核燃料循环与乏燃料后处理、分离与嬗变思想

合集下载

中国核能发展历程

中国核能发展历程

中国核能发展历程中国核能发展历程:回顾、挑战与前景一、引言核能作为一种高效、清洁的能源,在全球能源结构中占有重要地位。

中国作为世界最大的能源消费国之一,其核能发展历程充满了曲折与挑战。

本文将回顾中国核能发展的历程,分析其所面临的挑战,并展望未来的发展前景。

二、历史回顾中国的核能研究始于20世纪50年代。

在国家的支持下,一批科学家和工程师投身核能研究,奠定了中国核能事业的基础。

经过数十年的努力,中国在核能领域取得了显著的成果。

1.核电站建设:自20世纪80年代开始,中国陆续建设了多座核电站,包括秦山核电站、大亚湾核电站等。

这些核电站的建成投产,为中国提供了稳定的电力供应,并推动了相关产业的发展。

2.核燃料循环:中国建立了完整的核燃料循环体系,包括铀矿开采、铀浓缩、燃料制造、乏燃料后处理等环节。

这保证了核电站的燃料供应,并降低了对外部资源的依赖。

3.核安全技术:中国在核安全技术方面取得了重要进展,建立了完善的核安全法规和标准体系,加强了核设施的安全监管和应急响应能力。

4.核能国际合作:中国积极参与国际核能合作,与世界多个国家和地区共同开展核能研究和项目合作,推动了全球核能事业的发展。

三、面临挑战尽管中国核能发展取得了显著成果,但也面临着一些挑战:1.技术瓶颈:随着核电站规模的扩大和技术的复杂化,中国在核能技术研发方面仍存在一定的瓶颈,需要加大投入和研发力度。

2.公众接受度:由于核能的特殊性和潜在风险,公众对其接受度相对较低。

这在一定程度上制约了核能的发展速度和社会认可度。

3.安全监管:随着核电站数量的增加和运行年限的延长,安全监管面临更大的压力。

如何确保核电站的安全稳定运行,防止核事故的发生,是中国核能发展中的重要课题。

4.废物处理:核电站产生的放射性废物处理是一个世界性的难题。

中国在废物处理技术研发和设施建设方面仍存在一定的不足,需要加强投入和研发力度。

四、前景展望展望未来,中国核能发展仍具有广阔的前景:1.政策支持:随着国家对清洁能源的重视和支持力度的加大,核能作为清洁、高效的能源形式,有望得到更多的政策支持和投资倾斜。

关于核燃料循环之乏燃料后处理的报告

关于核燃料循环之乏燃料后处理的报告

关于核燃料循环之乏燃料后处理的报告经过对2010~2011下半年的核燃料循环课程的学习,我们了解了循环的概况:1.铀矿冶;2.铀转化;3.铀浓缩;4.核燃料元件制造;5.反应堆燃烧;6.核燃料后处理;7.高放废物贮存;8.玻璃固化;9.地质处置。

学习中我们认识到每个环节都极其重要,下面我们将针对核燃料循环之核燃料后处理进行详细论述。

一、乏燃料定义乏燃料又称辐照核燃料。

在反应堆内烧过的核燃料。

核燃料在堆内经中子轰击发生核反应,经一定时间从堆内卸出。

它含有大量未用完的可增殖材料238U或232Th,未烧完的和新生成的易裂变材料239Pu、235U或233U以及核燃料在辐照过程中产生的镎、镅、锔等超铀元素,另外还有裂变元素90Sr、137Cs、99Tc等。

经过冷却后把有用核素提取出来或把乏燃料直接贮存。

二、我国乏燃料的来源1.已投入商业运行的核电站(秦山核电站、大亚湾核电站,未来还将会有多座核电站建成)2.用于核技术研究的实验堆(401、903等)3.核动力潜艇(未来还将会有核动力航母)4.军用生产堆(一部分已经处于退役阶段)三、乏燃料的管理办法目前,对于乏燃料的管理,国际上主要有两种战略考虑:其一是“后处理”战略。

即对乏燃料中所含的96%的有用核燃料进行分离并回收利用,裂变产物和次锕系元素固化后进行深地质层处置或进行分离嬗变,这是一种闭路核燃料循环。

其特点是铀资源利用率提高,减少了高放废物处置量并降低其毒性,但缺点是费用可能较高,可生产高纯度的钚,有核扩散的风险。

其二是“一次通过”战略。

即乏燃料经过冷却、包装后作为废物送入深地质层处置或长期贮存,美国曾经支持此战略,但其最终处置场尤卡山项目碰到了困难,现在美国已转向了后处理。

该战略特点是费用可能较低,概念简单;无高纯钚产生,核扩散风险低。

但缺点是废物放射性及毒性高,延续时间长达几百万年;没有工业运行经验。

乏燃料后处理是核燃料循环后段中最关键的一个环节,是目前对核反应堆中卸出的乏燃料的最广泛的一种处理方式。

我国乏燃料后处理大厂建设的几点思考

我国乏燃料后处理大厂建设的几点思考

第33卷第4期核 化 学 与 放 射 化 学Vo l .33No .4 2011年8月Journal of Nuclear and RadiochemistryA ug .2011 收稿日期:2010-11-15;修订日期:2011-02-28 作者简介:李金英(1957—),男,河北衡水人,研究员,博士生导师,从事核燃料循环与材料管理与研究 文章编号:0253-9950(2011)04-0204-07我国乏燃料后处理大厂建设的几点思考李金英1,2,3,石 磊1,2,3,胡彦涛41.华润(集团)有限公司,北京 100005;2.中国原子能科学研究院,北京 102413;3.核工业北京地质研究院,北京 100029;4.中国核电工程有限公司,北京 100840摘要:本文在分析了国际乏燃料后处理设计思路、工艺流程、相关关键技术、建造过程和运营经验的基础上,结合我国乏燃料后处理技术现状以及相关配套,就我国乏燃料后处理大厂的建设提出初步的思考。

关键词:乏燃料;后处理大厂中图分类号:T L249 文献标志码:ASome Considerations on the Construction of a SpentNuclear Fuel Reprocessing Plant in ChinaLI Jin -ying 1,2,3,SH I Lei 1,2,3,H U Yan -tao 41.China Resour ces (Ho ldings )Co .,Ltd .,Beijing 100005,China ;2.China I nstitute o f A to mic Ene rgy ,Beijing 102413,China ;N C Beijing Resea rch Institute of U ranium G eolog y ,Beijing 100029,China ;4.China Nuclear Po wer Enginee ring Co .,Ltd .,Beijing 100840,ChinaA bstract :The histo ry of spent nuclear fuel reprocessing w as review ed ,inclusive of pro blem sand actuality ,principle and attaching .Key technolog ies o f com mercial spent fuel repro cess -ing plants w ere summa rized ,as w ell .Pro po sals on spent nuclear fuel reprocessing in China is described extensively .So me sug gestions to the g overnm ent and establishments are m ade as well .Key words :spent nuclear fuel ;spent fuel reprocessing plant 核能作为一种安全、清洁、经济的一次能源,已经得到了全世界的广泛认可和接受。

核燃料循环课件

核燃料循环课件
654.9
685.8 187W
250
200
150
100
50
30.7 179W 58.0 W-K1 & 59.3 W-K2
69.1 W-K1 65.9185mW & 72.0187W & 73.2183Hf 67.2W-K2
94.6185mW 107.9185mW 111.2184Ta
122.1185mW & 122.3
按燃料布置型式分类的反应堆 ❖ 从核燃料后处理的角度看,按堆芯燃料布置型式,把反应堆划分为均匀
和非均匀两大类更有实际意义。对此两种类型反应堆的辐照材料有完全 不同的后处理方式。对均匀堆而言,多为流体性燃料,一般可采用连续 后处理方式,进而大大简化了处理流程。而对非均匀堆,燃料通常以固 体燃料元件方式装卸,只能是分批进行后处理。由于多方面的原因,目 前广泛使用和建造的反应堆多数仍属非均匀堆,均匀堆还只是处于试验 阶段。
E1 石墨 E2 重水 E3 轻水或含氢物质(轻水堆包括压水堆和沸水堆) E4 铍或氧化物 核燃料循环
F.冷却 剂
F1 气体(空气、CO2、He、水蒸汽等) F2 液体(水、重水、有机溶液) F3 液态金属(钠、钠钾合金、铅,铅铋合金等

G.核燃 料转 换性 能
G1 燃烧堆(无明显的核燃料转换) G2 转换堆(有显著的核燃料转换,但转换比小
由于装在堆内的易裂变燃料必须经常保持(或大于)临界质量,否则 不可能维持链式反应。为了要在一定运行周期内发出额定功率,堆内需留 有超过临界质量的易裂变燃料,使反应堆活性区具有后备反应性。当燃料 达到一定的燃耗(burn up)深度,由于燃料的消耗,以及运行期间产生并积 累的裂变产物的毒化效应,使后备反应性接近消失时,虽然燃料元(组) 件中尚含有相当数量的易裂变燃料,也得把它从堆内卸出,换入新燃料。 卸出的燃料元(组)件称为乏燃料(spent fuel),其中含有大量的易裂变核 素和可转换核素,包括原先装入未燃耗的和运行周期中在堆内转换生成的, 均属价值贵重的能量资源。因此,需要经过后处理,将裂变产物分离出去, 并回收这些易裂变核素和可转换核素,重新制成可用的燃料元(组)件返 回反应堆复用,以构成核燃料循环。而一次通过式核燃料循环,它仅利用 0.5%的铀资源,把乏燃料中尚存的235U、239Pu和238U等统统废弃不用,付 诸永久埋存,这种不经后处理的循核环燃料实循不环成其为循环。

核工程中的燃料循环与核废料再利用研究

核工程中的燃料循环与核废料再利用研究

核工程中的燃料循环与核废料再利用研究核工程中的燃料循环与核废料再利用研究摘要:核工程是现代能源领域不可或缺的一部分。

然而,核能发电过程中产生的大量核废料一直是人们关注的焦点。

为了解决核废料问题并更好地利用核能资源,燃料循环和核废料再利用成为了研究的重点。

本论文将介绍核工程中燃料循环的基本原理和技术路线,并探讨核废料再利用的潜力和挑战。

通过对国内外相关研究成果的梳理和分析,本论文旨在为未来核能工程的发展提供借鉴和参考。

关键词:核工程、燃料循环、核废料再利用、放射性废料、可持续能源一、引言核能作为一种清洁、高效、可持续的能源形式,在世界各国广泛应用于电力生产、医疗、工业等领域。

然而,核能发电过程中产生的核废料一直是人们关注的焦点。

核废料的长寿命和放射性污染性质使其必须得到妥善处理,否则可能对人类和环境造成严重的影响。

为了解决核废料问题并更好地利用核能资源,燃料循环和核废料再利用成为了研究的重点。

二、燃料循环的基本原理和技术路线燃料循环是核工程中的关键环节,它涉及到核燃料的提取、制备、使用和废料处理等方面。

燃料循环的基本原理是通过对核燃料的回收和再利用,最大限度地提高核燃料的利用效率和核能资源的可持续性。

核燃料的提取是燃料循环的第一步。

目前主要采用的是钚-铀循环和铀-铀循环两种技术。

钚-铀循环通过对使用过的核燃料进行化学处理,提取出可以再利用的钚和铀。

铀-铀循环则是通过对自然铀进行提纯和浓缩,得到适合再利用的铀燃料。

核燃料的制备是燃料循环的第二步。

在核工程中,核燃料是以核燃料元件的形式使用的。

核燃料元件一般由铀或钚化合物制成,并通过化学、物理或冶金方法进行成型和加工。

制备好的核燃料元件可以直接用于核反应堆的运行。

核燃料的使用是燃料循环的第三步。

核燃料一旦放入核反应堆中发生核裂变反应,产生大量的能量和核废料。

在核废料问题得到妥善解决之前,核废料需要进行安全的贮存和处理。

同时,核燃料在使用过程中的变化和衰变也需要进行研究和监测。

5.1_核燃料后处理解析

5.1_核燃料后处理解析

核燃料后处理是核燃料循环中的一个重要组成部分,同
时它又是军民两用技术。核工业中的地位和作用如下: 1. 后处理对于充分利用核能资源意义重大 ☞ 核电是我国能源的重要组成部分。对动力堆乏燃料进行后 处理,实现核燃料闭路循环,对充分利用铀资源、实现核 能可持续发展,起着举足轻重的作用。我国已探明的铀资 源量有限,且铀矿品位低、规模小,如果不搞后处理,铀 资源将会限制我国核能的发展。 ☞ 核燃料通过反应堆使用一次,只能利用燃料总量的极少 部分。生产堆仅用了千分之几,较先进的动力堆,燃料的 利用率也只有百分之几。
3. 化学分离过程
任务是除去裂变产物,高收率地回收核燃料物质。化学分
离流程分为水法和干法两大类:
☞ 水法流程指采用诸如沉淀、溶剂萃取、离子交换等在水 溶液中进行的化学分离纯化过程;
☞ 干法流程则指采用诸如氟化挥发流程、高温冶金处理、
高温化学处理、液态金属过程、熔盐电解流程等在无水状 态下进行的化学分离方法。 目前,工业上应用的后处理流程都是水法流程。历史上曾 采用沉淀法流程从辐照天然铀中提取核武器用钚。但不久
离较差,综合提取同位素较困难等,目前尚未被实际应用.
4. 尾端处理过程
经溶剂萃取分离和净化得到的硝酸钚或硝酸铀
酰溶液,无论在纯度或存放形式上有时还不能完
全满足要求,因而在铀、钚主体萃取循环之后, 还需要采取一些尾端处理步骤。其目的在于将纯
化后的中间产品进行补充净化、浓缩以及将其转
化为所需最终形态。
(3)高的技术要求和指标
核燃料后处理的主要目的是回收核燃料物质。 根据这些物质进一步加工的方式、方法的不同, 对净化有不同的要求。 一般都要求对经后处理回收的核燃料物质在进 行再加工时要能做到不需要昂贵的防护和远距离 操作设备。这就要求后处理过程具有高的净化系 数,如 107 ;高的铀钚分离系数,如 108 。从而得 到优质的铀、钚产品。这些都是远高于一般化工 分离过程的要求。此外,还要求对核燃料物质有 尽可能高的回收率。

nuclear fuel cycle1-4

nuclear fuel cycle1-4

乏燃料后处理的综合考虑
地质处置库对公众造成的放射性剂量当量 限制在0.1-0.3mSv/a。 对长期放射性毒性起决定作用的是钚和次 锕系元素。裂变产物中重点考虑对处置 库容量起主要作用的高释热核素锶-90、 铯-137,及长寿命的锝-99、碘-129。 分离后的高放废液玻璃固化。镎、镅、锔 等次锕系元素主要进入快堆或ADS嬗变。 碘、锝、锶、铯转化成各自固化形态暂 存。
第三代后处理技术
在讨论第三代后处理技术时需注意如下一些问题:
1)第三代后处理技术尚未成型,大部分分离流程处于实验 阶段,目前这一领域的研究非常活跃。 2)改进的PUREX流程主要考虑适应燃耗加深的燃料,甚至 是MOX燃料的后处理。 首端研究的重点是减少不溶残渣,降低钚的损失,在保证 铀钚分离的前提下调整工艺参数,控制并回收镎、锝。 俄罗斯、法国、日本在这方面的研究水平较高。 3)分离流程的分离手段多样,既有溶剂萃取法,也有离子 交换法、萃淋树脂法、色层法等。对次锕系以及锶、铯 的分离,原理上通过各萃取剂的组合使用可以实现。主 要问题是要解决萃取剂的萃取容量、生产第三相、稀释 剂的选择、试剂的稳定性和降解产物的处理、各工艺物 流接口处理。 4)在水法后处理流程中目前尚有不少前瞻性研究,如超临 界萃取,离子液体萃取等。

4.2.1乏燃料元件的剪切
4.2.2乏燃料元件芯体的化学溶解
燃料成分完全溶解;确 保临界安全。 硝酸:可溶解金属铀燃 料、二氧化铀燃料、 铀钚氧化物混合燃料 1.金属铀芯的溶解
溶芯过程中的惰性气体(85Kr,133Xe)及131I排入 尾气处理系统。
芯液进入萃取分离前需经三步调制:
1)调料 稀硝酸调节铀浓度;浓硝酸调节芯液硝酸浓度; 亚硝酸调节钚和镎的价态。 2)絮凝 1%明胶溶液絮凝硅胶粒 3)过滤分离

第六章 核燃料循环

第六章 核燃料循环
97日本的燃料再处理厂日本的燃料再处理厂世界核燃料的再处理工厂世界核燃料的再处理工厂法国英国俄罗斯印度日本moxmox燃料燃料天然铀低浓铀发电前低浓铀发电后mox燃料238pu239fp核燃料的裂变比例比较核燃料的裂变比例比较燃耗燃耗铀燃料堆芯mox燃料堆芯我国我国404404厂的核燃料处理能力厂的核燃料处理能力中核清原公司负责全国的低中放固体废物处置场的选址设计建设和运行放射性废物管理放射性废物管理将后处理中产生的高中低放射性废物浓缩之后进行处理和中间储存最后进行最终处置广东北龙废物处置场8800立方米远期规划容量24万立方米西北废物处置场首期废物容量为2万立方米核废料的来源和特性核废料的来源和特性核废料是核电站运行所产生的无法再回收核废料是核电站运行所产生的无法再回收使用必須丟弃的废弃物使用必須丟弃的废弃物具有具有很强的辐射性很强的辐射性和和长效放射性长效放射性特征特征有些元素如钚其半衰期可达数万年以上有些元素如钚其半衰期可达数万年以上即使是低放射性的核废料半衰期也有达即使是低放射性的核废料半衰期也有达500500到到600600年年据估计目前全世界核废料估计有据估计目前全世界核废料估计有900900多吨高水平放射性废物hlw44废物的处理和处置气气低放射性废料低放射性废料的来源的来源核能电厂在维护除污作业或运转过程中所产核能电厂在维护除污作业或运转过程中所产生受放射性物质污染的生受放射性物质污染的废树脂浓缩液衣物手套工具及废弃的零组件废树脂浓缩液衣物手套工具及废弃的零组件设备或是净化水系统所产生的残渣设备或是净化水系统所产生的残渣核能电厂运转寿命终了时核能电厂运转寿命终了时各项废弃核设施拆除过程中所产生之废弃物各项废弃核设施拆除过程中所产生之废弃物医疗院所农业工业及学术研究单位使用放射医疗院所农业工业及学术研究单位使用放射性同位素过程中性同位素过程中所产生的废弃物与使用过但仍具相当辐射强度之辐射所产生的废弃物与使用过但仍具相当辐射强度之辐射源源核电厂放射性的来源核电厂放射性的来源11放射性腐蚀产物放射性腐蚀产物被活化了的结构材料的辐射产物被活化了的结构材料的辐射产物净化系统废物净化系统废物被污染物被污染物电厂废弃的零组件电厂废弃的零组件受污染的衣物手套工具等受污染的衣物手套工具等气体废料气体废料冷却水经堆心照射后形成活化气体冷却水经堆心照射后形成活化气体废料焚化或熔融处理时产生的气态废料焚化或熔融处理时产生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 一次通过循环 • 闭式循环: • 水法 • 干法
一次通过循环
• 铀的利用率<0.7% • 填埋: • 空间:1吨核废料=2立方米 • 污染:放热,融化,地下水
铀资源
• 常规铀资源: • 已知铀资源:470万吨 • 推测铀资源:1000万吨 • 非常规铀资源: • 磷矿:2200万吨 • 海水:40亿吨
后三种核素是最麻烦的.因为在环境条件下,其都以可溶的形式存在。
核燃料循环
乏燃料后处理的意义
• 资源的充分利用: • 乏燃料中资源丰富 • 循环增加利用率,增加使用年份
乏燃料后处理的意义
• • • • 减轻环境保护负担: 乏燃料体积大幅减小 放射性水平大幅减弱 没有固化后融化的隐患
乏燃料处理方法
Purex process
用稀释的磷酸三丁酯(TBP)做有机溶剂, 水相中加入硝酸。 • 优点: • 废物量减少 • 工艺条件和应用方面有较大的灵活性 • 由于溶剂闪点较高而减小了着火的概率 • 降低了运行费用 • 原理:萃取
TBP--磷酸三丁酯
• 化学稳定性,挥发性小,与水仅稍微混溶
• 在很强的辐照场下发生部分分解,分解产 物磷酸二丁酯和磷酸一丁酯可用碱溶液洗 除,因此它容易再生使用。 • 密度与水相近,粘度较大,需要加入稀释 剂以降低密度和粘度。
铀资源问题
常规铀资源只能支持几十年
水法过程
• 冷却与首端处理:冷却将乏燃料组件解体,脱除元 件包壳,溶解燃料芯块等。 • 化学分离:即净化与去污过程,将裂变产物从U-Pu 中清除出去,然后用溶剂淬取法将铀-钚分离并分别 以硝酸铀酰和硝酸钚溶液形式提取出来。 • 通过化学转化还原出铀和钚。
• 通过净化分别制成金属铀(或二氧化铀)及钚
PYROX流程
• 乏燃料中超过98%的U 被还原成金属U,而 Cs,Sr 和Ba 进入熔盐,TRU、稀土和贵金属 仍留在阴极吊篮中,大部分稀土和Zr 仍然 以氧化物的形式存在。
处理LWR 氧化物乏燃料的PYROX 流程示意图
电还原处理氧化物燃料
氧化物燃料电还原处理的原理示意图
氟化挥发法
Hale Waihona Puke DDP流程的改进Purex process流程
准备:核燃料溶解于 硝酸;调节PH与浓度, 使钚处于四价状态。 铀和钚被TBP萃取,实现铀、 钚与裂变产物的初级分离。
蒸浓,调节硝酸和铀的浓度, 并使钚重新处于四价状态。
稀硝酸反萃取铀、钚。
Purex流程的分离净化效果
干法
• 在高温下进行 • 优点:
• 采用的无机试剂具有良好的耐高温和耐腐 蚀和耐辐照性能; • 工艺流程简单,设备结构紧凑; • 试剂循环使用,废物产生量少。
核燃料循环与乏燃料后处理、 分离与嬗变(P/T)思想
核燃料循环
• • • • • 必要性: 1、补充裂变物质 2、过分的腐蚀与辐射损伤 3、回收转化得到的裂变物质 4、从回收物质中去除吸取中子的裂变产物
乏燃料
裂变元素锶90、 铯137、锝99 未烧完的和新生 成的易裂变材料 钚239、铀235或 铀233
干法
氟化挥发法 利用U,Pu 的氟化物与裂变产物的挥 发性不同来实现分离。 虽然分离过程的概念简单,但是实际 操作中设备材料腐蚀严重、Pu 的挥 发性与非挥发性形态间的转变困难。
熔盐金属萃取法
利用U 和裂变产物在熔融氯 化盐和液态金属Bi 体系中的 分配比差异来实现分离。
熔盐电精制
电解精致过程图
JAEA提出的DDP改进流程的物料计算
FLUOREX流程
• 氟化挥发法与水法后处理流程相结合
FLUOREX流程处理氧化物燃料
干法缺点
高温 强腐蚀(特别 是氟化物体系)
对于强放射性环境下的 操作设备的要求太高。
• 分离效率较低 • 批式操作,限制了流程的处理量 • 对挥发产物的管理有困难
谢谢!
乏燃料 辐照核燃料
大量未用完的 可增殖材料: 铀238或钍232
在辐照过程中产生的镎、 镅、锔等超铀元素
其它
乏燃料的影响
时间
30—300年,Cs(铯) 300~10 000 年.钚和镅是 和Sr(锶)是主要 主要放射来源 的放射性来源
10 000~250 000 年,铀同位素占 主要来源
250 000年以后, Np(镎)、 I和 Tc(锝)是最主 要的放射源
相关文档
最新文档