高一数学知识点总结(完整版)

合集下载

高一数学知识点总结大全(5篇)

高一数学知识点总结大全(5篇)

高一数学知识点总结大全(集锦5篇)一、集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时教师常常喊的“全体集合”。

数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。

比方高一二班集合,那么全部高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

a、b、c就是集合A中的元素,记作a∈A,。

有一些特别的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。

如{x?R|x—3>2},{x|x—3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}强调:描述法表示集合应留意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。

集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性(1)无序性指集合中的元素排列没有挨次,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解:A=B留意:该题有两组解。

(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合确实定性是指组成集合的元素的性质必需明确,不允许有模棱两可、含混不清的状况。

高一数学学问点总结大全(2)1、多面体的构造特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

高一数学全年知识点汇总

高一数学全年知识点汇总

高一数学全年知识点汇总【高一数学全年知识点汇总】一、数与代数1. 整数与有理数的运算2. 分数的四则运算3. 实数集与数轴4. 代数式与方程式的变形与运算5. 一元一次方程与一元一次不等式6. 二次根式与二次方程与二次不等式7. 图形坐标与平面向量二、函数与方程1. 函数与映射2. 一次函数与一次函数方程3. 二次函数与二次函数方程4. 指数函数与指数方程5. 对数函数与对数方程6. 幂函数与幂方程7. 三角函数与三角方程8. 组合函数与比例函数9. 分式函数与分式方程10. 复合函数与反函数三、几何与三角学1. 平行线与比例线段2. 直角三角形与勾股定理3. 三角形的面积与海伦公式4. 相似三角形与比例法则5. 三角形的正弦定理与余弦定理6. 解三角形的各种条件7. 多边形的面积与周长8. 圆与圆的性质四、解析几何与向量1. 向量的基本概念与表示2. 向量的运算与线性相关性3. 空间直线与平面的向量方程4. 平面与直线的夹角与距离5. 平面曲线与圆锥曲线的方程6. 平行四边形与矩形的性质7. 线线平行与垂直的判定8. 向量积与量积的应用五、概率与统计1. 事件与概率2. 随机事件及其概率3. 统计数据的整理与分析4. 概率的加法与乘法定理5. 频率分布与统计图表6. 抽样调查与统计推断7. 正态分布与标准正态分布8. 统计实例的应用与分析六、数学思想方法与解题技巧1. 数学证明与推理方法2. 巧妙分析与递推思想3. 方程解题思路与技巧4. 几何图形构造与推理方法5. 综合题的拆解与求解以上为高一数学全年知识点的汇总,覆盖了各个重要知识点和概念。

希望同学们在备考过程中能够充分理解和掌握这些知识,灵活运用于实际问题的解决中。

通过不断的练习和巩固,相信大家可以在数学学科上取得优异的成绩!。

高一数学知识点全部总结

高一数学知识点全部总结

高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。

解一元二次方程的方法有因式分解、配方法、公式法等。

1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。

1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。

1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。

1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。

1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。

1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。

1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。

1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。

1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。

二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。

2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。

高一数学知识点全部归纳

高一数学知识点全部归纳

高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

2. 集合中元素的特性:确定性、互异性、无序性。

3. 集合的表示方法:列举法、描述法、图示法。

4. 集合间的关系:子集、真子集、相等。

5. 集合的运算:交集、并集、补集。

二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。

2. 函数的三要素:定义域、值域、对应法则。

3. 函数的表示方法:解析法、列表法、图象法。

4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。

三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。

指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。

2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。

函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。

对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。

高一数学必修知识点总结15篇

高一数学必修知识点总结15篇

高一数学必修知识点总结15篇高一数学必修知识点总结1高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3。

集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:枚举和描述。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x(R|x—3>2},{x|x—3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=—5}高一数学必修知识点总结2集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之:集合A不包含于集合B,记作。

如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。

A是C的子集,同时A也是C 的真子集。

2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)3、不含任何元素的集合叫做空集,记为Φ。

Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。

如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

示例:集合中有子集。

(13年高考第4题,简单)练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

高一必修一数学全册知识点

高一必修一数学全册知识点

高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。

最全高一数学知识点总结归纳

最全高一数学知识点总结归纳

最全高一数学知识点总结归纳高一数学知识点总结(一)1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A 注意:B与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式 ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数)0(2≠++=a c bx ax y .(1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点.三、平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量&向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ> 0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ= 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ±b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积已知两个非零向量a 、b ,那么|a||b|cos θ叫做a 与b 的数量积或内积,记作a?b ,θ是a 与b 的夹角,|a|cos θ(|b|cos θ)叫做向量a 在b 方向上(b 在a 方向上)的投影。

零向量与任意向量的数量积为0。

a?b 的几何意义:数量积a?b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

四、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x = 图象定义RR ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭函 数 性 质值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,max1y=;当22x kππ=-()k∈Z时,min1y=-.当()2x k kπ=∈Z时,max1y=;当2x kππ=+()k∈Z时,min1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴必修四角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin αcos (2k π+α)=cos αtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)其他三角函数知识:同角三角函数基本关系⒈同角三角函数的基本关系式倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式⒉两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα•tanβtanα-tanβtan(α-β)=——————1+tanα•tanβ倍角公式⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=—————1-tan^2(α)半角公式⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=—————21+cosαcos^2(α/2)=—————21-cosαtan^2(α/2)=—————1+cosα万能公式⒌万能公式2tan(α/2)sinα=——————1+tan^2(α/2)1-tan^2(α/2)cosα=——————1+tan^2(α/2)2tan(α/2)tanα=——————1-tan^2(α/2)和差化积公式⒎三角函数的和差化积公式α+βα-βsinα+sinβ=2sin—----•cos—---2 2α+βα-βsinα-sinβ=2cos—----•sin—----2 2α+βα-βcosα+cosβ=2cos—-----•cos—----- 2 2α+βα-βcosα-cosβ=-2sin—-----•sin—----- 2 2积化和差公式⒏三角函数的积化和差公式sinα•cosβ=0.5[sin(α+β)+sin(α-β)] cosα•sinβ=0.5[sin(α+β)-sin(α-β)] cosα•cosβ=0.5[cos(α+β)+cos(α-β)] sinα•sinβ=-0.5[cos(α+β)-cos(α-β)]。

相关文档
最新文档