概率论与数理统计复习试题及答案

合集下载

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计(经管类)复习试题及答案

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()A.P(B|A)=0B.P(A|B)>0C.P(A|B)=P(A)D.P(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。

故选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。

2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ(0.5)B.Φ(0.75)C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。

解析:,故选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。

第33页解析:,故选择A。

提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-D.1『正确答案』分析:本题考察概率密度的性质。

解析:1=,所以c=-1,故选择B。

提示:概率密度的性质:1.f(x)≥0;4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。

课本第38页5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()A.f(x)=-e-xB. f(x)=e-xC. f(x)=D.f(x)=『正确答案』分析:本题考察概率密度的判定方法。

解析:① 非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。

2.已知A,B互相对立,则A与B的关系是互相对立。

,B为随机事件,则P(AB)?。

P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。

,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。

36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。

7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。

8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。

339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。

5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。

12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。

319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。

15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。

??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。

217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。

解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。

概率统计复习题(含答案)

概率统计复习题(含答案)

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率论与数理统计复习题及答案

概率论与数理统计复习题及答案

概率练习题1. 设一箱产品共30件,其中次品5件,现有一人从中随机买走5件,则下一个人买一件产品是次品的概率为_________. 答案:1/6。

2. 袋中有5个黑球,3个白球,一次随机取4个球,则其中恰好有3个白球的概率为______. 答案:1/14。

3.()()1/3,(|)1/6,|.()P A P B P A B A B P ===计算 答案:7/12.4. 设A 、B 是两个相互独立的事件,且()0.6,()0.5,()______.P A P B P A B ==+=则 答案:0.7.5. 设A 、B 是两个互斥事件,且()0.6,()0.5,()______.P A P B P A B ==+=则 答案:1.6. 设0()1,0()1,(|)(|)1,P A P B P A B P A B <<<<+=且则必有[ ] (A) A,B 互斥 (B) A, B 对立 (C)A, B 相容 (D) A,B 独立 答案:D.7. 若()0P AB =, 则AB 未必是不可能事件. 若()1P A B +=, 则A+B 未必是必然事件.8. 已知()()()1/4,()0,()()1/6,P A P B P C P AB P AC P BC ======则A, B 全不发生的概率为_____.答案:3/8. 【提示】()()0,()0.ABC AB P ABC P AB P ABC ⊂≤≤==因为,所以0即 9. 某种商品成箱出售,每箱24件,各箱有0,1,2件次品的概率分别为0.98, 0.015,0.005. 一顾客随意挑一箱,从中任意查两件,结果未发现次品,于是买下此箱. 求此箱中确实无次品的概率. 答案:0.982.10. 一袋中有a 个红球,b 个白球. 现从中有放回的每次任取一个球,共取求n 次,X 表示所去的n 个球中红球的个数,求X 的分布律. 答案:(1),{},0,1,...,.kkn kn p p aP X k C k bp n a --====+ 【提示】因为是“有放回地”抓球,所以各次抓球的结果是相互独立的,则这n 次抓球就是n 重伯努利试验.11. 书56页,习题二,第八题. 12. 设(2,5)XU ,现对X 进行独立观测,求至少两次观测值大于3的概率.答案:20/27.13. 设X 在(0, 1)上服从均匀分布,求22ln Y X Y X =-=和的概率密度.答案:211();,0(1)().0(2)200,,y Y Y y e f y y y y f -⎧<<⎪>==⎨⎪⎩≤⎩其它 14. 已知随机变量X 的密度函数为20,1,0().k f x x x ≤≤+⎧=⎨⎩其它求(1) k; (2) F (x ); (3) {13}P X <<; (4){}4.P X π=答案:2,010,011,()2,{13}1/4,{}0.2442,k x x x F x x x P X P X π<⎧⎪⎪=-≤≤<<===⎨⎪>⎪⎩=-+15. 设,00,(),(0)x x otherwiseA Be XF x λλ-⎧+⎨⎩>=>. 则A=_____, B=_____,答案: 1,-1,1eλ--, 密度函数略.16. 已知(X, Y )的分布密度为1(),0180,(,).x y y x otherwisef x y +≤≤≤⎧⎪=⎨⎪⎩ 1{}.P X Y ≤+求答案:1/48.17. 设(X, Y)的密度函数为220,,).,1(cx x y otherwisey f x y ≤≤⎧=⎨⎩ (1)试确定常数c ;(2) 求X ,Y 的边缘密度.答案:c=21/4;22(1)(),21,1180,X x x otherwise x f x -≤≤⎧-⎪=⎨⎪⎩52,0107(,).2Y y y otherwis y e f ⎧<<⎪=⎨⎪⎩18. 设二维随机变量(X, Y)的概率密度为22,0,0(,)0,.x y e x y otherwis f x y e--=>⎧⎨⎩> 问X, Y 是否独立?答案:独立. 2(),,02(),00,0,.Y x y X e x e y otherwise otherw ey i f x f s --⎧⎧=>=⎨>⎨⎩⎩求(1) a =? ; (2) 边缘分布律;(3) X, Y 是否独立? 答案:(1)a =1/6; (2)略;(3) 不独立.答案:略. 21. 设(0,1),(1,1)XN Y N 且X 与Y 独立,则{}___.1___P X Y +=≤答案:0.5. 22. 设(0,4)XN , 则1{0}P X <<=[ ].(A) 281xd x -⎰ (B)14014xe dx -⎰答案:A. 【提示】要记住一般正态分布的密度函数表达式. 23. 设2(3,2)XN , 且{}{},P x c P X c ≤>=则c=_______.答案:3. 24. 设2(2,)XN σ, 且{24}0.3,P X <<=求{0}.P X <答案:0.2.25. 设21211,,...,0,,Cov(,)_____.nn i i X X X Y X X n Y σ=>==∑独立同分布,且则答案:2nσ.26. X 的密度函数为2,0)10,(ax f x bx c x +⎨+<=<⎧⎩其它,已知EX=0.5,DX=0.15,求a , b , c .答案:12,12, 3.a b c ==-=27. 若X 的密度为2,1(0,)1a f x bx x ⎧-≤≤-=⎨⎩其它且27{0.5}32P X ≤=, 求a , b .答案:0.75.a b ==28. 已知2,33__{_}_,_.E P X DX X μσμσμσ==-<<+≥则 答案:8/9. 29. 设(,), 2.4, 1.44,____,_____.Xb n p EX DX n p ====则答案:6, 0.4.30. 设X, Y 相互独立,EX=EY=0,DX=DY=1,则2(2)_____.E X Y ⎡⎤=⎣⎦+答案:5. 31. 设(0,1)XN ,则2____.EX =答案:2.32. 设X 的密度函数为2,01()0,x x f x <<⎧=⎨⎩其它. 则(21)_____.E X -=答案:1/3.33. 书117页,习题四,32题.。

《概率论与数理统计》复习题(含答案)

《概率论与数理统计》复习题(含答案)

概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。

(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。

(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。

(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。

(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。

(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。

另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。

(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论和数理统计真题讲解(一)单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则()(B|A)=0(A|B)>0(A|B)=P(A)(AB)=P(A)P(B)『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。

解析:A:,因为A与B互不相容,,P(AB)=0,正确;显然,B,C不正确;D:A与B相互独立。

故选择A。

提示:① 注意区别两个概念:事件互不相容与事件相互独立;② 条件概率的计算公式:P(A)>0时,。

2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=()A.Φ()B.Φ()C.Φ(1)D.Φ(3)『正确答案』分析:本题考察正态分布的标准化。

解析:,故选择C。

提示:正态分布的标准化是非常重要的方法,必须熟练掌握。

3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=()『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。

第33页解析:,故选择A。

提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=()A.-3B.-1C.-『正确答案』分析:本题考察概率密度的性质。

解析:1=,所以c=-1,故选择B。

提示:概率密度的性质:(x)≥0;4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。

课本第38页5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是()(x)=-e-x B. f(x)=e-xC. f(x)=(x)=『正确答案』分析:本题考察概率密度的判定方法。

解析:①非负性:A不正确;② 验证:B:发散;C:,正确;D:显然不正确。

故选择C。

提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。

6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~()『正确答案』分析:本题考察二维正态分布的表示方法。

解析:显然,选择D。

7.已知随机变量X的概率密度为f(x)=则E(X)=()D.『正确答案』分析:本题考察一维连续型随机变量期望的求法。

解析:解法一:根据记忆,均匀分布的期望为;解法二:根据连续型随机变量期望的定义,故选择B。

提示:哪种方法熟练就用哪种方法。

8.设随机变量X与Y 相互独立,且X~B(16,),Y服从参数为9的泊松分布,则D(X-2Y+3)=()A.-14B.-11『正确答案』分析:本题考察方差的性质。

解析:因为X~B(16,),则D(X)=n p(1-p)=16××=4;Y~P(9),D(Y)=λ=9,又根据方差的性质,当X与Y相互独立时,有D(X-2Y+3)=D(X+(-2)Y+3)=D(X)+D(-2Y)=4+36=40故选择C。

提示:① 对于课本上介绍的六种常用的分布,它们的分布律(概率密度)、期望、方差都要记住,在解题中,可直接使用结论;② 方差的性质:(1)D(C)=0 (2) D(aX+b)=a2D(x);(3) 若X与Y相互独立时,D(X+Y)=D(X)+D(Y)。

(4)D(X+Y)=D(X)+ D(Y)+2cov(X,Y)这里协方差cov(X,Y)=E(XY)-E(X)E(Y)9.设随机变量Z n~B(n,p),n=1,2,…,其中0<p<1,则=()『正确答案』分析:本题考察棣莫弗-拉普拉斯中心极限定理。

解析:由棣莫弗-拉普拉斯中心极限定理故选择B。

提示:① 正确理解中心极限定理的意义:在随机试验中,不管随机变量服从何种分布,当试验次数趋于无穷大时,它的极限分布都是正态分布,经标准化后成为标准正态分布。

可见正态分布在概率统计中是如何重要的!② 如何记忆中心极限定理定理结论:定理:独立同分布随机变量序列{X i},E(X i)=nμ,D(X i)=nσ2,,分布函数为F n(x),则;拉普拉斯中心极限定理同样记忆。

10.设x1,x2,x3,x4为来自总体X的样本,D(X)=σ2,则样本均值的方差D()=()『正确答案』分析:本题考察样本均值的方差。

解析:课本P122,定理,总体X (μ,σ2),则,E(S2)=σ2。

故选择D。

(二)填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设随机事件A与B相互独立,且P(A)=P(B)=,则P(A)=.『正确答案』分析:本题考察事件的独立性及“和事件”的概率的求法。

解析:因事件A与B相互独立,事件A与也相互独立,则,所以故填写。

提示:① 四对事件:(A、B),(A、),(、B),(、)其一独立则其三独立;② 加法公式:P(A∪B)=P(A)+P(B)-P(AB)是必考内容,记住!12.设袋内有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为_________.『正确答案』分析:本题考察古典概型。

解析:故填写。

提示:不要发生计算错误!13.设A为随机事件,P(A)=,则P()=_________. 『正确答案』分析:本题考察对立事件概率。

解析:故填写14.设随机变量X的分布律为.记Y=X2,则P{Y=4}=_________.『正确答案』分析:本题考察随机变量函数的概率。

解析:P{Y=4}=P{X2=4}=P{(X=-2)}∪(X=2)}=+=;也可求出Y的分布律故填写.提示:互斥事件和的概率=概率的和。

15.设X是连续型随机变量,则P{X=5}=_________.『正确答案』分析:本题考察连续型随机变量在一点的概率。

解析:设X的概率密度为f(x),则,故填写0.提示:积分为0:①被积函数为0;②积分上限=积分下限。

16.设随机变量X的分布函数为F(x),已知F(2)=,F(-3)=,则P{-3<X≤2}=_________.『正确答案』分析:本题考察用分布函数求概率的方法。

解析:P{-3<X≤2}=F(2)-F(-3)=-=,故填写.提示:分布函数的性质:1. F(x)=P{X≤x};(-∞)=0,F(+∞)=1;3. P{a<X≤b}=F(b)-F(a);;4. F’(x)=f(x),在f(x)的连续点。

17.设随机变量X的分布函数为F(x)=则当x>0时,X的概率密度f(x)=_________.『正确答案』分析:本题考察分布函数与概率密度之间的关系。

解析:x>0时,,e 。

故填写x提示:①分布函数与概率密度的关系:设x为f(x)的连续点,则F′(x)存在,且F′(x)=f(x);②注意复合函数求导的方法。

18.若随机变量X~B(4,),则P{X≥1}=_________. 『正确答案』分析:本题考察二项分布的概率。

解析:已知随机变量X~B(4,),则X的分布律为,k=0,1,2,3,4 则。

故填写。

提示:记住符号的意义。

19.设二维随机变量(X,Y)的概率密度为f(x,y)=则P{X+Y≤1}=_________.『正确答案』分析:本题考察连续型二维随机变量的概率。

解析:。

故填写。

提示:被积函数=常数时,二重积分的值=积分区域的面积。

则X的数学期望()=_________.『正确答案』分析:本题考察离散型随机变量的期望。

解析:E(X)=(-2)×+0×+2×=0故填写0.21.设随机变量X~N(0,4),则E(X2)=_________.『正确答案』分析:本题考察随机变量函数的期望的求法。

解析:已知X~N(0,4),则E(X)=0,D(X)=4,由D(X)=E(X2)-[E(X)]2,E(X2)= D(X)+ [E(X)]2 =4+0=4,故填写4.22.设随机变量X~N(0,1),Y~N(0,1),Cov(X,Y)=,则D(X+Y)=_________. 『正确答案』分析:本题考察方差的性质。

解析:已知X~N(0,1),Y~N(0,1),D(X)=D(Y)=1D(X+Y)=D(X)+ D(Y)+2cov(X,Y)=1+1+2×=3,故填写3.23.设X1,X2,…,X n,…是独立同分布的随机变量序列,E(X n)=μ,D(X n)=σ2,n=1,2,…,则=_________.『正确答案』分析:本题考察中心极限定理的应用。

解析:由定理5-4(P112)=故填写24.设x1,x2,…,x n为来自总体X的样本,且X~N(0,1),则统计量_________.『正确答案』分析:本题考察统计量的分布之一――x2布的定义。

解析:由x2分布定义,故填写x2(n)。

25.设x1,x2,…,x n为样本观测值,经计算知,nx2=64,则=_________.『正确答案』分析:本题考察样本的偏差平方和。

解析:故填写36.提示:这是一个非常不被重视的内容,在课本P135,希望注意全面复习。

(三)计算题(本大题共2小题,每小题8分,共16分)26.设随机变量X服从区间[0,1]上的均匀分布,Y服从参数为1的指数分布,且X与Y相互独立,求E(XY).『正确答案』分析:本题主要考察协方差的性质。

解:因为X服从区间[0,1]上的均匀分布,所以,又Y服从参数为1的指数分布,所以,由协方差性质知,当X与Y相互独立时,cov(X,Y)=0,又cov(X,Y)=E(XY)-E(X)E(Y),所以,。

27.设某行业的一项经济指标服从正态分布N(μ,σ2),其中μ,σ2均未知.今获取了该指标的9个数据作为样本,并算得样本均值=,样本方差s2=()2.求μ的置信度为95%的置信区间.(附:(8)=)『正确答案』分析:本题考察单正态总体、方差未知,均值的区间估计。

解:由已知,X~N(μ,σ2),但μ,σ2均未知,对μ估计,这时可用t统计量,因为~t(n-1),由推导可得μ的1-α置信区间为,又已知样本容量n=9,1-σ=95%,σ=,所以,将样本容量n=9,代入上式,得所以,该项指标均值的所求置信区间为[提示:本题尤其要注意书写,以免书写不当丢分。

(四)综合题(本大题共2小题,每小题12分,共24分)28.设随机事件A1,A2,A3相互独立,且P(A1)=,P(A2)=,P(A3)=. 求:(1)A1,A2,A3恰有一个发生的概率;(2)A1,A2,A3至少有一个发生的概率.『正确答案』分析:本题考察事件的概率的求法。

解:(1)事件“A1,A2,A3恰有一个发生”表示为又事件A1,A2,A3相互独立,则所求概率为=(1-)(1-)+(1-)(1-)+(1-)(1-)=所以,A1,A2,A3恰有一个发生的概率为.(2)事件“A1,A2,A3至少有一个发生”的对立事件是“A1,A2,A3全不发生”所以,P(“A1,A2,A3至少有一个发生”)=1-P(A1,A2,A3全不发生)=1-(1-)(1-)(1-)=所以,A1,A2,A3至少有一个发生的概率为.29.设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?『正确答案』分析:本题考察二维随机变量的两个分量的边缘密度及相互独立的验证方法。

相关文档
最新文档