数理统计与随机过程复习题
完整word版,2007-2008第一学期数理统计与随机过程(研)试题-2007

北京工业大学2007-2008学年第一学期期末数理统计与随机过程(研) 课程试题学号 姓名 成绩 注意:试卷共七道大题,请将答案写在答题本上并写明题号与详细解题过程。
考试时间120分钟。
考试日期:2008年1月10日一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布),(254σN ,在某日生产的零件中抽取10 件,测得重量如下:54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3问:该日生产的零件的平均重量是否正常(取显著性水平050.=α)?二、 (15分)在数 14159263.=π的前800位小数中, 数字93210,,,,, 各出现的次数记录如下检验这10个数字的出现是否是等概率的?(取显著性水平050.=α)三、(15分)下表给出了在悬挂不同重量(单位:克)时弹簧的长度(单位:厘米)求y 关于x 的一元线性回归方程,并进行显著性检验. 取显著性水平050.=α, 计算结果保留三位小数.四、(15分)三个工厂生产某种型号的产品,为评比质量,分别从各厂生产的产品中随机抽取5只作为样品,测得其寿命(小时)如下:在单因素试验方差分析模型下,检验各厂生产的产品的平均寿命有无显著差异?取显著性水平050.=α, 计算结果保留三位小数.五、(15分)设}),({0≥t t N 是强度为3的泊松过程,求(1)})(,)(,)({654321===N N N P ;(2)})(|)({4365==N N P ;(3)求协方差函数),(t s C N ,写出推导过程。
六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,一步转移概率矩阵为 121414201335250P ⎛⎫ ⎪= ⎪ ⎪⎝⎭(1)求}|,,,,{202021054321======X X X X X X P ;(2)求}|{122==+n n X X P ;(3)证明此链具有遍历性(不必求其极限分布)。
(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
数理统计与随机过程(研)试题

数理统计与随机过程(研) 课程试卷一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)?三、某公司在为期10年内的年利润表如下:(1)求该公司年利润对年份的线性回归方程;(2)对回归方程进行显著性检验:(取05.0=α);(3)解释回归系数的意义;(4)求第11年利润的预测区间(取050.=α)。
四、用三种不同材料的小球测定引力常数,实验结果如下:在单因素试验方差分析模型下,检验材料对引力常数的测定是否有显著影响?取显著性水平05.0=α, 计算结果保留三位小数。
五、某大型设备在任何长度为t 的时间区间内发生故障的次数{}+∞<≤t t N 0),(是强度λ的Poisson 过程,记设备无故障运行时间为T 。
(1)求})(|)({4365==N N P ; (2)求自相关函数),(t s R N ,写出推导过程;(3)求T 的概率分布函数; (4)已知设备已经无故障运行了10小时,求再无故障运行8小时的概率。
六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间}4,3,2,1{,=I ,一步转移概率矩阵为 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2/12/1004/12/14/1004/14/12/1002/12/1P (1)求}4,2,1,3,2{54321=====X X X X X P ;(2)求}1|3{2==+n n X X P ;(3)讨论此链是否具有遍历性,若是遍历的求其极限分布。
七、设X(t)是平稳随机过程,若)2cos()()(Θ+=t t X t Y π,其中Θ是在)2,0(π上服从均匀分布的随机变量且与X(t)独立,问)(t Y 是否是平稳随机过程?。
随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
(完整版)随机过程题库1

随机过程综合练习题一、填空题(每空3 分)第一章1.X1,X2, X n是独立同分布的随机变量,X i 的特征函数为g(t),则X1 X2 X n 的特征函数是。
2.E E(X Y) 。
3.X 的特征函数为g(t),Y aX b,则Y的特征函数为。
4.条件期望E(X Y)是的函数,(是or不是)随机变量。
5.X1,X2, X n是独立同分布的随机变量,X i 的特征函数为g i(t),则X1 X 2 X n 的特征函数是。
6.n 维正态分布中各分量的相互独立性和不相关性。
第二章7.宽平稳过程是指协方差函数只与有关。
8.在独立重复试验中,若每次试验时事件 A 发生的概率为p(0 p 1),以X(n)记进行到n次试验为止 A 发生的次数,则{X(n),n 0,1,2, }是过程。
9.正交增量过程满足的条件是。
10.正交增量过程的协方差函数C X (s,t) 。
第三章11.{X(t), t ≥0}为具有参数0 的齐次泊松过程,其均值函数为;方差函数为。
12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1, 2 ,3且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是,汽车之间的不同到达时刻间隔的概率密度是。
13.{X(t), t ≥0}为具有参数0的齐次泊松过程,( t)n e n! 14.n15.240000 16.复合;17.71 4eP X(t s) X(s) n14.设{X(t), t ≥0} 是具有参数0的泊松过程,泊松过程第n 次到达时间W n的数学期望15.在保险的索赔模型中,设索赔要求以平均 2 次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000 元的正态分布,求一年中保险公司的平均赔付金额。
16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t) 相互独立,则在[0 ,t]内到达汽车总站的乘客总数是(复合or 非齐次)泊松过程.17.设顾客以每分钟 2 人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过 3 人的概率是.第四章18.无限制随机游动各状态的周期是。
数理统计与随机过程复习题

数理统计与随机过程复习题数理统计与随机过程复习题数理统计与随机过程是数学中的一个重要分支,它研究的是随机现象的规律性。
在实际应用中,我们常常需要对一些随机变量进行统计分析,以便得出有关随机现象的结论。
本文将通过一些复习题来回顾数理统计与随机过程的基本概念和方法。
1. 随机变量的概念随机变量是指在随机试验中可能取到的不同数值,它的取值是由试验结果决定的。
随机变量可以分为离散型和连续型两种。
离散型随机变量是指只能取到有限个或可列个数值的变量,如掷骰子的点数;而连续型随机变量是指可以取到任意实数值的变量,如身高、体重等。
2. 随机变量的分布函数随机变量的分布函数是指随机变量取值小于等于某个数的概率。
对于离散型随机变量,分布函数可以表示为累积概率函数的形式;对于连续型随机变量,分布函数可以表示为概率密度函数的积分形式。
3. 随机变量的期望和方差随机变量的期望是对随机变量取值的平均值的度量,它可以表示为每个取值乘以其概率的和。
随机变量的方差是对随机变量取值偏离期望值的度量,它可以表示为每个取值与期望值的差的平方乘以其概率的和。
4. 随机变量的常见分布在数理统计与随机过程中,常见的离散型分布有伯努利分布、二项分布和泊松分布;常见的连续型分布有均匀分布、正态分布和指数分布等。
这些分布在实际应用中具有广泛的应用,熟练掌握其概率密度函数和分布函数的性质对于统计分析至关重要。
5. 随机过程的概念随机过程是指随机变量的一个序列,它的取值是随机的,并且随着时间的推移而变化。
随机过程可以分为离散型和连续型两种。
离散型随机过程是指时间只能取到有限个或可列个数值的过程,如投掷硬币的结果;而连续型随机过程是指时间可以取到任意实数值的过程,如股票价格的变动。
6. 随机过程的平稳性随机过程的平稳性是指其统计特性在时间上的不变性。
强平稳性要求随机过程的所有统计特性在时间平移下保持不变;弱平稳性要求随机过程的一阶矩和二阶矩在时间平移下保持不变。
随机过程试题及答案

随机过程试题及答案一、选择题1. 随机过程是研究什么的对象?A. 确定性系统B. 随机性系统C. 静态系统D. 动态系统答案:B2. 下列哪项不是随机过程的特点?A. 可预测性B. 随机性C. 连续性D. 状态的不确定性答案:A3. 随机过程的数学描述通常使用什么?A. 概率分布B. 微分方程C. 差分方程D. 以上都是答案:A4. 马尔可夫链是具有什么特性的随机过程?A. 独立性B. 无记忆性C. 均匀性D. 周期性答案:B5. 以下哪个是随机过程的数学工具?A. 傅里叶变换B. 拉普拉斯变换C. 特征函数D. 以上都是答案:D二、简答题1. 简述什么是随机过程的遍历性。
答:遍历性是随机过程的一种特性,指的是在足够长的时间内,随机过程的统计特性不随时间变化而变化,即时间平均与遍历平均相等。
2. 解释什么是泊松过程,并给出其主要特征。
答:泊松过程是一种计数过程,它描述了在固定时间或空间内随机发生的事件次数。
其主要特征包括:事件在时间或空间上独立发生,事件的发生具有均匀性,且在任意小的时间段内,事件发生的概率与该时间段的长度成正比。
三、计算题1. 假设有一个泊松过程,其平均事件发生率为λ。
计算在时间间隔[0, t]内恰好发生n次事件的概率。
答:在时间间隔[0, t]内恰好发生n次事件的概率由泊松分布给出,公式为:\[ P(N(t) = n) = \frac{e^{-\lambda t} (\lambda t)^n}{n!} \]2. 考虑一个具有两个状态的马尔可夫链,其状态转移概率矩阵为:\[ P = \begin{bmatrix}p_{11} & p_{12} \\p_{21} & p_{22}\end{bmatrix} \]如果初始时刻在状态1的概率为1,求在第k步时处于状态1的概率。
答:在第k步时处于状态1的概率可以通过马尔可夫链的状态转移矩阵的k次幂来计算,即:\[ P_{11}^{(k)} = p_{11}^k + p_{12} p_{21} (p_{11}^{k-1} + p_{12} p_{21}^{k-2} + \ldots) \]四、论述题1. 论述随机过程在信号处理中的应用及其重要性。
数理统计与随机过程例题精选

例1:设ζ,η为相互独立,数字期望均为0、 方差均为1的随机变量,令ζ(t)=ζ+ηt, 求ζ(t)的均值、方差和相关函数。
解:
1 (t ) E[ (t )] E ( ) tE() 0;
(t ) D[ (t )] D( t ) D( ) t D( ) 1 t ;
0 0 3 4 P 1 1 4 2 0 1
1 4 1 2 3 4
2 0 1 4 1 4
1 2 3
P X 0 0, X 2 1, X 4 1 P X 2 1, X 4 1| X 0 0 P X 1 0, X 2 0, X 3 0, X 4 0 | X 0 0
(4) E[N(5)]=5 , D N 5 5 , Cov[ N (5), N (12)] D N 5 5.
例3:证明:正弦波X (t ) Acos( t ) t , 2 x, 0 x 1 其中是常数, A与相互独立, A~f ( x) , 0, 其它 在(0, 2 )上均匀分布,是平稳过程; 并判断其是否为各态历经过程.
(2)ξt的均值函数;(3) ξt的相关函数。
解:(1)P{在[0,t]内发生偶数次“随机点”}
( t ) 2 ( t ) 4 p0 (t ) p2 (t ) e t {1 } 3 t cosht 2! 4!
(2)显然
E (t ) 1 e t cosht (1) e t sinh t e t (cosht sinh t ) e t e t e 2 t
3/4 1/4 0 3/4 1/4 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计与随机过程复习资料第1章抽样与抽样分布
1. 设母体,是来自母体的一个子样,若
问C为何值时,CY服从t分布,并给出其自由度。
2. 设母体,是来自母体的一个容量为6的子样,设
,求常数C,使CY服从分布。
3. 设是来自总体的简单样本,记为前个样本的均值和方差,试求
证:。
第2章参数估计
1. 设母体(二项分布),其中:N已知,p是未知参数。
求p的最大似
然估计量。
并确定所得估计量的无偏性和相合性。
2. 设母体(二项分布),求参数N,p的矩估计量。
3. 设为母体的一个子样,,当为何值时,Y为的无偏估计量且方差最
小。
4. 设为母体的一个子样,,当满足什么条件时,Y为的无偏估计量,
并求方差。
5. 设为母体的一个子样,求常数C,使为的无偏估计。
6. 设母体X的密度函数为
a与b为参数,求a与b的矩估计。
7. 设母体(正态分布),其中:和为参数。
求和的最大似然估计量。
并确定所得估计量的无偏性;若是有偏,进行修正。
8.设母体X的分布密度为
,其中,求参数的最大似然估计量。
9. 设母体(均匀分布),为参数,为母体的一个子样,,求参数的置
信概率的置信区间。
10. 设母体(正态分布),其中为未知参数,为母体的一个子样,求母
体平均数的置信概率为的置信区间。
11. 两台机床加工同一种零件,分别抽取6个和9个零件,测量其长度计
算得到.。
假定各台机床零件长度服从正态分布。
求两个母体方差比的置信区间(=0.95)。
12.设是取自总体的一个样本,总体X的密度函数为
(1)求的矩估计和极大似然估计;
(2)的矩估计和极大似然估计是否为无偏的。
第3章假设检验
1. 设母体和,和分别是来自母体X和母体Y的独立子样。
给定显著水
平,检验假设,
2. 设和分别是来自母体和母体的独立子样,且。
给定显著水平,检验假设,
第4章方差分析
1. 下表给出某种化工过程在三种浓度、四种温度水平下的得率数据:取显著水平,在不考虑交互作用的条件下,检验浓度和温度对得率是否有显著影响?
浓度(%)
温度(℃)10243852
21011910
47876
65131210
2. 在一元方差分析中,,而,试求的无偏估计量及其方差。
3. 在一元方差分析中,,证明。
4. 一元方差分析中,证明。
第5章回归分析
1. 现观测x与y的观测值如下
1 2 5 10 15
3 10 17 25 30求y与x的经验回归直线方程。
2.某医院用光电比色计检验尿汞时,得尿汞含量与消光系数的结果如下:
尿汞含量 2 4 6 8 10
消光系数 64 138 205 285 360
1)..求y与x的经验回归直线方程;
2)..取,检验y与x的线性关系是否显著?
第1章随机过程基本概念
第2章二阶矩过程及随机分析
1. 若是参数为1的维纳过程,随机过程,求。
2. 设随机过程的均值函数和自相关函数分别为:
1) .确定该随机过程的均方可导性、均方连续性和均方可积性。
2) .若,求.
3) .若,求。
4) .求。
3. 设随机过程,为非负参数,求该随机过程的均值函数和自相关函
数。
4. 设,,求随机过程的均值函数和自相关函数。
5. 给定随机过程,,求随机过程的均值函数和自相关函数。
6. 设是相互独立的随机变量序列,各随机变量的分布律为:确定该序列是否均方收敛?
第3章马尔可夫过程
1. 设,一步转移概率矩阵为:
初始分布为
(1) 试求, ;
(2) 此链是否具有遍历性? 若是,求平稳分布。
2. 设马尔可夫链的状态空间为,一步转移概率矩阵为:
1) .画出状态传递图,确定该马尔可夫链的闭集;
2) .计算;;
3) .确定该马尔可夫链状态的分类及周期性。
3. 设马尔可夫链的状态空间为,一步转移概率矩阵为:
1) .该马尔可夫链否具有遍历性? 若有,求平稳分布,并求个状态的平均返回时间。
2) .若,计算。