RLC阻抗频率特性
rlc串联电路频率特性实验报告

竭诚为您提供优质文档/双击可除rlc串联电路频率特性实验报告篇一:RLc串联电路的幅频特性与谐振现象实验报告_-_4(1)《电路原理》实验报告实验时间:20XX/5/17一、实验名称RLc串联电路的幅频特性与谐振现象二、实验目的1.测定R、L、c串联谐振电路的频率特性曲线。
2.观察串联谐振现象,了解电路参数对谐振特性的影响。
1.R、L、c串联电路(图4-1)的阻抗是电源频率的函数,即:Z?R?j(?L?1)?Zej??c三、实验原理当?L?1时,电路呈现电阻性,us一定时,电流达最大,这种现象称为串?c联谐振,谐振时的频率称为谐振频率,也称电路的固有频率。
即?0?1Lc或f0?12?LcR无关。
图4-12.电路处于谐振状态时的特征:①复阻抗Z达最小,电路呈现电阻性,电流与输入电压同相。
②电感电压与电容电压数值相等,相位相反。
此时电感电压(或电容电压)为电源电压的Q倍,Q称为品质因数,即Q?uLuc?0L11ususR?0cRRc在L和c为定值时,Q值仅由回路电阻R的大小来决定。
③在激励电压有效值不变时,回路中的电流达最大值,即:I?I0?usR3.串联谐振电路的频率特性:①回路的电流与电源角频率的关系称为电流的幅频特性,表明其关系的图形称为串联谐振曲线。
电流与角频率的关系为:I(?)?us1??R2??L???c??2?us0??R?Q2?0??I00??1?Q2?0?2当L、c一定时,改变回路的电阻R值,即可得到不同Q 值下的电流的幅频特性曲线(图4-2)图4-2有时为了方便,常以?I为横坐标,为纵坐标画电流的幅频特性曲线(这称?0I0 I下降越厉害,电路的选择性就越好。
I0为通用幅频特性),图4-3画出了不同Q值下的通用幅频特性曲线。
回路的品质因数Q越大,在一定的频率偏移下,为了衡量谐振电路对不同频率的选择能力引进通频带概念,把通用幅频特性的幅值从峰值1下降到0.707时所对应的上、下频率之间的宽度称为通频带(以bw表示)即:bw??2?1??0?0由图4-3看出Q值越大,通频带越窄,电路的选择性越好。
实验3正弦交流电路中RLC元件的阻抗频率特性

实验3 正弦交流电路中RLC 元件的阻抗频率特性[实验目的]1. 加深理解R 、L 、C 元件端电压与电流间的相位关系2. 掌握常用阻抗模和阻抗角的测试方法3. 熟悉低频信号发生器等常用电子仪器的使用方法 [实验原理]正弦交流可用三角函数表示,即由最大值(U m 或Im ),频率f (或角频率 ω=2πf )和初相三要素来决定。
在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。
在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。
此时其端电压与电流可用复数欧姆定律来描述:I R U= 式中R 为线性电阻元件,U 与I 之间无相角差。
电阻中吸收的功率为P=UI=RI 2因为略去附加电感和分布电容,所以电阻元件的阻值与频率无关即R —f 关系如图1。
电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为只具有电容C 。
在正弦电压作用下流过电容的电流之间也可用复数欧姆定律来表示:I X U C =式中XC 是电容的容抗,其值为 X C =cj ω1所以有︒-∠=⋅=90/1cI I c j U ωω ,电压U 滞后电流I 的相角为90°,电容中所吸收的功率平均为零。
电容的容抗与频率的关系X C —f 曲线如图2。
电感元件因其由导线绕成,导线有电阻,在低频时如略去其分布电容则它仅由电阻RL 与电感L 组成。
f图1f图2f图3在正弦电流的情况下其复阻抗为 Z=R L +j ωL=φφω∠=∠+z L R 22)(式中RL 为线圈导线电阻。
阻抗角可由ϕRL 及L 参数来决定: R L tg/1ωϕ-=电感线圈上电压与流过的电流间关系为I z I L j R U Lφω∠=+=)( 电压超前电流90°,电感线圈所吸收的平均功率为 P=UIcos ϕ=I 2RXL 与频率的关系如图3。
rlc并联谐振电路阻抗的特点

rlc并联谐振电路阻抗的特点【主题介绍】在电路中,RLC并联谐振电路是一种具有特殊频率响应的电路。
它由电感(L)、电阻(R)和电容(C)三个元件组成,能够在特定频率下表现出较低的阻抗。
本文将深入探讨RLC并联谐振电路的阻抗特点,并分享对该电路的观点和理解。
【1. RLC并联谐振电路简介】RLC并联谐振电路由电阻元件、电感元件和电容元件并联连接而成。
在电路中,电感元件储存电能,电容元件储存电荷,而电阻元件对电流产生阻碍。
当电路中的频率等于谐振频率时,电感和电容的阻抗相互抵消,使得电路整体的阻抗具有最小值,这就是并联谐振电路的特点所在。
【2. RL并联谐振电路的阻抗特点】在RLC并联谐振电路中,阻抗以复数形式呈现,由实部和虚部组成。
实部代表电路的有源部分,而虚部则代表电路的无源部分。
2.1 低阻抗:RLC并联谐振电路在谐振频率附近表现出较低的阻抗。
当电路的频率等于谐振频率时,电感和电容的阻抗相互抵消,整个电路的阻抗呈现最小值。
这种低阻抗特点使得电路在谐振频率附近对电流更加敏感,电信号可以更轻松地通过电路,实现有效的能量传输。
2.2 频率选择性:RLC并联谐振电路在谐振频率附近表现出较高的频率选择性。
谐振频率附近,电感和电容的阻抗值会急剧变化,对其他频率的电信号产生较高的阻碍。
这种频率选择性让电路能够选择通过特定频率的信号,抑制其他频率的干扰信号,从而实现滤波的功能。
2.3 相位角特性:RLC并联谐振电路的阻抗特点还表现在相位角上。
在谐振频率附近,电路中的电感和电容的阻抗几乎相等,且互相抵消,导致电路的相位角接近零。
而在谐振频率两侧,相位角逐渐增大,表现出较大的相位差。
这种相位角特性可以用来调节信号的相位,对于某些特定应用具有重要意义。
【3. RLC并联谐振电路的观点和理解】RLC并联谐振电路是一种常用的电路结构,具有诸多特点和应用。
以下是对该电路的观点和理解:3.1 实用性:RLC并联谐振电路的低阻抗特点使其在实际应用中具有广泛用途。
RLC串联谐振特性

Q1: RLC串联电路作用
在无线电接收设备中用来选择接收信号 电路对非谐振频率的信号衰减作用大,广播电台以不同频率的电
磁波向空间发射自己的讯号,调节收音机中谐振电路的可变电容, 可将不同频率的各个电台分别接收。
在电子技术中用来获取高频高压 对于一般实用的串联谐振电路,R很小且常用L的电阻(即电感线圈
并联时,负载电压只有一个,电流回路有两个,电压与电源相同, 电容电流与电感电流的差值等于电源电流。因此这是电流谐振。
Q3:
在串联谐振发生时,电容或电感上的电压约等于外加电压的Q倍。但 是当你将负载并联到电容或电感上时,电路的Q值将大大下降,这时 在电路中计算时就不能用原来的空载Q值,而要用“有载Q值”,有 载Q可能小于1! 在串联谐振电路中,电感和电容的电压数值相等,方向相反。 理论上是无穷大,不过实际中由于二极管的压降,共频和负载等原因会 使其电压大大缩减, 变压器的基本原理是电磁感应原理,在初级线圈上加一交流电压,在 次级线圈两端就会产生感应电动势。当N2>N1 时,其感应电动势要 比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1 时,其感应电动势低于初级电压,这种变压器称为降变压器。初级次 级电压和线圈圈数间具有下列关系。 式中n 称为电压比(圈数比) 。 当n<1 时,则N1>N2 ,V1>V2 ,该变压器为降压变压器。反之则 为升压变压器
(5) 功率
+
P=RI02=U2/R,电阻功率达最大。
•
Q QL QC 0,
U
即QLL与Cω交0换LI能02量, ,Q与C 电源间ω无10C能量I02交换。
_
•
IR
+
_
•
+
《电路基础》R—L—C元件的阻抗特性和谐振电路实验

《电路基础》R —L —C 元件的阻抗特性和谐振电路实验一. 实验目的1.通过实验进一步理解R ,L ,C 的阻抗特性,并且练习使用信号发生器和示波器2.了解谐振现象,加深对谐振电路特性的认识3.研究电路参数对串联谐振电路特性的影响4.理解谐振电路的选频特性及应用5.掌握测试通用谐振曲线的方法二. 实验原理与说明1.正弦交流电路中,电感的感抗X L = ωL = 2πfL ,空心电感线圈的电感在一定频率范围内可认为是线性电感,当其电阻值r 较小,有r << X L 时,可以忽略其电阻的影响。
电容器的容抗Xc= 1 / ωC = 1 / 2πfC 。
当电源频率变化时,感抗X L 和容抗Xc 都是频率f 的函数,称之为频率特性(或阻抗特性)。
典型的电感元件和电容元件的阻抗特性如图11-1。
X0 f 0 f(a) 电感的阻抗特性 (b) 电容的阻抗特性图11-1+ L C − 0 0(a) 测量电感阻抗特性的电路 (b) 测量电容阻抗特性的电路图11-22.为了测量电感的感抗和电容的容抗,可以测量电感和电容两端的电压有效值及流过它们的电流有效值。
则感抗X L = U L / I L ,容抗Xc = Uc / Ic 。
当电源频率较高时,用普通的交流电流表测量电流会产生很大的误差,为此可以用电子毫伏表进行间接测量得出电流值。
在图11-2的电感和电容电路中串入一个阻值较准确的取样电阻R 0,先用毫伏表测量取样电阻两端的电压值,再换算成电流值。
如果取样电阻取为1Ω,则毫伏表的读数即为电流的值,这样小的电阻在本次实验中对电路的影响是可以忽略的。
3.在图11-3所示的RLC 串联电路中,当外加角频率为ω的正弦电压U 时,电路中的电流为 )(1'C L j R U Iωω-+= 式中,'R = R + r ,r 为线圈电阻。
当ωL=1/ωC 时,电路发生串联谐振,谐振频率为:f 0 = LCπ21。
实验十 R、L、C元件的阻抗频率特性

实验十 R 、L 、C 元件的阻抗频率特性一、实验目的1. 验证电阻,感抗、容抗与频率的关系,测定R ~f ,X L ~f 与Xc ~f 特性曲线。
2. 加深理解阻抗元件端电压与电流间的相位关系。
二、实验原理1.在正弦交变信号作用下,R 、L 、C 电路元件在电路中的抗流作用与信号的频率有关,如图10-1所示。
三种电路元件伏安关系的相量形式分别为:⑴纯电阻元件R 的伏安关系为I R U = 阻抗Z=R上式说明电阻两端的电压U 与流过的电流I 同相位,阻值R 与频率无关,其阻抗频率特性R ~f 是一条平行于f 轴的直线。
⑵ 纯电感元件L 的伏安关系为I jX U L L = 感抗XL =2πfL上式说明电感两端的电压LU 超前于电流I 一个90°的相位,感抗X随频率而变,其阻抗频率特性X L ~f 是一条过原点的直线。
电感对低频电流呈现的感抗较小,而对高频电流呈现的感抗较大,对直流电f=0,则感抗X L =0,相当于“短路”。
⑶纯电容元件C 的伏安关系为I jXc U C-= 容抗Xc =1/2πfC 上式说明电容两端的电压c U 落后于电流I 一个90°的相位,容抗Xc 随频率而变,其阻抗频率特性Xc ~f 是一条曲线。
电容对高频电流呈现的容抗较小,而对低频电流呈现的容抗较大,对直流电f=0,则容抗Xc ~∞,相当于“断路”,即所谓“隔直、通交”的作用。
三种元件阻抗频率特性的测量电路如图10-2 所示。
图中R、L、C为被测元件,r 为电流取样电阻。
改变信号源频率,分别测量每一元件两端的电压,而流过被测元件的电流I,则可由Ur/r计算得到。
2. 用双踪示波器测量阻抗角元件的阻抗角(即被测信号u和i的相位差φ)随输入信号的频率变化而改变, 阻抗角的频率特性曲线可以用双踪示波器来测量,如图10-3所示。
阻抗角(即相位差φ)的测量方法如下:⑴在“交替”状态下,先将两个“Y轴输入方式”开关置于“⊥”位置,使之显示两条直线,调YA和YB移位,使二直线重合,再将两个Y轴输入方式置于“AC ”或“DC ”位置,然后再进行相位差的观测。
rlc(串联)电路的阻抗

rlc(串联)电路的阻抗RLC(串联)电路的阻抗RLC电路是由电感、电容和电阻组成的电路,是电路中常见的一种电路。
在RLC电路中,串联电路是最基本的一种电路。
串联电路中的电感、电容和电阻依次排列,将它们连接在一起,就形成了RLC 串联电路。
在电路中,串联电路的阻抗是电路中电流和电压关系的一种表现形式,它是串联电路中电阻、电感和电容阻碍电流通过的总阻力。
电阻是电流通过的阻力,电感是电流随时间变化时的电磁感应,电容是电荷随时间变化时的电磁感应。
在RLC串联电路中,电阻、电感和电容的作用不同,分别对电路的阻抗产生影响。
电容器的容抗是由电容器的电容和电路的频率共同决定的,当电容器所充电的时间越来越短,电容器的容抗也会越来越小。
当电路的频率越来越高时,电容器的容抗也会越来越小。
因此,在电路中,电容器的容抗可以看成是频率的函数,它会随着频率的变化而变化。
当电路的频率很低时,电容器的容抗很大,电容器对电路的阻抗起主导作用;当电路的频率很高时,电容器的容抗很小,电容器对电路的阻抗影响很小。
电感器的感抗是由电感器的电感和电路的频率共同决定的,当电路的频率越来越高时,电感器的感抗也会越来越大。
因此,在电路中,电感器的感抗可以看成是频率的函数,它会随着频率的变化而变化。
当电路的频率很低时,电感器的感抗很小,电感器对电路的阻抗影响很小;当电路的频率很高时,电感器的感抗很大,电感器对电路的阻抗起主导作用。
电阻器的阻抗是固定的,不受频率的影响。
在电路中,电阻器的阻抗对电路的阻抗起均衡作用,使电路中电阻、电感和电容的阻抗都得到均衡。
在RLC串联电路中,电路的总阻抗是由电阻器、电感器和电容器的阻抗共同决定的。
当电路的频率很低时,电容器对电路的阻抗起主导作用,电感器和电阻器的阻抗对电路的阻抗影响很小;当电路的频率很高时,电感器对电路的阻抗起主导作用,电容器和电阻器的阻抗对电路的阻抗影响很小。
因此,当电路中的电阻、电感和电容的阻抗相互作用时,电路的总阻抗会随着电路的频率的变化而变化。
RLC元件阻抗特性的测定

再测量两波形上对应点之间的水平距离x,则两信 号的相位差为
x 360o
xT
用这种方法测相位差时应该注意,只能 用其中一个波形去触发另一路信号。
x
x
1
2
x
T
(2)测量相位差 把比较相位差的两个频率、同幅度的正弦
信号分别送入示波器的Y通道和X通道,使 示波器工作在X-Y方式,这时示波器的屏幕 上会显示出椭圆波形, 由椭圆上的坐标可求得两信号的相位差为
方法2:通过测量正弦波峰-峰电压 来完成
CH1
CH2
方法3:利用李沙育图形来测量.
按下“X-Y”
CH1
CH2
操作注意事项
交流毫伏表属于高阻抗电表,测量前必须先 调零 测峰峰值或φ时,示波器的“V/div”或 “t/div” 的微调旋钮应旋置“校准位置” 示波器电缆线的接地线要接在一起
实验内容(2)
测量时应注意保持AB两端电压不变,以消除信号发生 器输出内阻的影响
若不满足r的阻值远小于被测元件的阻抗值 时,需分别测量r与被测元件两端的电压。
实验应如何进行? 对于未知的阻抗元件,亦可用同样的方法 测得Z串与Z并的阻抗频率特性Z~f,根据 电压、电流的相位差可判断Z串或Z并是感 性还是容性负载。
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
使信号源的输出频率从200Hz逐渐增至 5KHz, 并使开关S分别接通L、C两个元件, 用交流毫伏表测量Ur,并计算各频率点时 的IL和IC ( 即Ur / r ) 以及XL=UL/IL及 XC=UC/IC之值。
阻抗频率特性实验方法
方法1:通过测量正弦波电压有效值来完成.