量为: 00000001 时,
输出电压值为:uo= -0.02V
( 11010101)2 = 27+26+24+22+20 = (213)10
(23-13)
逐次逼近型 A/D转换器
其工作原理可用天平秤重作比喻。若有 四个砝码共重15克,每个重量分别为8、4、 2、1克。设待秤重量Wx = 13克,可以用下表 步骤来秤量:
砝码重 第一次 结 论 暂时结果 8 克 12 克
8 克 砝码总重 < 待测重量Wx ,故保留 砝码总重 > 待测重量Wx ,故撤除
(23-9)
三、精度
指输出模拟电压的实际值与理想值之 差。即最大静态转换误差。 四、线性度
通常用非线性误差的大小表示。 五、电源抑制比 指输出电压的变化与相对应的电源电 压(模拟开关、运放电源)的变化之比。
(23-10)
目前,D/A转换器集成电路芯片种
类很多。按输入二进制数的位数分类有
八位、十位、十二位、十六位等,使用 者可根据任务要求进行选择。
1 0 0
1
1 0 0
0 1
0 1
0 0 0 1 0 1 1
0 0 1 1
0 0 1 1000 1: 1100 2: 1010 3: 1011 4: 1011 5:
(23-16)
0 1
0 1
0 1
1 0
1 0
转换过程 UR= -8V,UI = 5.52V
顺序
1
d 3 d2 d1 d0
1 1 1 0 1 0 0 0 1 0 0 0
(23-18)
UO
UO < UI
逐 次 逼 近 转 换 过 程 示 意 图
6 5 4 3 2 1 0
该数字量成正比的模拟量,这就是构成
D/A转换器的基本思想。
(23-4)
倒T 形电阻网络 D/A 转换器
最低位 最高位
电子模拟开关 T形电阻网络 基准电压
(23-5)
UR IR R
R
(23-6)
R
U R d 3 d 2 d1 d 0 U R 3 2 1 0 iO1 ( 1 2 3 4 ) 4 (d 3 2 d 2 2 d1 2 d0 2 ) R 2 2 2 2 R2 RFU R 3 2 1 0 uO ( d 3 2 d 2 2 d1 2 d 0 2 ) 4 R 2
第二十三章 模拟量和数字量的转换
(1-0)
第二十三章 模拟量和数字量的转换 § 23.1 D/A转换器 § 23.2 A/D转换器
(23-1)
概 述
数-模与模-数转换器是计算机与 外部设备的重要接口,也是数字测量和数 字控制系统的重要部件。
能将数字量转换为模拟量的装置称为 数-模转换器(简称:D/A转换器 );能 将模拟量转换为数字量的装置称为模-数 转换器(简称:A/D转换器 )。
∴ 输出电压值为: uo = 213×(-0.02) = -4.26V
(23-8)
D/A 转换器的主要技术指标
一、分辨率
指最小输出电压和最大输出电压之比。 有时也用输入数字量的有效位数来表示。
例:十位D/A转换器的分辨率为 1 / ( 210-1 ) =1 / 1023≈0.001 二、输出电压( 电流 )的建立时间 指从输入数字信号起,到输出电压(电 流)达稳定值时所需的时间。
(23-2)
传感器 模拟控制
模 拟 信 号
ADC DAC
数 字 信 号
数字计算机 数字控制
D/A、A/D转换器的原理框图
(23-3)
§23.1 D/A转换器
由于构成数字代码的每一位都有一 定的“权重”,因此为了把数字量转换 成模拟量,就必须将每一位代码按其 “权重”转换成相应的模拟量,然后再
把代表各位的模拟量相加,即可得到与
d2
F2 S R Q
d1
F1 S R Q
d0
F0 S R Q & &
≥1
≥1
≥1
读出控制端
& & & &
CP
时钟脉冲
脉冲 发生器
Q4
Q3
Q2
Q1
Q0
准备工作
Q4~Q0=10000
五位顺序脉冲发生器
第五个CP时数据输出
(23-15)
D/A 参考电压 UR=-8V UI=5.52V d3=1: 4V d2=1: 2V d1=1: 1V d0=1: 0.5V
(23-11)
集成芯片 AD7520
d4 d3 d2 d1 d0 +UR UDD UR RF
d0 ~ d9:十位数字量输入端;
UDD:模拟开关电源接线端; d5 d6 d7
9 10
11 12 14
8 7 6 5 4 3
UR:参考电源,可正可负;
RF:内部电阻引出端; GND:接地端。
AD7520
d8
转换数字量1011 4+1+0.5 = 5.5V 转换误差为 –0.02V 若输出为 8位数字量
8 U A 8 (d 7 27 d 6 26 d 0 20 ) 2
转换数字量10110001 4+1+0.5+0.03125 = 5.53125V 转换误差为 +0.01125V 位数越多误差越小
第二次 加4克 砝码总重仍 <待测重量Wx ,故保留
第三次 加2克 第四次 加1克 砝码总重 = 待测重量Wx ,故保留
12 克
13 克
(23-14)
输入
UI
UO
∞
△ - + +
数-模转换器 四位D/A转换器
& &
输出
d3 d2 d1 d0 E
电压 比较器
逐次逼 近寄存器 控制 逻辑门
d3
F3 S R Q
d9 GND IO2 IO1
IO1、IO2:电流输出端;
13
2 15 RF 16 1
– + +
UO
(23-12)
§23.2 A/D转换器
A/D转换器的任务是把模拟量转 换成数字量,它是模拟信号和数字仪 器的接口。
A/D转换器的类型很多,有并联 比较型、逐次逼近型、双积分型等。 在此仅介绍逐次逼近型。
UA(V)
4V
比较判断
“1”留否
留
UA < UI UA > UI UA < UI UA UI
2
3
6V
5V
去 留 留
4
1
0
1
1
பைடு நூலகம்
5. 5V
D/A转换器输出UA为正值
8 3 2 1 0 U A 4 (d 3 2 d 2 2 d1 2 d 0 2 ) 2
(23-17)
UR= -8V,UI = 5.52V