集合与简易逻辑(高考知识点复习总结)
集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。
2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。
3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。
4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。
笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。
性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。
5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。
x a < (0)a >的解集是 ;x a > (0)a >的解集是 。
(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。
7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。
8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。
一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。
9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。
高考数学复习备考总结

高考数学复习备考总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学复习备考总结高考数学复习备考总结汇总7篇利用各类学习资源,如网课、教辅资料等。
最新(经典)高考数学一轮复习专题:集合与简易逻辑

集合与简易逻辑考点一:集合(一)知识清单1. 集合的含义及其关系1.集合中的元素具有的三个性质:确定性、无序性和互异性;2.集合的3种表示方法:列举法、描述法、韦恩图;3.集合中元素与集合的关系:文字语言符号语言属于∈不属于∉4.常见集合的符号表示数集自然数集正整数集整数集有理数集实数集复数集符号N*N或+N Z Q R C2:集合间的基本关系关系文字语言符号语言相等集合A与集合B中的所有元素都相同BA⊆且A⊆B⇔BA=子集A中任意一元素均为B中的元素BA⊆或AB⊇真子集A中任意一元素均为B中的元素,且B中至少有一元素不是A的元素A B空集空集是任何集合的子集,是任何非空集合的真子集A⊆φ,φB(φ≠B)若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有真子集的个数是n 2-1, 所有非空真子集的个数是22-n 3:集合的基本运算 1.两个集合的交集:A B = {}x x A x B ∈∈且; 2.两个集合的并集: AB ={}x x A x B ∈∈或;3.设全集是U,集合A U ⊆,则U C A ={}x x U x A ∈∉且4:方法指导1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.5.强化数形结合、分类讨论的数学思想.(二) 典型例题分析题型一:集合的概念例1、 已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个 变式:下面四个命题正确的是( )(A )10以内的质数集合是{1,3,5,7} (B )方程x 2-4x +4=0的解集是{2,2} (C )0与{0}表示同一个集合(D )由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}题型二:集合的性质例2、 集合{}0,2,A a =,{}21,B a=,若{}0,1,2,4,16AB =,则a 的值为 ( )A.0B.1C.2D.4例3、 例3.设全集U=R ,A={x ∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为 ( )A .{2}B .{3}C .{-3,2}D .{-2,3}例4、 已知全集32{1,3,2}S x x x =--,A ={1,21x -}如果}0{=A C S ,则这样的实数x 是否存在?若存在,求出x ,若不存在,说明理由题型三:集合的运算例5、 已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则N A C B = ( )A.}{1,5,7B.}{3,5,7 C.}{1,3,9 D.}{1,2,3变式:1. 若集合121log 2A x x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭≥,则R C A =( )A.(]2,0(,)2-∞⋃+∞B.2(,)2+∞C.(]2,0,2⎡⎫-∞⋃+∞⎪⎢⎪⎣⎭D.2,2⎡⎫+∞⎪⎢⎪⎣⎭ 2. 设集合P={m|-1<m ≤0},Q={m ∈R |mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 ( )A.P QB.Q PC.P=QD.P ∩Q=Q 3.若{U n n =是小于9的正整数},{A n U n =∈是奇数},{B n U n =∈是3的倍数},则()UAB = .4.若{}3A x R x =∈<,{}21xB x R =∈>,则A B = .5.已知集合{1,1}M =-,11{|24,}2x N x x Z +=<<∈,则M N =( ).A. {1,1}-B. {0}C. {1}-D. {1,0}-6.设集合2{|log 1}A x x =<,1{|0}2x B x x -=<+,则A B =例6、 已知函数()f x =的定义域集合是A,函数22()lg[(21)]g x x a x a a =-+++的定义域集合是B(1)求集合A 、B(2)若A U B=B,求实数a 的取值范围.题型四:图解法解集合问题例7、 已知集合M=⎭⎬⎫⎩⎨⎧=+149|22y x x ,N=⎭⎬⎫⎩⎨⎧=+123|y x y ,则=N M ( ) A .∅B .)}0,2(),0,3{(C .]3,3[-D .{}2,3变式 1.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B 的元素个数为( ).A.4B.3C.2D.1变式2. 设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是( )A .4B .3C .2D .1例8、 设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围。
高考数学集合与简单逻辑易混淆知识点总结

高考数学集合与简单逻辑易混淆知识点总结为了关心参加高考的同学更好的复习考试的课程,查字典数学网小编编辑整理了数学集合与简单逻辑易混淆知识点,期望考生们通过对复习资料的熟练来为考试复习锦上添花。
1易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,关于集合B,就有B=A,φ≠B,B≠φ,三种情形,在解题中假如思维不够缜密就有可能忽视了B≠φ这种情形,导致解题结果错误。
专门是在解含有参数的集合问题时,更要充分注意当参数在某个范畴内取值时所给的集合可能是空集这种情形。
空集是一个专门的集合,由于思维定式的缘故,考生往往会在解题中遗忘了那个集合,导致解题错误或是解题不全面。
2易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的阻碍最大,专门是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也能够先确定字母参数的范畴后,再具体解决问题。
3易错点四种命题的结构不明致误错因分析:假如原命题是“若A则B”,则那个命题的逆命题是“若B 则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
那个地点面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b差不多上偶数”的否定应该是“a,b 不差不多上偶数”,而不应该是“a,b差不多上奇数”。
4易错点充分必要条件颠倒致误错因分析:关于两个条件A,B,假如A=>B成立,则A是B的充分条件,B是A的必要条件;假如B=>A成立,则A是B的必要条件,B是A 的充分条件;假如AB,则A,B互为充分必要条件。
解题时最容易出错的确实是颠倒了充分性与必要性,因此在解决这类问题时一定要依照充要条件的概念作出准确的判定。
新高考高中数学知识点全总结

新高考高中数学知识点全总结一、集合与简易逻辑1. 集合定义:集合是由确定的对象所组成,这些对象称为集合的元素。
表示方法:列举法、描述法。
集合之间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 简易逻辑充分条件与必要条件。
四种命题及其关系:原命题、逆命题、否命题、逆否命题。
逻辑联结词:且、或、非。
二、函数1. 函数的概念定义:设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作y=f(x),x∈A。
其中,x称为自变量,x的取值范围A称为函数的定义域;与x的值对应的y值称为因变量,因变量的取值范围称为函数的值域。
2. 函数的性质单调性:函数在某一区间内,函数值随自变量增大而增大(或减少)的性质。
奇偶性:若对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数;若f(-x)=f(x),则称f(x)为偶函数。
3. 常见函数一次函数:f(x)=kx+b (k≠0)。
二次函数:f(x)=ax²+bx+c (a≠0)。
指数函数:f(x)=a^x (a>0, a≠1)。
对数函数:f(x)=logₐx (a>0, a≠1)。
幂函数:f(x)=x^α (α为实数)。
三、数列1. 数列的概念定义:按一定顺序排列的一列数称为数列。
通项公式:表示数列中每一项与项数之间关系的公式。
2. 等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
通项公式:aₙ=a₁+(n-1)d。
前n项和公式:Sₙ=n/2[2a₁+(n-1)d]。
3. 等比数列定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
通项公式:aₙ=a₁q^(n-1)。
前n项和公式:Sₙ=a₁(1-q^n)/(1-q)(q≠1)。
四、三角函数1. 角度与弧度角度制:用度(°)、分(')、秒('')来表示角的大小的制度。
集合与简易逻辑知识点总结- 高三数学一轮复习

知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
高考数学知识点复习-集合与简易逻辑

高考数学知识点复习——集合、简易逻辑考试内容:集合。
子集。
补集。
交集。
并集。
逻辑联结词。
四种命题。
充分条件和必要条件。
考试要求:(1)理解集合、子集、补集、交集、并集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关的术语和符号,并会用它们正确表示一些简单的集合。
【导读】数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思维方法解决问题。
学会运用数形结合、分类讨论的思维方法分析和解决有关集合的问题,形成良好的思维品质。
【试题举例】已知集合S={x∈Rx+1≥2},T={-2,-1,0,1,2},则S∩T=( )A.{2 }B. {1,2 }C. {0,1,2 }D.{-1,0,1,2}【答案】B【解析】(直接法)S={x∈Rx+1≥2}⇒S={x∈Rx≥1},T={-2,-1,0,1,2},故S∩T={1,2}.(排除法)由S={x∈Rx+1≥}2⇒S={x∈Rx≥1ng}可知S∩T中的元素比0要大,而C、D项中有元素0,故排除C、D项,且S∩T中含有元素1,故排除A项。
故答案为B.(2)理解逻辑联结词“或”“且”“非”的含义。
理解四种命题及其相互关系。
掌握充分条件、必要条件及充要条件的意义。
【导读】可以判断真假的语句叫做命题。
构成复合命题的p或q可以是两个不相关的命题,判断命题真假的步骤是:(1)定形式;(2)判简单;(3)判复合,以真值表为依据。
规律是“或命题”一真俱真,要假全假.“且命题”一假俱假,要真全真。
当一个命题的真假不易判断时,可考虑判断其等价命题的真假。
高考在考查其他部分内容时涉及集合的知识。
很少有正面考查逻辑的内容。
逻辑与充要条件的知识往往是和其他知识结合起来并汇考查。
【试题举例】(2008·全国卷二)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形。
高中数学《集合与简易逻辑》知识点

集合与简易逻辑知识点知识点内容典型题元素与集合、集合与集合的关系①、∈只能表示元素与集合的关系,而、、?、?、=只能表示集合与集合的关系.②0、{0}、的关系是常见题型,如:数集{0}与空集的关系是()A.{0}=B.{0}∈C.∈{0}D.?{0}③常用数集:R、R*、R+、R+、Q、Z、N.(注意*、+、+的不同含义)④是任何集合的子集,是任何非.空.集合的真.子集.⑤n个元素的集合的真子..集.个数为:2n-1.1.下列关系中正确的是()A.0B.0∈C.0=D.0≠2.已知a=-3,A={x│x2=9},则下列关系正确的是()A.a AB.{a}AC.{a}∈AD.a A3.下列命题为真命题的是()A.3{3}B. 3∈{3}C.3{1,2,3}D. 3∈4.若a=1,集合A={x│x<2},则下列关系中正确的是()A.a AB.{a}AC.{a}∈AD.{a}A集合的运算①掌握好求交、并、补集的基本含义和方法,特别是C U A的含义.②有限元素集之间的运算,常根据定义解答,如:⑴{0,1,2}∩{0,3,5}=.⑵{x∈N│x<3}∩{x∈Z│0<x<10}=.③无限元素集之间的运算,可用数轴法,如:设集合A={x│-1<x≤2},B={x│-2<x≤1}则A∩B=.④点集运算,常联立解方程组,如:A={(x,y)│x+y=2},B={(x , y)│x-y=1},则A∩B=.5.设集合A={x∈Z│0<x<4},B={2,3,4,5,6},则A∩B=.6.已知集合A={x│x>0},B={x│x=0},则A∩B是()A.{x│x≥0}B.{x│x>0}C.{0}D.7.设M={x│2≤x≤5},N={x│-1≤x≤3},则M∪N等于 .8.设集合U=R,A={x│-2<x<3},则集合C U A=.9.若全集U={x∈Z│x≥0},则C U N+=.10.已知全集U=N,集合A={x∈N│x>10},B={x∈N│x≥3},则C U(A∪B)=.知识点内容典型题逻辑连结词且或p q p∧q1 1 11 0 00 1 00 0 0p q p∨q1 1 11 0 10 1 10 0 011.设命题p:2>3,q:-5是有理数,则命题p∧q的真假是.12.命题p:李明是三好学生,命题q:李明不是优秀班干部,则命题p∧q为 .逻辑连结词非蕴含p p1 00 1p q p→q1 1 11 0 00 1 10 0 113.设命题p:甲乙二人至少有一个击中目标,则p:.14.设命题p:一个实数x,使x2-3=0,则p:.15.命题P :一个实数x,使得2x2-2x+1≤0,则P:.两个结论(p∧q)=p∨q(p∨q)=p∧q16.设命题p:他在学校,q:他在家,则(p∨q):.充分必要条件与充要条件对命题p、q有:p→q(真),则称p是q的充分条件,q是p的必要条件.若p?q(真),且q?p(真),则说p是q的充分且必要条件,简称“充要条件”,记作“p q”.p是q的充要条件,又常说q当且仅当p,或p与q等价. 例如:⑴│x│>a的充要条件是.⑵“ab>0”是“a>0且b>0”的条件.17.x=y是x2=xy的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件18.命题p:ab=0,命题q:a=0或b=0,则p是q的()A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件19.x=y是x2=xy的条件.20.x>0是x2>0的条件.简易逻辑常见符号存在()、任意()、使得()、非()、且(∧)、或(∨)、若…则…(→)、推出(?)、等价()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、集合与常用逻辑用语一、知识梳理:1、集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B ,或B ⊃A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。
即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊆B 或B ⊇A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂(读作“A 交B ”),即:B A ⋂=}{B x A x x ∈∈且,|。
B A ⋂=A B ⋂,B A ⋂B B A A ⊆⋂⊆,。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃(读作“A 并B ”),即:B A ⋂=}{B x A x x ∈∈或,|。
B A ⋃=A B ⋃,⊆A B A ⋃,⊆B B A ⋃。
8、元素与集合的关系:有 、 两种,集合与集合间的关系,用 。
9、命题:可以判断真假的语句叫做命题。
10、“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p 或q(记作p ∨q);p 且q(记作p ∧q);非p(记作┑q) 。
11、“或”、“且”、“非”的真值判断:• “非p ”形式复合命题的真假与P 的真假相反;• “p 且q ”形式复合命题当P 与q 同为真时为真,其他情况时为假; • “p 或q ”形式复合命题当p 与q 同为假时为假,其他情况时为真.12、命题的四种形式与相互关系:• 原命题:若P 则q ; • 逆命题:若q 则p ; • 否命题:若┑P 则┑q ; • 逆否命题:若┑q 则┑p• 原命题与逆否命题互为逆否命题,同真假; • 逆命题与否命题互为逆否命题,同真假; 13、命题的条件与结论间的属性:若q p ⇒,则p 是q 的充分条件,q 是p 的必要条件,即“前者为后者的充分,后者为前者的必要”。
若q p ⇔,则p 是q 的充分必要条件,简称p 是q 的充要条件。
若q p ⇒,且q p ,那么称p 是q 的充分不必要条件。
若p q , 且q ⇒p ,那么称p 是q 的必要不充分条件。
若pq , 且qp ,那么称p 是q 的既不充分又不必要条件。
14、全称量词与存在量词全称量词:所有的,一切,全部,都,任意一个,每一个等; 存在量词:存在一个,至少有一个,有个,某个,有的,有些等;全称命题:含有全称量词的命题称为全称命题。
一般形式为:命题P :)(x p M x ,∈∀。
全称命题的否命题:)(x P M x p ⌝∈∃⌝,:。
15、存在量词:含有存在量词的命题称为存在性命题。
一般形式为:命题P :)(x p M x ,∈∃。
存在性命题的否命题:)(x P M x p ⌝∈∀⌝,:。
16、判断全称命题与存在性命题的真假:判断一个全称命题为真,必须对给定的集合的每一个元素x ,)(x p 都为真;但要判断一个全称命题为假,只要在给定的集合内找出一个0x ,使)(0x p 为假。
判断一个存在性命题为真,只要在给定的集合中,找到一个元素x ,使)(x p 为真;否则命题为假。
二、高考真题:4、已知集合}{}{201-4211,,,,,,=-=B A ,则B A ⋂=__________。
(2011江苏卷)5、设M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于__________。
(北京文)6、设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则 C U (A ∩B )等于___________。
(福建文)7、已知{}}{。
,则,_______6|31|2=⋂≤+=>+=B A x x x B x x A (广东卷)8、设B A Q x x x B N k k x x A ⋂∈≤=∈+==则},,6|{),,15|{等于__________。
(湖北文)9、设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于___________。
(江苏卷)10、函数f x x x P x x M (),,=∈-∈⎧⎨⎩,其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅ ②若P M ⋂≠∅,则f P f M ()()⋂≠∅ ③若P M R ⋃=,则f P f M R ()()⋃= ④若P M R ⋃≠,则f P f M R ()()⋃≠ 其中正确判断个数为_____。
(北京文理)11、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为_______。
(广西卷文理)12、设集合{1,2,3,4,5,6},{|26},P Q x R x ==∈≤≤那么下列结论正确的有________。
(天津文) ①PQ P =②P Q 包含Q ③P Q Q = ④P Q 真包含于P 13、已知集合{}R x x x M ∈≤-=,2|1||,⎭⎬⎫⎩⎨⎧∈≥+=Z x x x P ,115|,则P M 等于_____ ___。
(上海卷) 14、设集合∈<≤=x x x A 且30{N}的真子集...的个数是____ __。
(天津卷文) 15、设集合{}R x x x A ∈≥-=,914, ⎭⎬⎫⎩⎨⎧∈≥+=R x x x xB ,03, 则A∩B=___________。
16、方程组10240x y x y -+=⎧⎨+-=⎩的解集为_____________。
17、已知{}R x x y y A ∈+==,12,{}R x x y y B ∈+==,1,则A ⋂B=___________。
18、图1–1所示阴影部分的集合是__________________________。
19、设全集U={高三(1)班学生},A={高三(1)班男生},B={高三(1)班戴 眼镜的学生},用文字写出下列各式的意义: (1)(C ∪A)∩B ;_________________________。
(2)C ∪(A ∪B);_________________________。
20、设{}{}{}10,7,4,1,9,7,5,3,1,,02==∈=++=N M R x q px x x A 。
若A N A =⋂,φ=⋂M A 。
求p=________; q=_________。
21.(陕西理12)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n =22.(安徽理8)设集合{}1,2,3,4,5,6,A =}8,7,6,5,4{=B 则满足S A ⊆且SB φ≠的集合S 为(A )57(B )56(C )49(D )823.(上海理2)若全集U R =,集合{|1}{|0}A x x x x =≥≤,则U C A = 。
24.(江苏)已知集合{1,1,2,4},{1,0,2},A B =-=-则_______,=⋂B A 25.(江苏)14.设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=,},,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________26.(2010上海文)1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4AB =则m = 。
27.(2010湖南文)15.若规定E={}1,210...a a a 的子集{}12...,n k k k a a a 为E 的第k 个子集,其中k=1211222n k kk--+++ ,则(1){}1,3,a a 是E 的第____个子集; (2)E 的第211个子集是_______28、(2010湖南文)9.已知集合A={1,2,3,},B={2,m ,4},A ∩B={2,3},则m= 29、(2010重庆理)(12)设U={}0,1,2,3,A={}20x U x mx ∈+=,若{}1,2UA =,则实数m=_________.【解析】{}1,2UA =,∴A={0,3},故m= -330、(2010江苏卷)1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =___________. 【解析】考查集合的运算推理。
3∈B, a+2=3, a=1.31、(2010重庆文)(11)设{}{}|10,|0A x x B x x =+>=<,则AB =____________ .32、(2009年上海卷理)已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ .解析 因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
33、(2009重庆卷文)若{U n n =是小于9的正整数},{A n U n =∈是奇数},{B n U n =∈ 是3的倍数},则()UA B = .34、(2009重庆卷理)若{}3A x R x =∈<,{}21x B x R =∈>,则A B = .35、(2009上海卷文) 已知集体A={x|x ≤1},B={x|≥a},且A ∪B=R ,则实数a 的取值范围是__________________.36、(2009北京文)设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.37、(2009天津卷文)设全集{}1lg |*<∈=⋃=x N x B A U ,若{}4,3,2,1,0,12|=+==⋂n n m m B C A U ,则集合B=__________.38、(2009湖北卷文)设集合A=(x ∣log 2x<1), B=(X ∣21+-X X <1), 则A B = . 39、(2010上海文)1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A B =则m = 。