第四章_转动参照系

合集下载

第四章_转动参照系(1)

第四章_转动参照系(1)

牵连速度 vt= ω × r = vt ω = r
v
O
ω
B
2bω
10
2011-3-18
第四章 转动参照系(1)
A
三角形转一周的时间为
T= 2π
β v'

ω×r
ω
P B
P点的相对速度为 v= ' P点绝对速度的大小
v=
b ωb = T 2π
v
O
ω
π v ' + vt − 2v ' vt cos π − 4
ijk???讨论矢量的时间变化率?g??xyzggigjgk????其时间变化率为xyzdgdgigjgkdt?????2011318第四章转动参照系115?xyzdgdgigjgkdtdt?????由326v?r??dj??可得didkijkdtdtdt???????所以xyzdggi?gj?gk?gdt????????xyzxyzdidjdkgi?gj?gk?gggdtdtdt?????2011318第四章转动参照系116或dgdggdt??dt???????424其中xyzdggi?gj?gk?dt???相对变化率g???牵连变化率例如若取得gr???drdrv?r?dtdt???绝对速度相对速度牵连速度4252011318第四章转动参照系117若取得gv???dvdva?v?dtdt???426进一步将425代入ddradt??2drdrr?r?dtdt?????????????????2ddrdrr?r?dtdtdtdt???????222drddrr?r?dtdtdt??????2011318第四章转动参照系118222drddra?r?r?dtdt2dt??????427式中2dra?dt??相对加速度而?2ddddt?dtdtr?r?r????????????????428429所以tcaa?aa???42102r?22tcddra?r?r?a?v?dtdt??????牵连加速度科氏加速度2011318第四章转动参照系1192r?22tcddra?r?r?a?v?dtdt????????若即c??0ddt?则有22ta?r?r?r???????opr?r??m?向轴加速度22a?a?rv?????42122011318第四章转动参照系120作业?p2644243

转动参考系

转动参考系

第四章转动参照系本章应掌握①转动参照系中的速度、加速度计算公式及有关概念;②转动参照系中的动力学方程;③惯性力的有关概念、计算公式;④地球自转产生的影响。

第一节平面转动参照系本节应掌握:①绝对运动、相对运动、牵连运动的有关概念及相互关系;特别是科里奥利加速度的产生原因;②平动转动参照系中的速度和加速度。

一、绝对运动、相对运动、牵连运动有定系οξηζ,另一平面以角速度ω绕轴旋转,平板上固定坐标系oxyz,oz轴与οζ轴重合。

运动质点P相对板运动。

由定系οξηζ看到的质点的运动叫绝对运动;动系oxyz看到的质点运动叫相对运动;定系上看到的因动系转动导致质点所在位置的运动叫牵连运动。

绝对速度、加速度记为;相对速度、加速度记为V',a'。

二、平动参照系中的速度、加速度1、v和a的计算公式速度:(为牵连速度)加速度:其中,牵连加速度a l为:(转动加速度+向心加速度)科里奥利加速度:2、科里奥利加速度a c①它产生条件是:动系对定系有转动;质点相对动系的运动速度不为零,而且运动方向与转轴方向不平行。

②它产生原因是:科氏加速度的产生在于牵连运动与相对运动的相互影响:从静止系看来,一方面牵连运动使相对速度发生改变,另一方面,相对运动也使牵连速度中的发生改变,两者各贡献,结果科氏加速度为。

三、平面转动参照系问题解答例关键是分清定系,动系和运动物体;然后适当选取坐标系,按公式计算。

[例1]P263 4.1题等腰直角三角形OAB,以匀角速ω绕点O转动,质点P以相对速度沿AB边运动。

三角形转一周时,P点走过AB。

求P质点在A 点之速度、加速度(已知AB=b)解:(1)相对动系(直角三角形)的速度v r=b/T=b/(2π/ω)=bω/2π(方向)A点的牵连速度(方向垂直)由V=V r+V e,利用矢量合成法则,得到(2)加速度,因匀速,所以相对加速度α'=0 又匀角速转动,所以角加速牵连加速度,大小,方向沿科氏加速度注意到,所以其大小方向与AB边垂直(见图4.1.1)由,利用矢量合成法则则得到:与斜边的夹角第二节空间转动参照系本节要求:①掌握空间转动参照系中绝对、相对、牵连变化率等概念;②掌握空间转动参照系中的速度V、加速度a的计算公式。

第四章-转动参考系

第四章-转动参考系
第四章
转动参考系
§4.1 平面转动参考系
di j d t dj i dt
r xi yj
dr d d e e xi yj dt dt dt
r k xi yj xj yi

r r 2 0
r Acht +Bsht
t 0, r a
2r 2mr R m r 2m asht 2ma 2sht


0 r
r acht
[补充例题4.1]
v vj sin vk cos k
2
d 2 a sin d sin gdcos a
§4.4 地球自转所产生的影响
1. 有关地球运动的几个量
T 86164 s
7.292 10 rad/s 1016 rad/s 2
5
R 6.378 106 m
RSE 1.496 1011 m
2
3. 相对平衡
相对加速度 牵连加速度
科氏加速度
dr d r d a 2 r r 2 dt dt dt
2
a a at aC F mat 0
刚体运 动
[例 ]
u uj k r bi b ut j v b ut i u b j 2 2 a b 2u i b ut j
2 r 2 v
r
2 r r 2 v a a

第四章转动参照系

第四章转动参照系

(4.2.1)
(4.2.2)
(4.2.3)
(4.2.4)
d G dGx dGy dGz i j k ,是 i , j , k 固定不动时的 G 变化率. 式中 dt dt dt dt
*
* dG dG 故 包含两部分:一为观测者在 S 系所观测出来的 G 的变化率 dt dt
(4.2.10)
式中
d 2 at r ( r ) r dt * d r ac 2 2 v dt

(4.2.11)
如质点 P 固着在 S 系上不动,则 v 0 ,故 a 0, ac 0 ,而 a 与 at
其中 又
vM vA AM vr vA R r j , AM r j
rr R

R r r
R vr r AM AM R j r
dt dt di dj dk dr yj zk x y z v xi dt dt dt dt y)i ( y x) j (x
(4.1.3)
及y 为 P 对转动参照系 上式中的 x (平板) 诸轴的分速度,
2
2 处可仍按原先 O12 的径向及横向进行投影,因此
vr [v cos t (r vt )sin t ] v [v (r vt )t ] v 2rt
(1)
v [(r vt )cos t v sin t ] r
相等.所以 a t 只和 S 系的转动有关,故称为牵连加速度.它又包括

第四章 空间转动参考系 (302宿舍作品)

第四章 空间转动参考系 (302宿舍作品)

(2)三种惯性力 )
1 2 3
变角速转动惯性力 惯性离心力 科里奥利力
课堂巩固
①变角速转动惯性力
1.表达式:
& − mω × r
2.原因:由于转动参考系作变角速转动所引起的。 由于转动参考系作变角速转动所引起的。 由于转动参考系作变角速转动所引起的
3.特点:如果转动是匀速的,则此项惯性力即为 零。
相对加速度、牵引加速度与科里奥利加速度( 相对加速度、牵引加速度与科里奥利加速度(二)
由4.2.4式得
dω d ω dω dω = + ω ×ω = + ω ⋅ sin 0 = dt dt dt dt 2 ω × (ω × r ) = ω (ω ⋅ r ) − ω r
* * *
相对加速度、牵引加速度与科里奥利加速度( 相对加速度、牵引加速度与科里奥利加速度(三)
图1
η
ω
S′
y
j
x
ζ
r
i θ
k
相对速度和牵引速度( 相对速度和牵引速度(一)
ω矢量在z轴,即ω=ωk 如果p点为平面上运动着的一个质点,则p点的位矢为
r = xi + yj
(4.1.1)
因p和坐标轴都以ω转动由
di di dθ • = ⋅ =θ j dt dθ dt • dj dj dθ = ⋅ = −θ i dt dθ dt
dG dGx dGy dGz di dj dk =( i+ j+ k) + Gx + Gy + Gz dt dt dt dt dt dt dt d∗G = + Gx (ω×i +ω× j +ω×k) (4.2.4) dt d∗G = +ω×(Gxi + Gy j + Gzk) dt d∗G = +ω×G dt

转动参考系

转动参考系
x 0, y 2gt cos , z g
两次积分, 并考虑初始条件, 得
x 0, y 1 gt3 cos , z h 1 gt 2
3
2
消去时间, 得到轨道方程
y2 8 2 cos2 z h3
9g
到达地面
y 1 8h3 cos
力的水平分量指向运动的右侧, 这样长年累月的作用, 使得北半球河岸右侧冲刷比左侧厉害, 因为比较陡峭.
而在南半球 (sin<0) 情况与此相反, 是左侧磨损或者
冲刷比较厉害. 双轨单行列车也是同样的问题.
c.落体偏东问题
假定质点由高度h自由下落,认为重力不变,且不受其他 外力, 显然有
t 0, x y z 0, x y 0, z h
2 科里奥利力
当物体 (质点) 相对地球运动时, 应同时考虑惯性 离心力和科里奥利力的作用. 由于质点离地轴的距离 的变化不太大, 惯性离心力可以用重力代替. 研究质点 运动只要考虑科里奥利力.
例一质 点在北半球的某点P上以 速度 v' 相对于地球运动, P点的纬
度的 角为 速. 度图中就S沿N是着地该轴轴,.
也可以简写a为
a'
相对加速度
at
牵连加速度
ac
科里奥利加速度
其中
aa'tddd2td**2rt

r





r

d *
dt

r



r



2
r
ac

2

d*r dt

2
v'

理论力学第四章 转动参照系

理论力学第四章 转动参照系
y
2 v
j
v

科里奥利加速度
科氏加速度2 v 是由牵连运动 和相对运动相互影响产 生的。
P
O
z

i k
x
2 a a' r r 2 v '
相对加速度 牵连加速度 科里奥利加速度
aa a at ac

真实性


质点的相对运动微分方程式
o1 是惯性坐标系(定系),oxyz 是非惯性坐标系(动系),
M 为所研究的质点(动点)。
牛顿第二运动定律相对惯性系适用
maa F
引入 Se mae
aa ae ar ac
(牵连惯性力) (科氏惯性力)
mar F mae mac


o
Ny Nz
vz
v
x
z f 2mx c
f t mx vx
mg
由运动微分方程第1式得
dx dx dx 2x x x dx dt dx
xdx xdx
2
对xdx xdx 两边同时积分
2

x
0
dx xdx x
2 ma' F m R 2m v '
(3)相对平衡
z
O
x
2mx
P
Rz
m 2 x
x
a 0 A B t 0, x a, x 2 a t x e e t ach t 2
a t 2m Rz 2mx e e t 2ma 2 sht 2
2
Ry mg

理论力学第4章转动参考系

理论力学第4章转动参考系

v v r
相对速度 牵连速度
▪ 对于刚体来说,上一章的 公式显然没有第一项 v 。
▪ P 点对静止系的加速度
▪ 科里奥利加速度, 简称科氏加速度.
▪ 在静止系中的观察者看来, 牵连运动(即 ) 可使相对速度 v 发生改变, 而相对运动 ( 即 v ) 又同时使牵连速度 r 中的 r 发生 改变, 即科里奥利加速度 2 v 是由牵连 运动与相对运动相互影响所产生的. ▪ 其方向垂直于 及 v 所决定的平面并且依右
手螺旋法则定其指向. ▪ 如 与v 者中有一为零, 则此项加速度即为零.
§4.2 空间转动参考系
G Gx i G y j Gz k
di dj dk i , j, k dt dt dt
§4.1 平面转动参考系
▪ 在平板参考系上取坐标系 O xy, 它的原点 和静止坐标系原点 O 重合, O xy绕着通过
O点并垂直于平板的直线(即z轴)以角速度
转动.令单位矢量 i , j 固着在平板上的
x轴
和 y 轴上. P 为平板上运动着的一质点
▪ 因 P 和坐标轴都以 转动 所以有 di dj j , i dt dt
为 a0
2 ma F ma0 m r m( r ) m r 2m v
§4.4 地球自转所产生的影响
第24讲结束
r xi yj
▪ 则 P 点相对静止坐标系的速度(不是对平板, 因为对平板, i , j 都是常矢量)为
dr di dj dk i y j z k x v x y z dt dt dt dt y )i ( y x) j (x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 转动参照系
§4.1 平面转动参照系 §4.2 空间转动参照系 §4.3 非惯性系动力学(二) §4.4 地球自转所产生的影响
1、速度
§4.1 平面转动参照系
平板参照系 S′:运动坐标系 o xyz 与平板一起以 绕 z 轴转动
地面参照系 S:静止坐标系 o ,两坐标系原点重合
k = k
at
d
dt
r
(
r) 2r
牵连加速度
ac
2 d *r
dt
2 v
科里奥利加速度
上页 下页
地球自转: 是一个恒矢量(量值和方向都不变),可以 OB 表之,
故 d 0 ,则
dt
at
d
dt
r
( r ) 2r
(r cos ) r 2
OM2 (OM MP)2 2R
在此情形下 a a 2R 2 v
2、动点P的绝对速度
v = dr = d*r r
dt dt 绝对速度=相对速度+牵连速度
3、动点P的绝对加速度
a dv = d*v v
dt dt
= d 2*r d* r + d*r (d*r r )
dt2 dt
dt
dt
d d * d *
dt dt
dt
a
=
平板上一质点 P r xi yj
v dr xi yj x di y dj
dt
dt dt
v x i y j
v r
v v r
绝对速度 相对速度 牵连速度
s
y
p r
x
j i
z( )
o
k
上页 下页
v dr xi yj x di y dj = x y i y x j
ma mg R m r m 2r 2m v
上页 下页
ma mg R m r m 2r 2m v
得小球的运动微分方程为
mx = m 2 x
(1)
my 0 Ry mg
(2)
mz 0 2m x Rz (3)
量值,因为这时 r 已变为 r vt ,故又一次产生了横向加速度v ,因而
沿横向的科里奥利加速度为 2v .
如质点在盘上不动,即 v 0 ,则在瞬间 t t ,质点只随着盘转到1 的
位置,它离盘心 O 的距离仍然等于 r ,所以只有径向加速度 2r .
上页 下页
§4.2 空间转动参照系
转动参考系定点转动,的量值方向都改变 ,OO'重合
[解]设在某一瞬时 t ,质点运动到 1 位置,
在 t t 瞬间,运动到 2位置,假定 t 很小,
于是 cost 1, sint t , t 2 0 ,
故在 2处可仍按原先 O12 的径向及横向进行投影
vr [vcost (r vt) sint] v
[v (r vt)t] v 2rt (1)
对于平面转动参照系 S 而言,如果添上三种惯性力:
m r , m2r 和 2m v,
则牛顿运动定律对 S 就“仍然”可以成立
变角速惯性力 m r , S 系作变角速转动所引起的 惯性离心力 m2r , S 系的转动所引起的 科里奥利力 2m v,参照系 S 的转动及质点的相对运动所引起
上页 下页
§4.3 非惯性系动力学(二)
(1)平面转动参照系
1.相对于 S'系的动力学方程
a = a r + 2r 2 v
如果质量为 m 的质点所受到的合外力为 F ,
即 ma = F
故有
ma = F m r + m2r 2m v
上页 下页
2.惯性力
ma = F m r + m2r 2m v
v [(r vt) cost vsin t] r
[(r vt) vt] r 2vt (2)
上页 下页
由此得
ar a
lim vr t0 t lim v t0 t
2r
2度 v 的方向,因而产生了横
向加速度v ;同时,相对运动(质点向外运动)又改变了牵连速度 r 的
[例]在一光滑水平直管中,有一质量为 m 的小球.此管以恒定角速 度 绕通过管子一端的竖直轴转动.如果起始时,球距转动轴的距 离为 a ,球相对于管子的速度为零,求小球沿管的运动规律及管 对小球的约束反作用力. [解一]非惯性参照系求解 设小球在某一瞬时运动到 P 点, 位置为 x ,速度为 x , 设管对小球反作用在 z 方向上的分力为 Rz ,竖直分力为 Ry
在 s 系中的观察者看来,牵连运动(即 )可使相对速度 v 发生改变
而相对运动(即 v )又同时使牵连速度 r 中的 r 发生改变
牵连运动与相对运动相互影响
上页 下页
[例]圆盘半径为 R ,以匀角速度 绕垂直于盘心O 的轴线转动.一质点沿径向槽 自盘心以匀速度v 向外运动,试求质点加速度各分量的量值
1、任一矢量G 的变化率
G Gxi Gy j Gzk
dG dt
dGx i dt
dGy dt
j
dGz dt
k
Gx
di dt
Gy
dj dt
Gz
dk dt
di i dj j dk k
dt
dt
dt
dG d*G G
dt dt
绝对变化率=相对(或地方)变化率+牵连变化率
上页 下页
dt
dt dt
2、加速度 a dv (x 2 y 2x)i ( y 2x 2 y) j yi xj
dt
= xi + yj 2xi 2 yj yi xj + (2 yi 2xj )
a
2r
相对加速度 向心加速度
r
2 v
变角速切向加速度 科里奥利加速度
科氏加速度产生原因: a a a t ac
d 2*r dt 2
d
dt
r
+ (
r ) + 2
d*r dt
上页 下页
a = d 2*r d r + ( r ) + 2 d*r
dt2 dt
dt
=
d 2*r dt 2
d
dt
r
+
( r ) -2r
+ 2 d*r
dt
a = a + at + ac
a
d 2*r dt 2
相对加速度
上页 下页
更一般的情况
S ′系的原点不与S系重合,且相对速度为v 0 相对
加速度为 a 0,则
v
dr dt
d *r dt
v 0 r
a d 2*r dt 2
a = a + at + ac
相对加速度
at
a0
d
dt
r (
r) 2r
牵连加速度
ac
2
d *r dt
2
v
科里奥利加速度
上页 下页
相关文档
最新文档