2020北京人大附中高三三模数学

合集下载

2020年北京市人大附中高考数学模拟试卷(4月份) (含答案解析)

2020年北京市人大附中高考数学模拟试卷(4月份) (含答案解析)

2020年北京市人大附中高考数学模拟试卷(4月份)一、单项选择题(本大题共10小题,共40.0分)1.已知集合A={2,3,5,7,11},B={x|x2>9},则A∩B=()A. {3,5,7,11}B. {7,11}C. {11}D. {5,7,11}2.若复数(a+1)+(a2−1)i(a∈R)是实数,则a=()A. −1B. 1C. ±1D. 不存在3.下列函数中,在其定义域内既是奇函数又是减函数的是()A. y=1x B. y=(12)xC. y=|x|D. y=−x34.等差数列{a n}中,a2+a5+a8=12,则前9项和S9=()A. 18B. 24C. 36D. 485.在平面直角坐标系xOy中,角α的终边经过点P(3,4),则sinα=()A. −45B. −35C. 35D. 456.已知实数a<b,那么()A. a−b<0B. a−b>0C. a2<b2D. 1a <1b7.某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则()A. 3∈AB. 5∈AC. 2√6∈AD. 4√3∈A8.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=()A. 98B. 32C. 178D. 529.函数f(x)=1x+ln|x|的图象大致为()A. B. C. D.10. 方程|lgx|+x −3=0实数解的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共25.0分)11. 已知(2+ax)(1+x)5的展开式中x 2的系数为15,则展开式中所有项的系数和为________.12. 已知向量a ⃗ =(2,2),b ⃗ =(−3,4),则a ⃗ ⋅b ⃗ = ______ .13. 一个容量为20的样本数据,已知分组与频数分别如下:[10,20),2个;[20,30),3个;[30,40),4个;[40,50),5个;[50,60),4个;[60,70],2个.则样本在[10,50)上的频率是__________.14. 函数f (x )=sin (12x +π3)在[−π,π2]上的单调递增区间为___________.15. 已知|cos θ|=15,5π2<θ<3π,那么sin θ2=____. 三、解答题(本大题共6小题,共85.0分)16. 函数f(x)=Asin(ωx +φ)(ω>0,A >0,|φ|<π2)的图象如图所示.(1)求函数f(x)的解析式;(2)求函数y=f(x)在[−π4,π6]上的值域.17.如图,在四棱锥P−ABCD中,底面ABCD为直角梯形,且AD//BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若PA=AB=BC=12AD.(Ⅰ)求证:CD⊥平面PAC;(Ⅱ)侧棱PA上是否存在点E,使得BE//平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角A−PD−C的余弦值.18.某快递公司(为企业服务)准备在两种员工付酬方式中选择一种,现邀请甲、乙两人试行10天.两种方案如下:甲无保底工资,送出50件以内(含50件),每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每出送一件再支付2元.分别记录其10天的件数,得到如下茎叶图:若将频率视作概率,回答以下问题:(1)记甲的日工资额为X(单位:元),求X的分布列和数学期望;(2)如果仅从日工资额的角度考虑,请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.+ln x−1.19.已知a∈R,函数f(x)=ax(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)求f(x)在区间(0,e]上的最小值.20.椭圆C:x24+y2=1的右顶点和上顶点分别为A、B,斜率为12的直线l与椭圆C交于P、Q两点(点P在第一象限).(Ⅰ)求证:直线AP、BQ的斜率之和为定值;(Ⅱ)求四边形APBQ面积的取值范围.21.设k为正整数,若数列{a n}满足a1=1,且(a n+1−a n)2=(n+1)k,则称数列{a n}为“k次方数列”.(1)设数列{a n}为“2次方数列”,且数列{a nn}为等差数列,求数列{a n}的通项公式;(2)设数列{a n}为“4次方数列”,且存在正整数m满足a m=15,求m的最小值.【答案与解析】1.答案:D解析:本题考查交集的求法,是基础题.求出集合A ,B ,由此能求出A ∩B .解:∵集合A ={2,3,5,7,11},B ={x|x 2>9}={x|x <−3或x >3},∴A ∩B ={5,7,11}.故选:D .2.答案:C解析:本题考查复数的概念.根据复数是实数,可知a 2−1=0,由此可得a 的值.解:∵复数(a +1)+(a 2−1)i(a ∈R)是实数,∴a 2−1=0,解得a =±1.故选C .3.答案:D解析:本题考查函数的奇偶性及单调性,属于基础题.分别判断各选项函数的奇偶性、单调性即可.解:A.y =1x 是奇函数,在区间(−∞,0)和(0,+∞)上单调递减,但是在定义域内不是减函数,不符合题意;B .y =(12)x 是非奇非偶函数,不符合题意;C .y =|x| 是偶函数,不符合题意;D .y =−x 3是奇函数,且在定义域R 上单调递减,符合题意.故选D .解析:解:在等差数列{a n}中,∵a2+a5+a8=12,由等差数列的性质得:a5=13(a2+a5+a8)=4,∴前9项和为:S9=(a1+a9)×92=9×a5=36.故选:C.根据等差数列的性质求出a5的值,再根据前n项和公式求出S9即可.本题考查了等差数列的性质与前n项和公式的运用,是基础题目.5.答案:D解析:本题考查任意角的三角函数,属于基础题.直接根据三角函数的定义,即可求得结果.解:∵角α的终边过点P(3,4),则|OP|=√32+42=5,,故选D.6.答案:A解析:本题主要考查了不等式的比较大小,属于基础题.解:实数a<b,则a−b<0,故A正确,B错误,若a=−2,b=0,则a2>b2,故C错误,若a=1,b=2,则1a >1b,故D错误.故选A.解析:本题考查几何体的三视图.由几何体的三视图可知该几何体为三棱柱截去一个三棱锥,判断出线面的位置关系,由勾股定理求几何体的棱长,即可得答案.解:由几何体的三视图可知该几何体为三棱柱截去一个三棱锥,如图所示,四边形ABCD是一个边长为4的正方形,且AF⊥AB,DE⊥DC,DE⊥BD,所以EC=√DC2+DE2=4√2,EF=FB=√AF2+AB2=2√5,BE=√DE2+BD2=√42+4√22=4√3,A为此几何体所有棱的长度构成的集合,所以A={2,4,4√2,4√3,4√5}.故选D.8.答案:C解析:本题考查抛物线的简单性质的应用,考查计算能力,属于基础题.利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.解:由y=2x2,得x2=y2,则p=14;由x=1得y=2,由抛物线的性质可得|PF|=2+p2=2+18=178.故选:C.9.答案:B解析:本题考查了图象的画法,由函数的性质结合特殊值可排除得答案.解:当x<0时,函数f(x)=1x +ln(−x),由函数y=1x,y=ln(−x)都单调递减知函数f(x)=1x+ln(−x)单调递减,排除C,D;当x>0时,函数f(x)=1x +ln x,此时,f(1)=11+ln1=1,而选项A的最小值为2,故可排除A,B正确,故选B.10.答案:C解析:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,解答关键是运用数形结合的思想,属于中档题.方程|lgx|+x−3=0的实数解的个数,即函数y=|lgx|与函数y=3−x的交点的个数,结合图象得出结论.解:方程|lgx|+x−3=0的实数解的个数,即函数y=|lgx|与函数y=3−x的交点的个数,如图所示:函数y=|lgx|与函数y=3−x的交点的个数为2,故选C.11.答案:32解析:本题考查了二项式求展开式的特定项、求展开式的系数和问题,属于中档题.由题意可得2C52+aC51=15,解得a=−1,再令x=1,即可求出展开式中所有项的系数和.解:(2+ax)(1+x)5的展开式中x2的系数为15,即2C52+aC51=15,解得a=−1,设(2−x)(1+x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6令x=1,得25=a0+a1+a2+a3+a4+a5+a6=32.故答案为32.12.答案:2解析:解:由已知得到a⃗⋅b⃗ =2×(−3)+2×4=−6+8=2;故答案为:2.利用平面向量的数量积的坐标表示解答.本题考查了平面向量的数量积的坐标运算;a⃗=(x,y),b⃗ =(m,n),则a⃗⋅b⃗ =xm+yn.13.答案:710解析:本题考查频率的概念.本题属于容易题.解:由题知[10,50)上的频率为2+3+4+520=1420=710.故答案为:71014.答案:[−π,π3]解析:本题考查正弦函数的图象与性质,根据正弦函数的单调递增区间可得结果. 解:因为−π≤x ≤π2, 所以−π6≤12x +π3≤7π12,所以函数f (x )=sin (12x +π3)在[−π,π2]上的单调递增区间为: −π6≤12x +π3≤π2, 解得−π≤x ≤π3. 故答案为[−π,π3].15.答案:−√155解析:本题考查了三角函数二倍角公式是应用,属于基础题.先将|cosθ|=15去绝对值得cosθ=−15,再由二倍角公式得1−2sin 2θ2=−15,解出sin θ2的值即可. 解:∵5π2<θ<3π,|cosθ|=15,∴cosθ=−15, 由二倍角公式得1−2sin 2θ2=−15, ∴2sin 2θ2=65,∴sin 2θ2=35, ∵sin θ2<0, 所以sin θ2=−√155.故答案为−√155.16.答案:解:(1)函数f(x)=Asin(ωx +φ)(其中ω>0,A >0,|φ|<π2)的图象,可得A =1,14⋅2πω=7π12−π3,∴ω=2. 再根据五点法作图可得2×π3+φ=π,∴φ=π3,∴f(x)=sin(2x +π3).(2)在[−π4,π6]上,2x +π3∈[−π6,2π3],所以,当2x +π3=π2,即x =π12,f(x)max =f(π12)=1; 当2x +π3=−π6,即x =−π4,f(x)min =f(−π4)=−12. 所以函数f(x)的值域为[−12,1].解析:本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,正弦函数的定义域和值域,属于中档题.(1)由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式. (2)利用正弦函数的定义域和值域,即可求得函数y =f(x)在[−π4,π6]上的值域.17.答案:解:因为∠PAD =90°,所以PA ⊥AD.又因为侧面PAD ⊥底面ABCD ,且侧面PAD ∩底面ABCD =AD ,所以PA ⊥底面ABCD.又因为∠BAD =90°, 所以AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,如图.设AD =2,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1).(Ⅰ)证明:AP ⃗⃗⃗⃗⃗ =(0, 0, 1),AC ⃗⃗⃗⃗⃗ =(1, 1, 0),CD ⃗⃗⃗⃗⃗ =(−1, 1, 0),所以AP⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0,AC ⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0,所以AP ⊥CD ,AC ⊥CD .又因为AP ∩AC =A ,所以CD ⊥平面PAC.(4分)(Ⅱ)设侧棱PA 的中点是E ,则E(0,0,12),BE ⃗⃗⃗⃗⃗ =(−1,0,12). 设平面PCD 的一个法向量是n =(x,y ,z),则{n ⋅CD ⃗⃗⃗⃗⃗=0n ⋅PD ⃗⃗⃗⃗⃗ =0因为CD ⃗⃗⃗⃗⃗ =(−1,1,0),PD ⃗⃗⃗⃗⃗ =(0,2, −1), 所以{−x +y =02y −z =0取x =1,则n =(1,1,2).所以n ⋅BE ⃗⃗⃗⃗⃗ =(1,1,2)⋅(−1,0,12)=0,所以n ⊥BE ⃗⃗⃗⃗⃗ . 因为BE ⊄平面PCD ,所以BE//平面PCD.(8分)(Ⅲ)由已知,AB ⊥平面PAD ,所以AB⃗⃗⃗⃗⃗ =(1,0,0)为平面PAD 的一个法向量. 由(Ⅱ)知,n =(1,1,2)为平面PCD 的一个法向量. 设二面角A −PD −C 的大小为θ,由图可知,θ为锐角, 所以cosθ=n⋅AB⃗⃗⃗⃗⃗⃗ |n||AB ⃗⃗⃗⃗⃗⃗ |=6×1=√66. 即二面角A −PD −C 的余弦值为√66.(13分)解析:(I)由已知易得,AB ,AD ,AP 两两垂直.分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,分别求出各顶点的坐标,然后求出直线CD 的方向向量及平面PAC 的法向量,代入向量夹角公式,即可得到答案.(II)设侧棱PA 的中点是E ,我们求出直线BE 的方向向量及平面PCD 的法向量,代入判断及得E 点符合题目要求;(III)求现平面APD 的一个法向量及平面PCD 的一个法向量,然后代入向量夹角公式,即可求出二面角A −PD −C 的余弦值.利用空间向量来解决立体几何夹角问题,其步骤是:建立空间直角坐标系⇒明确相关点的坐标⇒明确相关向量的坐标⇒通过空间向量的坐标运算求解.18.答案:解:(1)设甲日送件量为a ,则当a =48时,X =48×3=144,当a =49时,X =49×3=147,当a =50时,X =50×3=150,当a =51时,X =50×3+5=155,当a =52时,X =50×3+5×2=160, ∴X 的所有可能取值为:144,147,150,155,160. ∴X 的分布列为:所以E(X)=144×110+147×310+150×15+155×15+160×15=151.5(元); (2)乙日送件量为:48×0.2+49×0.1+50×0.2+51×0.3+52×0.2=50.2乙的日均工资额为:50+50.2×2=150.4(元), 而甲的日均工资额为:151.5元,150.4元<151.5元, 因此,推荐该公司选择乙的方案.解析:本题考查茎叶图、离散型随机变量的分布列与期望的计算,属于中档题. (1)根据离散型随机变量的性质求出分布列和数学期望即可; (2)根据甲、乙的均值判断即可.19.答案:解:函数定义域x ∈(0,+∞),所以 f′(x)=−1x 2+1x =x−1x 2,x ∈(0,+∞).因此 f′(2)=14.即曲线y =f(x)在点(2,f(2))处的切线斜率为 14. 又 f(2)=ln2−12,所以曲线y =f(x)在点(2,f(2))处的切线方程为 y −(ln2−12)=14(x −2), 即x −4y +4ln2−4=0.(2)因为 f(x)=ax +lnx −1,所以 f′(x)=−ax 2+1x =x−a x 2.令f′(x)=0,得x =a .①若a ≤0,则f′(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值. ②若0<a <e ,当x ∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单调递减, 当x ∈(a,e]时,f′(x)>0,函数f(x)在区间(a,e]上单调递增, 所以当x =a 时,函数f(x)取得最小值ln a .③若a ≥e ,则当x ∈(0,e]时,f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x =e 时,函数f(x)取得最小值 ae .综上可知,当a ≤0时,函数f(x)在区间(0,e]上无最小值; 当0<a <e 时,函数f(x)在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f(x)在区间(0,e]上的最小值为 ae .解析:本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,体现了分类讨论的数学思想方法,是中档题.(1)把a =1代入到f(x)中化简得到f(x)的解析式,求出f′(x),因为曲线的切点为(2,f(2)),所以把x =2代入到f′(x)中求出切线的斜率,把x =2代入到f(x)中求出f(2)的值得到切点坐标,根据切点和斜率写出切线方程即可;(2)借助于导数,将函数f(x)=ax +lnx −1的最值问题转化为导函数进行研究.此题只须求出函数的导函数,利用导数求解.20.答案:(Ⅰ)证明:设直线l 方程为:y =12x +b 代入椭圆C :x 24+y 2=1并整理得:x 2+2bx +2b 2−2=0设P(x 1,y 1),Q(x 2,y 2),则{x 1+x 2=−2bx 1x 2=2b 2−2.从而k AP +k BQ =y 1x1−2+y 2−1x 2=x 1x 2+(b−1)(x 1+x 2−2)(x 1−2)x 2=2b 2−2+(b−1)(−2b−2)(x 1−2)x 2=0,所以直线AP 、BQ 的斜率之和为定值0. (Ⅱ)设C :x 24+y 2=1的左顶点和下顶点分别为C 、D ,则直线l 、BC 、AD 为互相平行的直线,所以A 、B 两点到直线l 的距离等于两平行线BC 、AD 间的距离d =√1+14.∵|PQ|=√1+k 2|x 2−x 1|=√1+14|x 2−x 1|,∴S APBQ =12d ⋅|PQ|=|x 2−x 1|=√8−4b 2,又p 点在第一象限, ∴−1<b <1, ∴S ∈(2,2√2].解析:略21.答案:解:(1)因为数列{a n}为“2次方数列”,所以(a n+1−a n)2=(n+1)2,于是a2−a1=±2.又a1=1,故a2=−1或a2=3.当a2=3时,由数列{a nn }为等差数列,得数列{a nn}的首项为1,公差为12,所以a nn =1+(n−1)×12=12(n+1),所以a n=12(n2+n),经检验,满足题意;当a2=−1时,由数列{a nn }为等差数列,得数列{a nn}的首项为1,公差为−32,所以a nn =1−32(n−1)=−32n+52,所以a n=−32n2+52n,经检验,不满足题意,舍去.综上所述,数列{a n}的通项公式为a n=12(n2+n).(2)因为数列{a n}为“4次方数列”,所以a n+1−a n=±(n+1)2,即a n=1±22±32±⋯±n2.因为a m=15,当m≤3时,a m的最大值是1+22+32=14,所以m≤3时不成立;当m=4时,因为1±22±32±42等于−28,−20,−10,−2,4,12,22,30,所以m=4时不成立;当m=5时,因为1−22+32−42+52=15,所以m的最小值为5.综上所述,m的最小值为5.解析:本题考查新定义下的数列问题,属于较难题.(1)根据新定义:数列{a n}为“2次方数列”,则(a n+1−a n)2=(n+1)2,于是a2−a1=±2.}为等差数列,得到通项公又a1=1,故a2=−1或a2=3.分别对a2的两种情况讨论,借助于数列{a nn式;(2)根据数列{a n}为“4次方数列”,得到a n+1−a n=±(n+1)2,即a n=1±22±32±⋯±n2.由a m=15,分别讨论当m≤3时当m=4时,当m=5时是否成立,成立即为所求.。

北京人大附中2020高三5月模拟数学理试题

北京人大附中2020高三5月模拟数学理试题

中国人民大学附属中学高三模拟考试数学试题(理科)第I 卷(选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.设全集U R =,集合{}220A x x x =∈-<R ,{}1,x B y y e x ==+∈R,则AB =( ) A .{|12}x x ≤<B .{|2}x x >C .{|1}x x >D .{|12}x x << 1. 设a =20.3,b =0.32,c =log 20.3,则a ,b ,c 的大小关系是( )A .a <b <cB .b <a <cC .c <b <aD .b <c <a 2. 直线3y x =与曲线2y x =围成图形的面积为( )A.272B.9C.92 D.2743. 某流程图如图所示,现输入如下四个函数, 则可以输出的函数是( )A .||()x f x x= B.)()lgf x x =C .()x x x x e e f x e e --+=-D .221()1x f x x -=+ 4. 设等比数列{}n a 的公比为q ,前n 项和为n S .则“||1q =”是“422S S =”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分又不必要条件5. 某地举行一次民歌大奖赛,六个省各有一对歌手参加决赛,现要选出4名优胜者,则选出的4名选手中恰有且只有两个人是同一省份的歌手的概率为( ) A. 1633B. 33128C. 3233D. 4116. 已知函数()sin()(0,)2f x x πωϕωϕ=+><的部分图象如图,则20131()6n n f π==∑( ) A.1- B.1 C.12D.07. 如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 B M x =,[0,1]x ∈,给出以下四个命题:①平面MENF ⊥平面BDD B ''; ②当且仅当x =12时,四边形MENF 的面积最小; ③四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; ④四棱锥C MENF '-的体积()V h x =为常函数;以上命题中假.命题..的序号为( ) A .①④ B .②C .③D .③④第Ⅱ卷(非选择题 共110分)二.填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.8. 如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB , 则复数12z z 对应的点位于第________象限。

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京高三三模数学模拟试题(含解析)

2023-2024学年北京市高三三模数学模拟试题一、单选题1.如图,集合A B 、均为U 的子集,()U A B ⋂ð表示的区域为()A .IB .IIC .IIID .IV【正确答案】D【分析】由补集和交集的概念求解即可.【详解】由补集的概念,U A ð表示的区域如下图所示阴影区域,∴()U A B ⋂ð表示的区域为下图所示阴影区域,即为图中的区域Ⅳ.故选:D.2.在下列四个函数中,在定义域内单调递增的有()A .()tan =f x xB .()f x x =C .()2xf x =D .()2f x x=【正确答案】C【分析】A.利用正切函数的性质判断;B.利用绝对值函数的性质判断;C.利用指数函数的性质判断;D.利用二次函数的性质判断.【详解】解:A.()tan =f x x 的增区间为πππ,π,Z 22k k k ⎛⎫-+∈ ⎪⎝⎭,在整个定义域上不单调,故错误;B.()f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;C.()2xf x =在R 上递增,故正确;D.()2f x x =的增区间是[0,)+∞,在整个定义域上不单调,故错误;故选:C3.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.4.已知tan 2x =,则tan 4x π⎛⎫+ ⎪⎝⎭的值为()A .3B .-3C .13D .34-【正确答案】B【分析】利用两角和的正切公式求解.【详解】解:因为tan 2x =,所以πtan tanπ214tan 3π41211tan tan 4x x x ++⎛⎫+===- ⎪-⋅⎝⎭-⋅,故选:B5.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.加油时间加油量(升)加油时的累计里程(千米)2023年5月1日12350002023年5月15日6035500注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为()A .6升B .8升C .10升D .12升【正确答案】D【分析】分析表中数据,得出行驶路径和耗油量,可计算结果.【详解】由表中的数据可知,行驶路径500千米耗油量为60升,则该车每100千米平均耗油量为60125=升.故选:D6.已知||1,||0OA OB OA OB =⋅=,点C 在AOB ∠内,且30AOC ∠=︒.设()OC mOA nOB m n =+∈R、,则mn等于()A .13B .3CD 【正确答案】B【分析】由题意可得OA OB ⊥,建立坐标系,由已知条件可得()OC m =,进而可得tan 30︒==,即可得答案.【详解】解:因为||1,||0OA OB OA OB =⋅=,所以OA OB ⊥ ,又因为点C 在AOB ∠内,且30AOC ∠=︒,建立如图所示的坐标系:则(1,0)OA = ,OB =,又因为()OC mOA nOB m n =+∈R、,所以()OC m =,所以tan 303m ︒==,所以3mn=.故选:B.7.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A .B .C .D .【正确答案】B【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()14πθ≤+≤PA PB ≤+≤选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.8.已知{}n a 为无穷等差数列,则“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【正确答案】B【分析】根据等差数列性质结合充分、必要条件分析判断.【详解】“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”,不能推出“存在2k ≥且*k ∈N ,使得0k a =”,例如32n a n =-,则121,1a a ==-,即1,2i j ==,满足120i j a a a a +=+=,但令320k a k =-=,则*32k =∉N ,故不存在存在2k ≥且*k ∈N ,使得0k a =,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的不充分条件;若“存在2k ≥且*k ∈N ,使得0k a =”,则取11,1i k j k =-≥=+,则1120i j k k k a a a a a -++=+==,故“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要条件;综上所述:“存在*,i j ∈N 且i j ≠,使得0+=i j a a ”是“存在2k ≥且*k ∈N ,使得0k a =”的必要不充分条件.故选:B.9.十八世纪,瑞士数学家欧拉研究调和级数时,得到了以下结果:当n 很大时,1111ln 23n nγ++++=+ (其中γ为常数,其近似值为0.577)据此,可以估计111200012000230000+++ 的值为()A .4ln10B .ln6C .ln2D .3ln2【正确答案】D【分析】根据已知结论得两个等式相减即可得解.【详解】由题意得1111ln300002330000γ++++=+ ,1111ln200002320000γ++++=+ ,两式相减得,111300003ln 30000ln 20000ln ln 200012000230000200002+++=-== .故选:D .10.如图,平面中两条直线1l 和2l 相交于点O ,对于平面上任意一点M ,若,p q 分别是M 到直线1l 和2l 的距离,则称有序非负实数对(,)p q 是点M 的“距离坐标”.已知常数0,0p q ≥≥,给出下列命题:①若0p q ==,则“距离坐标”为(0,0)的点有且仅有1个;②若0pq =,且0p q +≠,则“距离坐标”为(,)p q 的点有且仅有2个;③若0pq ≠,则“距离坐标”为(,)p q 的点有且仅有4个.上述命题中,正确命题的个数是()A .0B .1C .2D .3【正确答案】D【分析】根据“距离坐标”的定义,依次分析各命题即可得答案.【详解】解:①,若0p q ==,则“距离坐标”为()0,0的点是两条直线的交点O ,因此有且仅有1个,故正确.②,若0pq =,且0p q +≠,则“距离坐标”为()0,q 或(),0p 的点有且仅有2个,故正确.③若0pq ≠,则0,0p q ≠≠,“距离坐标”为(),p q 的点有且仅有4个,为123,,,M M M M ,如图,故正确.故正确的命题个数为3个.故选:D二、填空题11.若5(1a =+,a b 为有理数),则a b +=_______________.【正确答案】120【分析】利用二项式定理展开5(1并计算,再利用有理项、无理项求解作答.【详解】由二项式定理得:1234555555513C 9C 97644(1=+++++=+依题意,76a +=+,a b 为有理数,因此76,44a b ==,所以120a b +=.故12012.银行储蓄卡的密码由6位数字组成,某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,但记得密码的最后1位是偶数,则在第一次没有按对的条件下第2次按对的概率是_________.【正确答案】14/0.25【分析】根据条件概率公式直接计算即可.【详解】记事件A :第一次没有按对密码;事件B :第二次按对密码;()45P A =,()411545P AB =⨯=,()()()14P AB P B A P A ∴==.故答案为.14三、双空题13.在ABC 中,内角,,A B C 所对的边分别是,,a b c ,已知14b c a -=,2sin 3sin B C =,则bc=_______,cos A 的值为________.【正确答案】3214-【分析】利用正弦定理边角互化即可求得b c,利用余弦定理即可求得cos A .【详解】因为ABC 中,2sin 3sin B C =,所以由正弦定理可得23b c =,即32b c =.又因为14b c a -=,所以2a c =,所以由余弦定理可得()2222223212cos 32422c c c b c a A bc c c ⎛⎫+- ⎪+-⎝⎭===-⨯⨯,故32;14-14.已知n S 是数列{}n a 的前n 项和,且对任意的正整数n ,都满足:11122n nn a a +-=+,若112a =,则3a =________,2023S =______________.【正确答案】11220232024【分析】直接利用条件可递推出第三项,利用累加法可得数列通项再用裂项相消法求和即可.【详解】由11122n n n a a +-=+和112a =可得:21232311111146,612,a a a a a a -=⇒=∴-=⇒=即3a =112;由11122n n n a a +-=+可得:()112211111112,21,...,4n n n n n n a a a a a a ----=-=--=,累加得()()()124111111211n n n n a a a n n n n +--=⇒==-++,所以20231111112023 (1223202320242024)S ⎛⎫⎛⎫⎛⎫=-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故112,20232024四、填空题15.已知曲线:44C x x y y -=.①若00(,)P x y 为曲线C 上一点,则0020x y ->;②曲线C 在()0,1-处的切线斜率为0;③R,20m x y m ∃∈-+=与曲线C 有四个交点;④直线20x y m -+=与曲线C无公共点当且仅当((),0,m ∈-∞⋃+∞.其中所有正确结论的序号是_____________.【正确答案】①②【分析】分x 、y 的符号情况化简曲线C 的方程,从而可画出曲线C 的图象,结合图象逐一分析即可.【详解】当0x ≥,0y ≥时,曲线C 的方程为2244x y -=,即2214x y -=,曲线C 是双曲线的一部分;当0x ≥,0y <时,曲线C 的方程为2244x y +=,即2214x y +=,曲线C 是椭圆的一部分;当0x <,0y ≥时,曲线C 的方程为2244x y --=,曲线C 不存在;当0x <,0y <时,曲线C 的方程为2244x y -+=,即2214x y -=,曲线C 是双曲线的一部分;双曲线2214x y -=和2214y x -=有一条共同的渐近线20x y -=,综上,可作出曲线C的图象,如图:由图象可知曲线C 的图象上的点都在直线20x y -=的下方,所以当00(,)P x y 在曲线C 上时,有0020x y ->,故①正确;设过点()0,1-的直线l 的方程是1y kx =-,若直线l 与椭圆2214x y +=相切,则由22114y kx x y =-⎧⎪⎨+=⎪⎩得221408()k x kx -+=,2640k ∆==,得0k =;若直线l 与双曲线2214x y -=相切,则由22114y kx x y =-⎧⎪⎨-=⎪⎩得22(41)80k x kx --=,则2410k -≠且2640k ∆==,得0k =,此时直线l 的方程是1y =-,与曲线C 相切,故②正确;直线20x y m -+=是表示与直线20x y -=平行或重合的直线,由曲线C 的图象可知,直线20x y m -+=与曲线C 不可能有四个交点,故③错误;设直线20x y n -+=与椭圆2214x y +=相切,则由222014x y n x y -+=⎧⎪⎨+=⎪⎩得228440y ny n -+-=,所以221632(4)0n n ∆=--=,解得n =±C的图象,取n =-,即直线20x y --=与曲线C 相切,所以若直线20x y m -+=与曲线C 无公共点,结合曲线C 的图象,0m ≥或m <-.故①②.方法点睛:1.曲线方程中带有绝对值,一般是分绝对值里的式子的符号讨论去绝对值;2.直线与曲线的交点问题常采用数形结合的方法.五、解答题16.在ABC 中,76cos a b B =.(1)若3sin 7A =,求B ∠;(2)若8c =,从条件①、条件②这两个条件中选择一个作为已知,使ABC 存在.求ABC 的面积条件①:sin 47A =;条件②:sin B =【正确答案】(1)4π;(2)【分析】(1)直接由正弦定理边化角,结合倍角公式即可求解;(2)若选①:由正弦定理及倍角公式得4sin 23B =,ABC 不存在;若选②:先判断cos 0B >,再由sin 2B =求出cos B ,由73a b =及余弦定理求得a ,再计算面积即可.【详解】(1)由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又3sin 7A =,故sin 21B =,又()0,B π∈,故22B π=,4B π=;(2)若选①:由正弦定理得:7sin 6sin cos 3sin 2A B B B ==,又sin 47A =,故4sin 23B =,此时ABC 不存在;若选②:由7cos 06a B b =>,又sin 2B =,则1cos 2B =,73a b =,由余弦定理得2222cos b a c ac B =+-,即2276483a a a ⎛⎫=+- ⎪⎝⎭,解得3a =或245a =-(舍去),故ABC的面积为1sin 2ac B =.17.如图,在四棱锥P ABCD -中,PA ⊥底面,,//ABCD AD AB AB DC ⊥,2,1AD DC AP AB ====,点E 为棱PC的中点.(1)证明:BE DC ⊥;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AB P --的余弦值.【正确答案】(1)证明见解析;(2(3.【分析】(1)可以建立空间直角坐标系,利用向量数量积来证明BE DC ⊥,;(2)向量法:先求平面PBD 的法向量A ,然后利用公式1sin cos ,n BE n BE n BEθ⋅==⋅ 求直线BE 与平面PBD 所成角的正弦值;(3)向量法:先求平面ABF 和平面PBA 的法向量12,n n ,再利用公式121212cos ,n n n n n n ⋅=⋅ 来求二面角F AB P --的余弦值.【详解】依题意,以点E 为原点建立空间直角坐标系(如图),可得(1,0,0),(2,2,0)B C ,(0,2,0),(0,0,2)D P ,由点E 为棱PC 的中点,得()1,1,1E .(1)向量()0,1,1BE = ,()2,0,0DC = ,故0BE DC ⋅= .∴BE CD ⊥.(2)向量(1,2,0),(1,0,2)BD PB =-=- ,设()1,,n x y z = 为平面PBD 的法向量,则00n BD n PB ⎧⋅=⎨⋅=⎩,即2020x y x z -+=⎧⎨-=⎩,不妨令1z =,可得()2,1,1n = 为平面PBD 的一个法向量.于是有3cos ,||||62n BE n BE n BE ⨯〈〉==⨯⨯ ,∴直线BE 与平面PBD 所成角的正弦值为33.(3)()2,2,2,(2,2,0),(1,0,0),CP AC AB =--== ,由点F 在棱PC 上,故(12,22,2)BF BC CF BC lCP l l l =+=+=-- ,由BF AC ⊥,得+22(12)(22=0)l l --,解得34l =,即113,,222BF ⎛⎫=- ⎪⎝⎭.设1(,,)n x y z = 为平面ABF 的法向量,则1100n AB n BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即01130222x x y z =⎧⎪⎨-++=⎪⎩,不妨令1z =,可得1(0,3,1)n =- 为平面ABF 的一个法向量.取平面PAB 的法向量2(0,1,0)n = ,则121212310cos ,1010n n n n n n ⋅===-⋅ .易知,二面角F AB P --31010.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.诚信是立身之本,道德之基,某校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“周实际回收水费周投入成本”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,下表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一个周期95%98%92%88%第二个周期94%94%83%80%第三个周期85%92%95%96%(1)计算表中十二周“水站诚信度”的平均数X ;(2)分别从表中每个周期的4个数据中随机抽取1个数据,设随机变量X 表示取出的3个数中“水站诚信度”超过91%的数据的个数,求随机变量X 的分布列和期望;(3)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.【正确答案】(1)91%(2)见解析(3)两次活动效果均好.详见解析【分析】(1)利用平均数公式能求出表中十二周“水站诚信度”的平均数;(2)随机变量X 的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X 的分布列和数学期望;(3)根据后继一周都有提升可得两次活动效果均好.【详解】(1)表中十二周“水站诚信度”的平均数:959892889494838085929596191%12100x +++++++++++=⨯=.(2)随机变量X 的可能取值为0,1,2,3,()1212044464P X ==⨯⨯=,()3211211444444P X ==⨯⨯+⨯⨯1231444464+⨯⨯=,()3213212444444P X ==⨯⨯+⨯⨯3233044464+⨯⨯=,()32318344464P X ==⨯⨯=,∴X 的分布列为:X 0123P 1327321532932171590123232323232EX =⨯+⨯+⨯+⨯=.(3)两次活动效果均好.理由:活动举办后,“水站诚信度”由88%94%→和80%到85%看出,后继一周都有提升.本题考查平均数的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.19.已知函数()ln f x ax x x =-.(1)当1a =时,求()f x 的零点;(2)讨论()f x 在[]1,e 上的最大值;(3)是否存在实数a ,使得对任意0x >,都有()f x a ≤?若存在,求a 的取值范围;若不存在,说明理由.【正确答案】(1)ex =(2)答案见解析(3)存在,a 的取值范围是1a =【分析】(1)利用导函数判断()f x 的单调性,进而判断零点的情况即可;(2)利用导函数判断()f x 在区间[]1,e 的单调性,进而求最值即可;(3)由题意只需()max f x a ≤即可,利用(2)中结论即1e 0a a --≤,利用导数求a 的范围即可.【详解】(1)()ln f x ax x x =-的定义域为()0,∞+,当1a =时,()ln f x x x x =-,()ln f x x '=-,所以当()0,1x ∈时,()0f x ¢>,()f x 单调递增,当()1,x ∈+∞时,()0f x '<,()f x 单调递减,又因为当0x →时()0f x >,()11f =,()e 0f =,所以()f x 仅有一个零点,e x =.(2)()1ln f x a x =--',令()0f x '=,解得1e a x -=,在区间()0,∞+内,x ()10,e a -1e a -()1e,a -+∞()f x '+0-()f x 单调递增极大值单调递减当1e 1a -≤(即1a ≤)时,在[]1,e 上()f x 单调递减,()max ()1f x f a ==,当1e e a -≥(即2a ≥)时,在[]1,e 上()f x 单调递增,()max ()e e e f x f a ==-,当11e e a -<<(即12a <<)时,在1e ,e a -⎡⎤⎣⎦上()f x 单调递增,在11,e a -⎡⎤⎣⎦上()f x 单调递减,()()1111max ()e e e 1e a a a a f x f a a ----==--=.综上所述,当1a ≤时,()f x 的最大值为a ,当2a ≥时,()f x 的最大值为e e a -,当12a <<时,()f x 的最大值为1e a -.(3)由(2)知在()0,∞+上,()11max ()ee a af x f --==,构造函数()()11e e a a g a f a a --=-=-,由题意应使()0g a ≤,()1e 1a g a -'=-,令()0g a '=,解得1a =.a (),1-∞1()1,+∞()g a '-0+()g a 单调递减极小值单调递增所以()min ()10g a g ==,所以使()0g a ≤的实数a 只有1a =,即a 的取值范围是1a =.20.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.【正确答案】(Ⅰ(Ⅱ)1;(Ⅲ)平行,理由见解析.【详解】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用c e a=计算离心率;(Ⅱ)由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与3x =相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;(Ⅲ)分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c所以椭圆C 的离心率c e a ==.(Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -.直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -.所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线D E 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =.又因为直线D E 的斜率10121DE k -==-,所以//BM DE .当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠.设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233{(1)x y y k x +==-,得2222(13)6330k x k x k +-+-=.所以2122613k x x k +=+,21223313k x x k -=+.直线BM 的斜率11212323BM y x y x k x +---=-.因为()()()()()()()11212121131232132BM k x x k x x x x k x x -+--------=--121221(1)[2()3)(3)(2)k x x x x x x --++-=--2222213312(1)[3)1313(3)(2)k k k k k x x -+-+-++=--0=,所以1BM DE k k ==.所以//BM DE .综上可知,直线BM 与直线D E 平行.椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.21.若项数为()3N N ≥的数列12:,,,N N A a a a 满足:()*11,N 2,3,,i a a i N =∈= ,且存在{}2,3,,1M N ∈- ,使得{}{}11,2,111,2,1n n n M a a M n N +⎧≤≤-⎪-∈⎨--≤≤-⎪⎩,则称数列N A 具有性质P .(1)①若3N =,写出所有具有性质P 的数列3A ;②若44,3N a ==,写出一个具有性质P 的数列4A ;(2)若2024N =,数列2024A 具有性质P ,求2024A 的最大项的最小值;(3)已知数列1212:,,,,:,,,N N N N A a a a B b b b 均具有性质P ,且对任意{},1,2,,i j N ∈ ,当i j ≠时,都有,i j i j a a b b ≠≠.记集合{}112,,,N T a a a = ,{}212,,,N T b b b = ,求12T T ⋂中元素个数的最小值.【正确答案】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)1013(3)3【分析】(1)直接根据性质P 的概念一一列举即可;(2)根据性质P 及累加法得M a M ≥和2025M a M ≥-,两式相加即可求解;(3)根据性质P 及累加法得23M a N ≤-,23M b N ≤-,求出并集中元素个数的最大值,从而求出交集中的元素个数最小值.【详解】(1)①3A :1,2,1或1,3,1或1,3,2;②4A :1,2,4,3(或1,3,4,3或1,3,5,3)(2)当2024N =时,{}2,3,,2023M ∈ .由12111,1,,1M M a a a a a -=-≥-≥ ,累加得M a M ≥;又由20242023202411,1,,1M M a a a a a +≥-≥-≥ ,累加得2025M a M ≥-;相加得22025M a ≥,又*M a ∈N ,所以1013M a ≥.所以数列2024A 的最大项M a 的最小值为1013,一个满足条件的数列为()()1,2,,101320261014,1015,,2024n n n a n n ⎧=⎪=⎨-=⎪⎩ ;(3)由12111,2,,2M M a a a a a -=-≤-≤ ,累加得21M a M ≤-.又1M N ≤-,所以23M a N ≤-,同理,23M b N ≤-,所以{}()12121,2,,23,card 23T T N T T N ⋃⊆-⋃≤- ,因为()()12card card T T N ==,所以()()()()121212card card card card 3T T T T T T ⋂=+-⋃≥,所以12T T ⋂中元素个数的最小值为3,一组满足条件的数列为()()()()()11211,2,,1222,3,,12425n n n n n N a b n n N N n N N n N ⎧=⎧-=-⎪⎪==-=-⎨⎨-=⎪⎩⎪-=⎩ ,此时{}121,24,25T T N N ⋂=--.思路点睛:此题考查数列与集合结合的新定义问题,属于难题,关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.。

高中数学试题含答案-单元质检卷十 概率

高中数学试题含答案-单元质检卷十 概率

单元质检卷十概率(时间:100分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020北京人大附中高三三模)为了解某年级400名女生五十米短跑情况,从该年级中随机抽取8名女生进行五十米跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为9.4秒)的人数为()A.150B.250C.200D.502.(2020江西九江高三模拟)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取()A.15人B.30人C.40人D.45人3.一试验田某种作物一株生长果实个数x服从正态分布N(90,σ2),且P(x<70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X,且X服从二项分布,则X的方差为()A.3B.2.1C.0.3D.0.214.有朋自远方来,他乘火车、船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4,他乘坐上述四种交通工具迟到的概率依次分别为0.25,0.3,0.1,0.则他迟到的概率为()A.0.65B.0.075C.0.145D.05.8张卡片上分别写有数字1、2、3、4、5、6、7、8,从中随机取出2张,记事件A=“所取2张卡片上的数字之和为偶数”,事件B=“所取2张卡片上的数字之和小于9”,则P(B|A)=()A.16B.13C.12D.236.(2020湖北襄阳高三检测)排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是()A.49B.1927C.1127D.40817.写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算89×65,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出648×345的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是()A.518B.13C.1318D.238.某人射击一发子弹的命中率为0.8,现他射击19发子弹,理论和实践都表明,这19发子弹中命中目标的子弹数n的概率f(n)如下表,那么在他射击完19发子弹后,其中击中目标的子弹数最大可能是()A.14发B.15发C.16发D.15或16发二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件10.(2020江苏南京师大附中高三期中)某教师退休前后各类支出情况如下,已知退休前工资收入为8 000元/月,退休后每月储蓄的金额比退休前每月储蓄的金额少1 500元,则下面结论中正确的是()A.该教师退休前每月储蓄支出2 400元B.该教师退休后的旅行支出是退休前旅行支出的3倍C.该教师退休后工资收入为6 000元/月D.该教师退休后的其他支出比退休前的其他支出少11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(μ,302)和N(280,402),则下列选项正确的是()附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.683.A.若红玫瑰日销售量范围在[μ-30,280]的概率是0.683,则红玫瑰日销售量的平均数约为250B.白玫瑰日销售量比红玫瑰日销售量更集中C.红玫瑰日销售量比白玫瑰日销售量更集中D.白玫瑰日销售量范围在[280,320]的概率约为0.341 512.一袋中有大小相同的4个红球和2个白球,给出下列结论,其中正确的命题有()A.从中任取3球,恰有一个白球的概率是35B.从中有放回地取球6次,每次任取一球,恰好有两次白球的概率为80243C.现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25D.从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627三、填空题:本题共4小题,每小题5分,共20分.13.(2020江西南昌模拟)辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施、持戒、忍辱、精进、禅定与般若.若甲、乙每人依次有放回地从这六片叶齿中随机取一片,则这两人选的叶齿对应的“度”相同的概率为. 14.随机变量ξ的分布列如下表:若E(ξ)=0,则D(ξ)=.15.甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,三人各答一次,则三人中只有一人及格的概率为 . 16.抛一枚质地均匀的硬币,正、反面出现的概率都是12,反复这样的抛掷,数列{a n }定义如下:a n ={1(第n 次抛掷出现正面),-1(第n 次抛掷出现反面),若S n =a 1+a 2+…+a n (n ∈N +),则事件“S 8=2”的概率为 ;事件“S 2≠0且S 8=2”的概率为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:①若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;②若取出的两个小球上数字之积在区间[1,4]上,则奖励汽车玩具一个;③若取出的两个小球上数字之积小于1,则奖励饮料一瓶. (1)求每对亲子获得飞机玩具的概率.(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.18.(12分)(2020湖南永州高三月考)某市为了在全市营造“浪费可耻、节约为荣”的氛围,制定施行“光盘行动”有关政策,为进一步了解此项政策对市民的影响程度,市政府在全市随机抽取了100名市民进行调查,其中男士与女士的人数之比为3∶2,男士中有10人表示政策无效,女士中有25人表示政策有效.(1)根据下列2×2列联表写出a 和b 的值,并判断能否有99%的把握认为“政策是否有效与性别有关”;(2)从被调查的市民中,采取分层抽样方法抽取10名市民,再从这10名市民中任意抽取4名,对政策的有效性进行调研分析,设随机变量X 表示抽取到的4名市民中女士的人数,求X 的分布列及数学期望.参考公式:χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )(n=a+b+c+d ).19.(12分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A 组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A 组的客户,“☉”表示B 组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(1)记A ,B 两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m ,n ,根据图中数据,试比较m ,n 的大小(结论不要求证明);(2)从A ,B 两组客户中随机抽取2位,求其中至少有一位是A 组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,从A ,B 两组客户中,各随机抽取1位,记“驾驶达人”的人数为ξ,求随机变量ξ的分布列及其数学期望E (ξ).20.(12分) 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率就越高,具体浮动情况如表:某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,a=950(元),记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望.(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求该销售商获得利润的期望值.21.(12分) 某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中依次摸出3个小球.若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.(1)求小张在这次活动中获得的奖金数X的分布列及数学期望;(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.22.(12分)某市为了制定扶贫战略,统计了全市1 000户农村贫困家庭的年纯收入,并绘制了如下频率分布直方图:(1)若这1 000户家庭中,家庭年纯收入不低于5千元,且不超过7千元的户数为40户,请补全频率分布图,并求出这1 000户家庭的年纯收入的平均值x(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为这1 000户的家庭年纯收入X服从正态分布N(μ,σ2),其中μ近似为年纯收入的平均值x,σ2近似为样本方差,经计算知σ2=9.26;设该市的脱贫标准为家庭年纯收入为x千元(即家庭年纯收入不低于x千元,则该户家庭实现脱贫,否则未能脱贫),若根据此正态分布估计,这1 000户家庭中有841.35户家庭实现脱贫,试求该市的脱贫标准x;(3)若该市为了加大扶贫力度,拟投入一笔资金,帮助未脱贫家庭脱贫,脱贫家庭巩固脱贫成果,真正做到“全面小康路上一个也不能少”,方案如下:对家庭年纯收入不超过5.92千元的家庭每户家庭给予扶持资金15千元,对家庭年纯收入超过5.92千元,但不超过8.96千元的家庭每户家庭给予扶持资金12千元,对家庭年纯收入超过8.96千元,但不超过15.04千元的家庭每户家庭给予扶持资金8千元,对家庭年纯收入超过15.04千元的家庭不予以资金扶持,设Y为每户家庭获得的扶持资金,求E(Y)(结果精确到0.001).附:若随机变量X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.683,P(μ-2σ≤X≤μ+2σ)≈0.954,√9.26≈3.04.参考答案单元质检卷十概率1.B由茎叶图可知,成绩在9.4秒以内的都为合格,即合格率为P=58,故估计该年级女生五十米跑成绩及格的人数为400×58=250.2.D 全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200×32+5+3=150×310=45(人). 3.B ∵x~N (90,σ2),且P (x<70)=0.2,∴P (x>110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3,∴X~B (10,0.3),X 的方差为10×0.3×(1-0.3)=2.1.故选B .4.C 设事件A 1为“他乘火车来”,A 2为“他乘船来”,A 3为“他乘汽车来”,A 4为“他乘飞机来”,B 为“他迟到”.易见A 1,A 2,A 3,A 4构成一个完备事件组,由全概率公式得P (B )=∑i=14P (A i )P (B|A i )=0.3×0.25+0.2×0.3+0.1×0.1+0.4×0=0.145.5.C 事件AB 为“所取2张卡片上的数字之和为小于9的偶数”,以(a ,b )为一个样本点,则事件AB 包含的样本点有(1,3),(1,5),(1,7),(2,4),(2,6),(3,5),共6个,由古典概型的概率公式可得P (AB )=6C 82=314,事件A 为“所取2张卡片上的数字之和为偶数”,则所取的两个数全是奇数或全是偶数,由古典概型的概率公式可得P (A )=2C 42C 82=37,因此,P (B|A )=P (AB )P (A )=314×73=12,故选C .6.B 最后乙队获胜事件含3种情况:第三局乙胜,其概率为13;第三局甲胜,第四局乙胜,其概率为23×13=29;第三局和第四局都是甲胜,第五局乙胜(23)2×13=427.故最后乙队获胜的概率P=13+29+427=1927.7.A 根据题意,结合范例画出648×345的表格,从表格中可以看出,共有18个数,其中奇数有5个,所以从表内任取一数,恰取到奇数的概率为P=518.8.D 根据题意,设第k 发子弹击中目标的概率最大,而19发子弹中命中目标的子弹数n的概率P (n=k )=C 19k·0.8k ·0.219-k (k=0,1,2,…,19),则有f (k )≥f (k+1)且f (k )≥f (k-1),即{C 19k ·0.8k ·0.219-k ≥C 19k+1·0.8k+1·0.218-k ,C 19k ·0.8k ·0.219-k ≥C 19k -1·0.8k -1·0.220-k ,可解得15≤k ≤16,即第15或16发子弹击中目标的可能性最大,则他射完19发子弹后,击中目标的子弹数最可能是15或16发.9.BD 易见A 1,A 2,A 3是两两互斥的事件,故D 正确,P (B|A 1)=511,故B 正确,P (B )=P (BA 1)+P (BA 2)+P (BA 3)=510×511+210×411+310×411=922,故A 不正确,事件B 与事件A 1不相互独立,故C 不正确,故选BD .10.ACD 因为退休前工资收入为8 000元/月,每月储蓄的金额占30%,则该教师退休前每月储蓄支出8 000×30%=2 400(元),故A 正确;因为退休后每月储蓄的金额比退休前每月储蓄的金额少1 500元,则该教师退休后每月储蓄的金额为900元,所以该教师退休后工资收入为90015%=6 000(元/月),故C 正确; 该教师退休前的旅行支出为8 000×5%=400(元),退休后的旅行支出为6 000×15%=900(元),所以该教师退休后的旅行支出是退休前旅行支出的2.25倍,故B 错误; 该教师退休前的其他支出为8 000×20%=1 600(元),退休后的其他支出为6 000×25%=1 500(元),所以该教师退休后的其他支出比退休前的其他支出少,故D 正确.11.ACD 对于选项A,μ+30=280,μ=250,正确;对于选项B,C,利用σ越小越集中,30小于40,B 不正确,C 正确;对于选项D,由于白玫瑰的日销量X 服从正态分布N (280,402),所以P (280≤X ≤320)≈0.683×12=0.341 5,正确.12.ABD 选项A,从中任取3球,恰有一个白球的概率是C 42C 21C 63=35,故正确;选项B,从中有放回的取球6次,每次任取一球,每次抽到白球的概率为26=13,则恰好有两次白球的概率为C 62×(23)4×(13)2=80243,故正确;选项C,现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为C 41C 31C 41C 51=35,故错误;选项D,从中有放回的取球3次,每次任取一球,每次抽到红球的概率为46=23,则至少有一次取到红球的概率为1-C 3×(13)3=2627,故正确.13.16 记布施,持戒,忍辱,精进,禅定,般若分别为a ,b ,c ,d ,e ,f ,则样本点有(a ,a ),(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,a ),(b ,b ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,a ),(c ,b ),(c ,c ),(c ,d ),(c ,e ),(c ,f ),(d ,a ),(d ,b ),(d ,c ),(d ,d ),(d ,e ),(d ,f ),(e ,a ),(e ,b ),(e ,c ),(e ,d ),(e ,e ),(e ,f ),(f ,a ),(f ,b ),(f ,c ),(f ,d ),(f ,e ),(f ,f ),共36个,其中符合条件的有6个,故所求概率P=636=16.14.12 ∵E (ξ)=0,由表中数据可知E (ξ)=(-1)×14+0×a+1×b=0,解得b=14.又14+a+b=1,∴a=12.所以D (ξ)=(-1-0)2×14+0×12+(1-0)2×14=12.15.47250 因为甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,所以仅甲及格的概率为45×1-35×1-710=24250;仅乙及格的概率为1-45×35×1-710=9250;仅丙及格的概率为1-45×1-35×710=14250.三人中只有一人及格的概率为24250+9250+14250=47250. 16.732 13128事件S 8=2表示反复抛掷8次硬币,其中出现正面的次数是5次.其概率P=C 85125×123=732.事件“S 2≠0,S 8=2”表示前两次全正或全负,则概率为C 63128+C 65128=13128.17.解 (1)样本点总数有16个,分别为(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),记“获得飞机玩具”为事件A ,则事件A 包含的样本点有3个,分别为(2,3),(3,2),(3,3),∴每对亲子获得飞机玩具的概率p=316.(2)记“获得汽车玩具”为事件B ,“获得饮料”为事件C ,事件B 包含的样本点有6个,分别为(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),∴每对亲子获得汽车玩具的概率P (B )=616=38,每对亲子获得饮料的概率P (C )=1-P (A )-P (B )=716,∴每对亲子获得汽车玩具的概率小于获得饮料的概率.18.解(1)由题意知,男士人数为100×35=60,女士人数为100×25=40,由此填写2×2列联表如下:可知a=50,b=15.由表中数据,计算χ2=100×(50×15-25×10)260×40×75×25=5.556<6.635.所以没有99%的把握认为“政策是否有效与性别有关”.(2)从被调查的该餐饮机构的市民中,利用分层抽样抽取10名市民, 男士抽取6人,女士抽取4人,随机变量X 的可能取值为0,1,2,3,4,P (X=0)=C 64C 104=114,P (X=1)=C 41C 63C 104=821,P (X=2)=C 42C 62C 104=37,P (X=3)=C 43C 61C 104=435,P (X=4)=C 44C 104=1210.所以X 的分布列为数学期望为E (X )=0×114+1×821+2×37+3×435+4×1210=85.19.解 (1)m<n.(2)设“从抽取的20位客户中任意抽取2位,至少有一位是A 组的客户”为事件M ,则P (M )=C 101C 101+C 102C 202=2938.所以从抽取的20位客户中任意抽取2位至少有一位是A 组的客户的概率是2938.(3)依题意ξ的可能取值为0,1,2. 则P (ξ=0)=C 91C 81C 101C 101=1825; P (ξ=1)=C 11C 81+C 91C 21C 101C 101=1350;P (ξ=2)=C 11C 21C 101C 101=150.所以随机变量ξ的分布列为所以随机变量ξ的数学期望E (ξ)=0×1825+1×1350+2×150=310,即E (ξ)=310. 20.解 (1)由题意可知,X 的可能取值为0.9a ,0.8a ,0.7a ,a ,1.1a ,1.3a , 由统计数据可知:P (X=0.9a )=15,P (X=0.8a )=110,P (X=0.7a )=110,P (X=a )=310,P (X=1.1a )=15,P (X=1.3a )=110,∴X 的分布列为∴E (X )=0.9a ×15+0.8a ×110+0.7a ×110+a ×310+1.1a ×15+1.3a ×110=9.810a=931. (2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为310,三辆车中至多有一辆事故车的概率为P=C 3031001-3103+C 3131011-3102=0.784. ②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5 000,10000,P (Y=-5 000)=310,P (Y=10 000)=710,∴Y 的分布列为E (Y )=-5 000×310+10 000×710=5 500.∴该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为100E (Y )=550 000(元)=55(万元).21.解 (1)小张在这次活动中获得的奖金数X 的所有可能取值为100,200,300.P (X=300)=C 33C 63=120,P (X=200)=C 31C 21C 11C 63=620=310,P (X=100)=C 32C 31+C 22C 41C 63=9+420=1320,或P (X=100)=1-P (X=200)-P (X=300)=1320所以奖金数X 的概率分布列为奖金数X 的数学期望E (X )=100×1320+200×310+300×120=140.(2)设3个人中获二等奖的人数为Y ,则Y~B 3,310,所以P (Y=k )=C 3k 310k7103-k(k=0,1,2,3),设“该公司某部门3个人中至少有2个人获二等奖”为事件A ,则P (A )=P (Y=2)+P (Y=3)=C 32×3102×710+C 33×3103=27125.则该公司某部门3个人中至少有2个人获二等奖的概率为27 125.22.解(1)家庭年纯收入不低于5千元且不超过7千元的频率为401000=0.04,纵坐标为0.02;家庭年纯收入不低于15千元,但不超过17千元的家庭频率为1-2×(0.02+0.05+0.12+0.16+0.06+0.04)=0.1,纵坐标为0.05,补全频率分布直方图如下图:这1 000户家庭的年纯收入的平均值为x=6×0.04+8×0.1+10×0.24+12×0.32+14×0.12+16×0.1+18×0.08=12.(2)1 000户家庭中有841.35户家庭实现脱贫,则未脱贫概率为1-841.351000=0.158 65,设该市的脱贫标准为x,则P(x≤X≤2μ-x)≈1-0.158 65×2=0.683,根据P(μ-σ≤X≤μ+σ)≈0.683,得脱贫标准x=μ-σ=12-√9.26≈12-3.04=8.96.(3)∵μ=12,σ=√9.26=3.04,∴μ-2σ=5.92,μ-σ=8.96,μ+σ=15.04,家庭年纯收入不超过5.92千元的家庭频率为P(X<5.92)=P(X<μ-2σ)≈1-0.9542=0.022 3,家庭年纯收入超过5.92千元,但不超过8.96千元的家庭频率为P(5.92≤X≤8.96)=P(μ-2σ≤x≤μ-σ)≈0.954-0.6832=0.135 5,家庭年纯收入超过8.96千元,但不超过15.04千元的家庭频率为P(8.96≤X≤15.04)=P(μ-σ≤X≤μ+σ)≈0.683.家庭年纯收入超过15.04千元的家庭频率为P(X>15.04)=P(X>μ+σ)≈1-0.6832=0.158 5,则每户家庭获得的扶持资金Y的数学期望E(Y)=15×0.022 3+12×0.135 5+8×0.683+0×0.158 5≈7.425.。

人大附中2020届高三数学3月考试题(word版)

人大附中2020届高三数学3月考试题(word版)

人大附中 2019~2020 学年度高三 3 月质量检测试题数 学命题人:李岩 审卷人:梁丽平 于金华2020年3月9日说明:本试卷共三道大题、22 道小题,共 4 页,满分 150 分。

考试时间 120 分钟。

考生务必按要求将答案答在答题纸上,在试题纸上作答无效。

第一部分 (选择题 共40分)一、选择题(本大题共 10 个小题,每小题 4 分,共 40 分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上。

) (1)若集合{|320}A x x =∈+>R ,2{|230}B x x x =∈-->R ,则A B =I(A ){|1}x x ∈<-R (B )2{|1}3x x ∈-<<-R(C )2{|3}3x x ∈-<<R (D ){|3}x x ∈>R(2)向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c共线,则实数λ=(A )2- (B )1- (C )1 (D )2(3)设曲线C 是双曲线,则“C 的方程为x 2−y24=1”是“C 的渐近线方程为y =±2x ”的(A )充分而不必要条件 (B ) 必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得 2 分,负者得 0 分,平局两人各得 1 分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为 (A )4 (B ) 5 (C )6 (D )7 (5)若抛物线22(0)y px p =>上任意一点到焦点的距离恒大于1,则p 的取值范围是(A ) 1p < (B ) 1p > (C ) 2p < (D ) 2p > (6)已知函数()cos(2)f x x ϕ=+(ϕ为常数)为奇函数,那么cos ϕ=(A ) 2- (B ) 0 (C )2(D ) 1(7)已知某几何体的三视图如图所示,则该几何体的最长棱为(A)4(B)22(C)7(D)2(8)已知函数21,0,()(1),0.x xf xf x x-⎧-≤=⎨->⎩若方程()f x x a=+有且只有两个不相等的实数根,则实数a的取值范围是(A)(),1-∞(B)(],1-∞(C)()0,1(D)[)0,+∞(9)定义:若存在常数k,使得对定义域D内的任意两个1212,()x x x x≠,均有1212()()f x f x k x x-≤-成立,则称函数()f x在定义域D上满足利普希茨条件.若函数()(1)f x x x=≥满足利普希茨条件,则常数k的最小值为(A)4(B)3(C)1(D)12(10)在边长为1的正方体中,,,,E F G H分别为1111,,,A B C D AB CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记,,,E F P Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图像应为(A)(B)(C)(D)(Q)(P)HGFEDCBD1C1B1A1第二部分 (非选择题 共 110 分)二、填空题(本大题共 6 个小题,每小题 5 分,共 30 分) (11)代数式5)1)(1(x x +-的展开式中3x 的系数为 (12)在复平面内,复数12i z =-对应的点到原点的距离是 .(13)已知函数42log ,04,()1025, 4.x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是(14)已知双曲线2222:1x y C a b -=的一条渐近线的倾斜角为60o,且与椭圆2215x y +=有相等焦距,则C 的方程为(15)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = (16)如果对于函数()f x 定义域内任意的两个自变量的值12,x x ,当12x x <时,都有12()()f x f x ≤,且存在两个不相等的自变量值12,y y ,使得12()()f y f y = ,就称()f x 为定义域上的不严格的增函数。

人大附中2020年高三 6 月份三模数学(含答案)

人大附中2020年高三 6 月份三模数学(含答案)

Q = 3 ⎪ 5 ⎪ 人大附中2020年高三 6 月份三模数学(含答案)命题人:侯立伟 唐庚 王鼎审题人:于金华2020 年 06 月 27 日本试卷共 5 页,150 分。

考试时长 120 分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效.第一部分(选择题共 40 分)一、选择题共 10 小题,每小题 4 分,共 40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.集合 P = {3, log 2 a }, Q = {a , b } ,若P Q = {0},则 P ( )A. {0, 3}2.若复数 z =B. {0, 2,3},则 z = ()C. {0,1,3}D. {0,1, 2,3}A. 12B. 322-1C. 1D. 23. 已知a = ⎛ 1 ⎫5 , b = ⎛ 2 ⎫ 3, c = log ⎝ ⎭ ⎝ ⎭2 ,则()3 5 A. a < b < cB. c < b < aC. b < c < aD. c < a < b4. 已知函数 f (x ) 的图象沿 x 轴向左平移 2 个单位后与函数 y = 2x 的图象关于 x 轴对称,若f (x 0 ) = -1 ,则 x 0 = ()A. -2B. 2 C . -log 2 3D .l og 2 35. 为了解某年级 400 名女生五十米短跑情况,从该年级中随机抽取 8 名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为 9.4 秒)的人数为( )7 8 8 6 1 8 91 5 7 8A.150B.250C.200D.5021+ 3i34 π 6.“ ϕ =- ”是“函数 f ( x ) = sin(2x + 6 π)(x ∈ R ) 与函数 g ( x ) = cos(2x +ϕ)(x ∈ R ) 为同一 3函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.某四棱锥的三视图如图所示,则该四棱锥的体积是 ()A .6B .12C .24D .36侧视图俯视图a 8. 等比数列{a }中 a =1,且 4a ,2a ,a 成等差数列,则 n(n ∈ N * ) 的最小值为( )n 1 1 2 316 4 1 A.B .C .2592D . 19. 如图,四个棱长为 1 的正方体排成一个正四棱柱,AB 是一条侧棱, P i (i = 1,2, ⋯ ,8) 是上底面上其余的八个点,则 集合{y y = AB ⋅ AP i, i = 1, 2, 3,8} 中的元素个数 ()A. 1B. 2C. 4D. 810. 某校高一年级研究性学习小组利用激光多普勒测速仪实地测量 复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均 分成两束射出,在被测物体表面汇聚,探测器接收反射光.当被测物 体横向速度为零时,反射光与探测光频率相同.当横向速度不为零时,反射光相对探测光会发生频移 f p= 2v sin ϕ ,其中v 为测速仪测得被 λ测物体的横向速度,λ 为激光波长,ϕ 为两束探测光线夹角的一半, 如图.若激光测速仪安装在距离高铁 1 m 处,发出的激光波长为 1600nm (1nm = 10-9 m ),测得某时刻频移为8.0 ⨯109(1/h),则该时刻高铁的速度v 约等于正视图 3ny A.320 km/h B.330 km/h C.340 km/h D.350 km/h第二部分(非选择题共 110 分)二、填空题共 5 小题,每小题 5 分,共 25 分.11. 抛物线 y = x 2的焦点到准线的距离是12. 二项式(x2 + 1)5 的展开式中含 x 4 的项的系数是 (用数字作答).x13. 已知关于x 的不等式ax 2 - 2x + 3a < 0 在(0, 2]上有解,则实数a 的取值范围为14. 在平面直角坐标系中,以双曲线 x a 2 2- = 1, (a > 0, b > 0) 的右焦点为圆心,以实半轴ab2为半径的圆与其渐近线相交,则双曲线的离心率的取值范围是15. 在一个不透明的口袋中装有大小、形状完全相同的 9 个小球,将它们分别编号为 1,2,3,…,9,甲、乙、丙三人从口袋中依次各抽出 3 个小球.甲说:我抽到了 8 号和 9 号小球; 乙说:我抽到了 8 号和 9 号小球;丙说:我抽到了 2 号小球,没有抽到 8 号小球.已知甲、乙、丙三人抽到的 3 个小球的编号之和都相等,且甲、乙、丙三人都只说对了一半. 给出下列四各结论:①甲抽到的 3 个小球的编号之和一定为 15; ②乙有可能抽到了 2 号小球; ③丙有可能抽到了 8 号小球; ④3 号,5 号和 7 号小球一定被同一个人抽到. 其中,所有正确结论的序号是.注:全部选对得 5 分,不选或有错选得 0 分, 其他得 3 分.三、解答题共 6 小题,共 85 分.解答应写出文字说明、演算步骤或证明过程. 16.(本小题满分 14 分)在△ABC 中, a = 3 , b = 2 求c 的值.,.从① ∠B = 2∠A , ② sin B = sin 2A ,③ S∆ABC= 3 15 ,这三个条件中任选一个,补充在 2 上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.6 2F EA D 1n i x如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且AD//BC ,∠BAD = 90︒,AB =AD = 1,BC = 3.(Ⅰ)求证:AF⊥CD;(I I)求直线BF 与平面CDE 所成角的正弦值.C18.(本小题满分14 分)国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:下表是由天气网获得的全国东西部各6 个城市在某一个月内测到的数据的平均值:(Ⅰ) 从表中东部城市中任取一个,空气质量为良的概率是多少?(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取3 个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为ξ,求ξ的分布列和数学期望.(I I I)设东部城市的AQI 数值的方差为S 2 ,如果将合肥纳入东部城市,则纳入后AQI 数值的方差为S 2 ,判断S 2 和S 2 的大小.(只需写出结论)2 1 2附:方差计算公式S 2=1∑n(x-)2i=1.E : + 已知函数 f (x ) =2x - m (其中m 为常数).ex(I ) 若 m = 0 且直线 y = kx 与曲线 y =f (x ) 相切,求实数 k 的值;(I I ) 若 y = f (x ) 在[1, 2] 上的最大值为 2,求m 的值.e220.(本小题满分 14 分)x 2 y 2椭圆 2 2 = 1(a >b >0) 的离心率是 ,过点 P (0,1)做斜率为 k 的直线 l ,椭 a b 3圆 E 与直线 l 交于 A ,B 两点,当直线 l 垂直于 y 轴时 AB = 3 3 .(I ) 求椭圆E 的方程;(II ) 当 k 变化时,在 x 轴上是否存在点 M (m ,0),使得△AMB 是以 AB 为底的等腰三角形,若存在求出 m 的取值范围,若不存在说明理由.21. (本小题满分 14 分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点) A (n ) : A 1 , A 2 , A 3 , , A n 与 B (n ) :B 1 , B 2 , B 3 , , B n ,其中n ≥ 3 ,若同时满足:①两点列的起点和终点分别相同;②线段A i A i +1 ⊥B i B i +1 ,其中i = 1, 2, 3, , n -1, 则称 A (n ) 与 B (n ) 互为正交点列.(Ⅰ)试判断 A (3) : A 1 (0, 2), A 2 (3, 0), A 3 (5, 2) 与 B (3) :B 1 (0, 2), B 2 (2, 5), B 3 (5, 2) 是否互为正交点列,并说明理由;(Ⅱ)求证: A (4) : A 1 (0, 0), A 2 (3,1), A 3 (6, 0), A 4 (9,1) 不存在正交点列 B (4) ;(Ⅲ)是否存在无正交点列 B (5) 的有序整数点列 A (5) ?并证明你的结论.522 5 36 参考答案和评分标准2020.6.27题号 1 2 3 4 5 6 7 8 9 10 答案CCDBBABDAA二、填空题(本大题共 5 小题,每小题 5 分,共 25 分.请把结果填在答题纸中.) 题 号 1112131415答案1 210(-∞, 3 )3(1,2)①②④注:15 题给出的结论中,有多个符合题目要求。

人大附中2020届高三数学3月考试题(word版)

人大附中2020届高三数学3月考试题(word版)

人大附中 2019~2020 学年度高三 3 月质量检测试题数 学命题人:李岩 审卷人:梁丽平 于金华2020年3月9日说明:本试卷共三道大题、22 道小题,共 4 页,满分 150 分。

考试时间 120 分钟。

考生务必按要求将答案答在答题纸上,在试题纸上作答无效。

第一部分 (选择题 共40分)一、选择题(本大题共 10 个小题,每小题 4 分,共 40 分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上。

) (1)若集合{|320}A x x =∈+>R ,2{|230}B x x x =∈-->R ,则A B =I(A ){|1}x x ∈<-R (B )2{|1}3x x ∈-<<-R(C )2{|3}3x x ∈-<<R (D ){|3}x x ∈>R(2)向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c共线,则实数λ=(A )2- (B )1- (C )1 (D )2(3)设曲线C 是双曲线,则“C 的方程为x 2−y24=1”是“C 的渐近线方程为y =±2x ”的(A )充分而不必要条件 (B ) 必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(4)某校象棋社团组织中国象棋比赛,采用单循环赛制,即要求每个参赛选手必须且只须和其他选手各比赛一场,胜者得 2 分,负者得 0 分,平局两人各得 1 分.若冠军获得者得分比其他人都多,且获胜场次比其他人都少,则本次比赛的参赛人数至少为 (A )4 (B ) 5 (C )6 (D )7 (5)若抛物线22(0)y px p =>上任意一点到焦点的距离恒大于1,则p 的取值范围是(A ) 1p < (B ) 1p > (C ) 2p < (D ) 2p > (6)已知函数()cos(2)f x x ϕ=+(ϕ为常数)为奇函数,那么cos ϕ=(A ) 2- (B ) 0 (C )2(D ) 1(Q)(P)HGFEDCBD1C1B1A1(7)已知某几何体的三视图如图所示,则该几何体的最长棱为(A)4(B)22(C)7(D)2(8)已知函数21,0,()(1),0.x xf xf x x-⎧-≤=⎨->⎩若方程()f x x a=+有且只有两个不相等的实数根,则实数a的取值范围是(A)(),1-∞(B)(],1-∞(C)()0,1(D)[)0,+∞(9)定义:若存在常数k,使得对定义域D内的任意两个1212,()x x x x≠,均有1212()()f x f x k x x-≤-成立,则称函数()f x在定义域D上满足利普希茨条件.若函数()(1)f x x x=≥满足利普希茨条件,则常数k的最小值为(A)4(B)3(C)1(D)12(10)在边长为1的正方体中,,,,E F G H分别为1111,,,A B C D AB CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记,,,E F P Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图像应为(A)(B)(C)(D)第二部分 (非选择题 共 110 分)二、填空题(本大题共 6 个小题,每小题 5 分,共 30 分) (11)代数式5)1)(1(x x +-的展开式中3x 的系数为 (12)在复平面内,复数12i z =-对应的点到原点的距离是 .(13)已知函数42log ,04,()1025, 4.x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩若a ,b ,c ,d 是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是(14)已知双曲线2222:1x y C a b -=的一条渐近线的倾斜角为60o,且与椭圆2215x y +=有相等焦距,则C的方程为(15)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = (16)如果对于函数()f x 定义域内任意的两个自变量的值12,x x ,当12x x <时,都有12()()f x f x ≤,且存在两个不相等的自变量值12,y y ,使得12()()f y f y =,就称()f x 为定义域上的不严格的增函数。

2020年北京市人大附中高考数学模拟试卷(4月份)(解析版)

2020年北京市人大附中高考数学模拟试卷(4月份)(解析版)

2020年北京市人大附中高考数学模拟试卷(4月份)一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.)1.(4分)集合A={x|x>2,x∈R},B={x|x2﹣2x﹣3>0},则A∩B=()A.(3,+∞)B.(﹣∞,﹣1)∪(3,+∞)C.(2,+∞)D.(2,3)2.(4分)已知复数z=a2i﹣2a﹣i是正实数,则实数a的值为()A.0B.1C.﹣1D.±13.(4分)下列函数中,值域为R且为奇函数的是()A.y=x+2B.y=sin x C.y=x﹣x3D.y=2x4.(4分)设等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,则S6=()A.10B.9C.8D.75.(4分)在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设直线OB与x轴正半轴所成的最小正角为α,则cosα等于()A.﹣B.﹣C.D.﹣6.(4分)设a,b,c为非零实数,且a>c,b>c,则()A.a+b>c B.ab>c2C.D.7.(4分)某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.2,且∉S B.2,且∈SC.,且D.,且8.(4分)已知点M(2,0),点P在曲线y2=4x上运动,点F为抛物线的焦点,则的最小值为()A.B.2(﹣1)C.4D.49.(4分)已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方程是()①绕着x轴上一点旋转180°;②沿x轴正方向平移;③以x轴为轴作轴对称;④以x轴的某一条垂线为轴作轴对称.A.①③B.③④C.②③D.②④10.(4分)设函数f(x)=,若关于x的方程f(x)=a(a∈R)有四个实数解x i(i=1,2,3,4),其中x1<x2<x3<x4,则(x1+x2)(x3﹣x4)的取值范围是()A.(0,101]B.(0,99]C.(0,100]D.(0,+∞)二、填空题(本大题共6个小题,每小题5分,共30分)11.(5分)在二项式(x2+2)6的展开式中,x8的系数为.12.(5分)若向量满足,则实数x的取值范围是.13.(5分)在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.如图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.①.②.14.(5分)函数的最小正周期为;若函数f(x)在区间(0,a)上单调递增,则a的最大值为.15.(5分)集合A={(x,y)||x|+|y|=a,a>0},B={(x,y)||xy|+1=|x|+|y|},若A∩B是平面上正八边形的顶点所构成的集合,则下列说法正确的为.①a的值可以为2;②a的值可以为;③a的值可以为2+;三、解答题(本大题共6个小题,共80分,解答应写出文字说明,演算步骤或证明过程.)16.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)满足下列3个条件中的2个条件:①函数f(x)的周期为π;②x=是函数f(x)的对称轴;③f()=0且在区间(,)上单调.(Ⅰ)请指出这二个条件,并求出函数f(x)的解析式;(Ⅱ)若x∈[0,],求函数f(x)的值域.17.(15分)在四棱锥P﹣ABCD的底面ABCD中,BC∥AD,CD⊥AD,PO⊥平面ABCD,O是AD的中点,且PO=AD=2BC=2CD=2.(Ⅰ)求证:AB∥平面POC;(Ⅱ)求二面角O﹣PC﹣D的余弦值;(Ⅲ)线段PC上是否存在点E,使得AB⊥DE,若存在指出点E的位置,若不存在,请说明理由.18.(14分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如图:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求X 的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取m个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出m的最小值.(结论不要求证明)19.(14分)设函数f(x)=alnx+x2﹣(a+2)x,其中a∈R.(Ⅰ)若曲线y=f(x)在点(2,f(2))处切线的倾斜角为,求a的值;(Ⅱ)已知导函数f'(x)在区间(1,e)上存在零点,证明:当x∈(1,e)时,f(x)>﹣e2.20.(15分)设椭圆,直线l1经过点M(m,0),直线l2经过点N(n,0),直线l1∥直线l2,且直线l1、l2分别与椭圆E相交于A,B两点和C,D两点.(Ⅰ)若M,N分别为椭圆E的左、右焦点,且直线l1⊥x轴,求四边形ABCD的面积;(Ⅱ)若直线l1的斜率存在且不为0,四边形ABCD为平行四边形,求证:m+n=0;(Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD能否为矩形,说明理由.21.(14分)对于正整数n,如果k(k∈N*)个整数a1,a2,…,a k满足1≤a1≤a2≤…≤a k ≤n,且a1+a2+…+a k=n,则称数组(a1,a2,…,a k)为n的一个“正整数分拆”.记a1,a2,…,a k均为偶数的“正整数分拆”的个数为f n;a1,a2,…,a k均为奇数的“正整数分拆”的个数为g n.(Ⅰ)写出整数4的所有“正整数分拆”;(Ⅱ)对于给定的整数n(n≥4),设(a1,a2,…,a k)是n的一个“正整数分拆”,且a1=2,求k的最大值;(Ⅲ)对所有的正整数n,证明:f n≤g n;并求出使得等号成立的n的值.(注:对于n的两个“正整数分拆”(a1,a2,…,a k)与(b1,b2,…,b n),当且仅当k =m且a1=b1,a2=b2,…,a k=b m时,称这两个“正整数分拆”是相同的.)2020年北京市人大附中高考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分.在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将答案涂在机读卡上的相应位置上.)1.【分析】求出集合B,再求出交集【解答】解:A={x|x>2,x∈R},B={x|x2﹣2x﹣3>0}={x|x>3或者x<﹣1},则A∩B=(3,+∞),故选:A.2.【分析】结合已知及复数的概念进行求解即可.【解答】解:因为z=a2i﹣2a﹣i是正实数,所以,解可得a=﹣1.故选:C.3.【分析】分别结合奇偶性及函数的值域判断各选项即可求解.【解答】解:A:y=x+2为非奇非偶函数,不符合题意;B:y=sin x的值域[﹣1,1],不符合题意;C:y=x﹣x3为奇函数且值域为R,符合题意;D:y=2x为非奇非偶函数,不符合题意.故选:C.4.【分析】先求出公差,再根据求和公式即可求出.【解答】解:等差数列{a n}的前n项和为S n,若a3=2,a1+a4=5,∴a3﹣2d+a3+d=5,∴4﹣d=5,解得d=﹣1,∴a1=2+2=4,a6=a1+5d=4﹣5=﹣1,∴S6===9,故选:B.5.【分析】由题意利用任意角的三角函数的定义,复数乘法的几何意义,诱导公式,求出cosα的值.【解答】解:在平面直角坐标系xOy中,将点A(1,2)绕原点O逆时针旋转90°到点B,设点B(x,y),则x+yi=(1+2i)•(cos90°+i sin90°),即x+yi=﹣2+i,∴x=﹣2,y=1,即B(﹣2,1).由题意,sin(α﹣90°)==﹣cosα,∴cosα=﹣=﹣,故选:A.6.【分析】利用不等式的可加性得a+b>2c,由此可判断选项C正确.【解答】解:∵a>c,b>c,∴a+b>2c,∴.故选:C.7.【分析】首先把三视图转换为几何体,进一步求出个各棱长.【解答】解:根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:AB=BC=CD=AD=DE=2,AE=CE=2,BE=.故选:D.8.【分析】设出P的坐标,利用已知条件化简表达式,通过基本不等式求解最小值即可.【解答】解:设P(x,y),可得===x≥2=4.当且仅当x=2时取得最小值4.故选:D.9.【分析】结合图象直接观察得解.【解答】解:由图象可知,函数f(x)具有周期性,且有对称轴,故②④正确.故选:D.10.【分析】由函数的图象及性质判断出x1,x2,x3,x4之间的关系,进而把所求式子转化为函数y=x﹣在[,1)上取值范围,即可得到所求范围.【解答】解:函数f(x)=的图象如右:关于x的方程f(x)=a(a∈R)有四个实数解,可得y=f(x)的图象与直线y=a有四个交点,可以判断0<a≤1,x1+x2=2×(﹣5)=﹣10,|lgx3|=|lgx4|≤1,且≤x3<1,1<x4≤10,可得﹣lgx3=lgx4,即lgx3+lgx4=0,即有x3x4=1,x4=,故(x1+x2)(x3﹣x4)=﹣10(x3﹣),又由函数y=x﹣在[,1)上递增,可得函数y=x﹣在[,1)上的值域为[﹣9.9,0),可知﹣10(x3﹣)的取值范围为(0,99].故选:B.二、填空题(本大题共6个小题,每小题5分,共30分)11.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式的x8项的系数.【解答】解:二项式(x2+2)6展开式的通项公式为T r+1=•x12﹣2r•2r=2r•x12﹣2r,令12﹣2r=8,解得r=2,故二项式(x2+2)6展开式中的x8项的系数为:22=60,故答案为:60.12.【分析】先利用向量数量积的坐标运算得出,再解关于x的不等式即可.【解答】解:因为:向量;∴=x2+2x;∴⇒x2+2x<3⇒﹣3<x<1;故实数x的取值范围是:(﹣3,1).故答案为:(﹣3,1).13.【分析】直接由频率折线图得结论.【解答】解:由频率折线图可知,甲省控制较好,确诊人数趋于减少;乙省确诊人数相对稳定,也向好的趋势发展.故答案为:①甲省控制较好,确诊人数趋于减少;②乙省确诊人数相对稳定,也向好的趋势发展.14.【分析】由题意利用正弦函数的周期性和单调性,得出结论.【解答】解:函数的最小正周期为;若函数f(x)在区间(0,a)上单调递增,当x=0时,2x+=;当x=a时,2x+=2a+,∴2a+≤,∴0<a≤,故答案为:π;.15.【分析】根据曲线性质求出集合A,B对应的图象,结合两角和差的正切公式进行求解即可.【解答】解:A={(x,y)||x|+|y|=a,a>0},x≥0,y≥0时,即x+y=a表示在第一象限内的线段将x,y分别换成﹣x,﹣y方程不变,因此|x|+|y|=a关于x轴对称,也关于y轴对称那么,集合A={(x,y)||x|+|y|=a,a>0}表示点集为正方形,∵|xy|+1=|x|+|y|∴|xy|﹣|x|﹣|y|+1=0即(|x|﹣1)(|y|﹣1)=0∴|x|=1或|y|=1即x=±1,y=±1B={(x,y)|x=±1,或x=±1},表示2组平行线,A∩B为8个点,构成正八边形①如图1,∠AOB=45°又A(1,a﹣1),∴tan∠xOA=a﹣1,tan∠AOB=tan2∠xOA===1,即2a﹣2=2a﹣a2,∴a2=2∵a>0,∴a=②如图2,∠AOB=45°又A(a﹣1,1)∴tan∠xOA=,tan∠AOB=tan2∠xOA====1,即2a﹣2=﹣2a+a2,∴a2﹣4a+2=0,解得a=2+或a=2﹣(舍),综上a=或a=2+.故答案为:②③.三、解答题(本大题共6个小题,共80分,解答应写出文字说明,演算步骤或证明过程.)16.【分析】(Ⅰ)由题意知应选择①②,由①求出ω的值,由②结合题意求出φ的值,写出函数的解析式;(Ⅱ)根据x的取值范围,利用三角函数的图象与性质求出函数的值域.【解答】解:(Ⅰ)由题意知选择①②;由函数f(x)的周期为π,得ω==2;又x=是函数f(x)的对称轴,所以2×+φ=+kπ,k∈Z;解得φ=+kπ,k∈Z;又|φ|<,所以φ=;所以f(x)=sin(2x+).(Ⅱ)x∈[0,]时,2x+∈[,],所以sin(2x+)∈[,1],所以函数f(x)在x∈[0,]内的值域是[,1].17.【分析】(Ⅰ)易证四边形AOBC是平行四边形,进而得到AB∥OC,由此得证;(Ⅱ)建立空间直角坐标系,求出平面OPC及平面PCD的法向量,利用向量公式得解;(Ⅲ)假设存在,设出点E的坐标,通过AB⊥DE时,它们的数量积为0,建立方程即可得出结论.【解答】解:(Ⅰ)连接OC,∵O是AD的中点,AD=2BC=2,BC∥AD,∴OA∥BC,且OA=BC=1,∴四边形AOBC是平行四边形,∴AB∥OC,∵AB不在平面POC内,OC在平面POC内,∴AB∥平面POC;(Ⅱ)由(Ⅰ)可知,四边形OBCD也为平行四边形,又OD=CD=1,CD⊥AD,∴四边形OBCD是正方形,则OB⊥OD,又PO⊥平面ABCD,故以O为坐标原点,OB,OD,OP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,则O(0,0,0),P(0,0,2),C(1,1,0),D(0,1,0),,设平面OPC的一个法向量为,则,可取,设平面PCD的一个法向量为,则,可取,设二面角O﹣PC﹣D的平面角为θ,则;(Ⅲ)假设线段PC上存在点E,且满足,使得AB⊥DE,设E(r,t,s),则(r,t,s﹣2)=λ(1,1,﹣2)=(λ,λ,﹣2λ),故,即E (λ,λ,2﹣2λ),∴,又,∴,解得,故线段PC上存在点E,且满足,使得AB⊥DE.18.【分析】(I )由图表可知,测试成绩在80分以上的女生有2人,占比为,再求出结论即可;(II )根据题意,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人,X =0,1,2,求出分布列和数学期望; (III )根据题意,求出即可.【解答】解:(I )由图表可知,测试成绩在80分以上的女生有2人,占比为, 在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数约为50×0.1=5万人; (II )由图表得,选取的8名男生中,成绩在70分以上的有3人,70分及其以下的有5人, 记其中测试成绩在70分以上的人数为X ,选出的8名男生中随机抽取2人,则X =0,1,2, 则P (X =0)=,P (X =1)=,P (X =2)=,X 的分布列如下:x 0 1 2 p故E (X )=0,(III )m 的最小值为4.19.【分析】(Ⅰ)求出函数在x=2处的导数f′(2)=﹣+2=tan=1,解得a=2;(Ⅱ)根据导函数在(1,e)上存在零点,则f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,得到函数f(x)的最小值,构造函数g(x)=xlnx﹣﹣(1+ln2)x,2<x<2e,利用导数判断出其单调性,结合不等式传递性可证.【解答】(Ⅰ)解:根据条件f′(x)=+2x﹣(a+2),则当x=2时,f′(2)=+4﹣(a+2)=﹣+2=tan=1,解得a=2;(Ⅱ)证明:因为f′(x)=+2x﹣(a+2)=,又因为导函数f′(x)在(1,e)上存在零点,所以f′(x)=0在(1,e)上有解,则有1<<e,即2<a<2e,且当1<x<时,f′(x)<0,f(x)单调递减,当<x<e时,f′(x)>0,f(x)单调递增,所以f(x)≥f()=aln+﹣(a+2)=alna﹣﹣(1+ln2)a,设g(x)=xlnx﹣﹣(1+ln2)x,2<x<2e,则g′(x)=lnx+1﹣﹣(1+ln2)=lnx﹣﹣ln2,则g′′(x)=﹣<0,所以g′(x)在(2,2e)上单调递减,所以g(x)在(2,2e)上单调递减,则g(2e)=2eln2e﹣e2﹣2e(1+ln2)=﹣e2<g(2),所以g(x)>﹣e2,则根据不等式的传递性可得,当x∈(1,e)时,f(x)>﹣e2.20.【分析】(Ⅰ)易知,此时四边形ABCD为矩形,且,由此求得面积;(Ⅱ)设直线l1的方程,并与椭圆方程联立,可得到|AB|的长度,同理可得|CD|的长度,由|AB|=|CD|,可得m2=n2,进而得证;(Ⅲ)运用反证法,假设平行四边形ABCD为矩形,但此时推出直线l1⊥x轴,与题设矛盾,进而得出结论.【解答】解:(Ⅰ)由题意可得,,且四边形ABCD 为矩形,∴;(Ⅱ)证明:由题可设,l1:x=ty+m(t∈R),A(x1,y1),B(x2,y2),由得,(t2+2)y2+2mty+m2﹣2=0,∴,且△=4m2t2﹣4(t2+2)(m2﹣2)>0,即t2﹣m2+2>0,∴==,同理可得,∵四边形ABCD为平行四边形,∴|AB|=|CD|,即m2=n2,由m≠n,故m=﹣n,即m+n=0,即得证;(Ⅲ)不能为矩形,理由如下:点O到直线l1,直线l2的距离分别为,由(Ⅱ)可知,m=﹣n,∴点O到直线l1,直线l2的距离相等,根据椭圆的对称性,原点O应为平行四边形ABCD的对称中心,假设平行四边形ABCD为矩形,则|OA|=|OB|,那么,则,∴x1=x2,这是直线l1⊥x轴,这与直线l1的斜率存在矛盾,故假设不成立,即平行四边形ABCD不为矩形.21.【分析】(Ⅰ)由“正整数分拆”的定义能求出整数4的所有“正整数分拆”.(Ⅱ)欲使k最大,只须a i最小,由此根据n为偶数和n为奇数,能求出k的最大值.(Ⅲ)当n为奇数时,f n=0,满足f n≤g n;当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他对应了各数均为奇数的分拆,从而f n≤g n;当n=2时,f2=g2;当n=4时,f4=g4;当n≥6时,f n≤g n.由此能证明f n≤g n,并能求出等号成立的n的值为2,4.【解答】解:(Ⅰ)解:整数4的所有“正整数分拆”有:(4),(1,3),(2,2),(1,1,2),(1,1,1,1,).(Ⅱ)解:欲使k最大,只须a i最小,当n为偶数时,a1=a2=…=a k=2,k=,当n为奇数时,a1=a2=…=a k﹣1=2,a k=3,k=.(Ⅲ)证明:①当n为奇数时,不存在a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,即f n=0,满足f n≤g n;②当n为偶数时,设(a1,a2,…,a k)为满足a1,a2,…,a k均为偶数的一个确定的“正整数分拆”,则他至少对应了(1,1,…,1)和(1,1,…,1,a1﹣1,a2﹣1,…,a k﹣1)这两种各数均为奇数的分拆,∴f n≤g n;③当n=2时,a i均为偶数的“正整数分拆“只有:(2),a i均为奇数的”正整数分拆“只有:(1,1),f2=g2;当n=4时,a i均为偶数的”正整数分拆“只有:(4),(2,2),a i均为奇数的”正整数分拆“只有:(1,1,1),(1,3),f4=g4;当n≥6时,对于每一种a i均为偶数的”正整数分拆“,除了各项不全为1的奇数分拆之外至少多出一个各为1的”正整数分拆“(1,1,…,1),∴f n≤g n.综上,使得f n≤g n中等号成立的n的值为2,4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020北京人大附中高三三模


2020年06月27日
命题人:侯立伟唐庚王鼎
审题人:于金华
本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效.
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.集合2{}3,P log a ={},Q a b =,,若 {}0P Q P Q ⋂=⋃=,则(
)A.{0,3}
B.{0,2,3}
C.{0,1,3}
D.}
0,1,2,3{2.若复数
z =
,则z =(

A.
12
B.
32
C.1
D.2
3.已知21533122
(,(),log 355
a b c -===,则(

A. a b c <<B. c b a <<C. b c a <<D. c a b
<<4.已知函数()f x 的图象沿x 轴向左平移2个单位后与函数 2x y =的图象关于x 轴对称,若01() f x =-,则0x =()
A.2
-B.2
C.23
log -D.23
log 5.为了解某年级400名女生五十米短跑情况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩
(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及
格(及格成绩为9.4秒)的人数为()A.150
B.250
C.200
D.50
6.“6πϕ=-
”是“函数()sin(2)()3
f x x x R π
=+∈与函数()cos(2)()g x x x R ϕ=+∈为同一函数”的()
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
7.某四棱锥的三视图如图所示,则该四棱锥的体积是(

A.6B.12C.24D.36
8.等比数列{}n a 中11a =
,且12342a a a ,,成等差数列,则*()n
a n N n
∈的最小值为()
A.16
25
B.49
C.
12
D.1
9.如图,四个棱长为1的正方体排成一个正四棱柱, u 是一条侧棱,
()1,2,,8i i P = 是上底面上其余的八个点,则集合
{} ,1,2,3,8i y y AB AP i =⋅=⋅⋅⋅
中的元素个数()
A.1
B.2
C.4
D.8
10.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在
某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光.当被测物体横向速度为零时,反射光与探测光频率相同.当横向速度不为零时,反射光相对探测光会发生频移
2sin P v f ϕ
λ
=
,其中v 为测速仪测得被测物体的横向速度,λ为激光波
长,ϕ为两束探测光线夹角的一半,如图.若激光测速仪安装在距离高铁1m 处,发出的激光波长为9)1600(110nm nm m -=,测得某时刻频移为
()98.0101/h ⨯,则该时刻高铁的速度v 约等于
A.320/km h
B.330/km h
C.340/km h
D.350/km h
第二部分(非选择题共110分)
二、填空题共5小题,每小题5分,共25分.11.抛物线2y x =的焦点到准线的距离是
12.二项式2
5
1
()x x
+的展开式中含4x 的项的系数是
(用数字作答).
13.已知关于x 的不等式2 230ax x a -+<在(0,2]上有解,则实数a 的取值范围为_______
14.在平面直角坐标系中,以双曲线22
221(0,0)x y a b a b
-=>>的右焦点为圆心,以实半轴a 为半径的圆与其渐近线
相交,则双曲线的离心率的取值范围是
15.在一个不透明的口袋中装有大小、形状完全相同的9个小球,将它们分别编号为1,2,3,…,9,甲、乙、丙
三人从口袋中依次各抽出3个小球.甲说:我抽到了8号和9号小球;乙说:我抽到了8号和9号小球;
丙说:我抽到了2号小球,没有抽到8号小球.
已知甲、乙、丙三人抽到的3个小球的编号之和都相等,且甲、乙、丙三人都只说对了一半.给出下列四各结论:
①甲抽到的3个小球的编号之和一定为15;②乙有可能抽到了2号小球;③丙有可能抽到了8号小球;
④3号,5号和7号小球一定被同一个人抽到.其中,所有正确结论的序号是________________.注:全部选对得5分,不选或有错选得0分,其他得3分.
三、解答题共6小题,共85分.解答应写出文字说明、演算步骤或证明过程.16.(本小题满分14分)
在ABC 中,3a b ==,求c 的值.
从 22B A sinB sin A ∠=∠=①,②,315
2
ABC S =
③,这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.
17.(本小题满分14分)
如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD.四边形ADEF为正方形,四边形ABCD为梯形,且
,,,.
∠=︒===
//9013
AD BC BAD AB AD BC
⊥;
(Ⅰ)求证:AF CD
(II)求直线BF与平面CDE所成角的正弦值.
18.(本小题满分14分)
国家环境标准制定的空气质量指数(简称AQI)与空气质量等级对应关系如下表:
空气质量等优良轻度污染中度污染重度污染严重污染
AQI值范围[0,50)[50,100)[100,150)[150,200)[200,300)300及以上下表是由天气网获得的全国东西部各6个城市在某一个月内测到的数据的平均值:西部城市AQI数值东部城市AQI数值
西安108北京104
合肥90金门42
克拉玛依37上海82
鄂尔多斯56苏州114
巴彦卓尔61天津105
库尔勒456石家庄93
合计:888合计:540
(Ⅰ)从表中东部城市中任取一个,空气质量为良的概率是多少?
(Ⅱ)环保部门从空气质量“优”和“轻度污染”的两类城市随机选取3个城市组织专家进行调研,记选到空气质量“轻度污染”的城市个数为,求的分布列和数学期望.
(III)设东部城市的AQI 数值的方差为2
1S ,如果将合肥纳入东部城市,则纳入后AQI 数值的方差为2
2S ,判断2
1S 和2
2S 的大小.(只需写出结论)
附:方差计算公式2
2
1
1(.
n i i S x x n ==-∑19.(本小题满分15分)
已知函数2()x
x m
f x e
-=
(其中m 为常数).(I)若0m =且直线 y kx =与曲线() y f x =相切,求实数k 的值;
(II)若() y f x =在[]1,2上的最大值为
22
e
,求m 的值.20.(本小题满分14分)
椭圆2222:1(0)x y E a b a b +=>>的离心率是5
3
,过点01P (,)
做斜率为k 的直线l ,椭圆E 与直线l 交于A B ,两点,当直线l 垂直于y
轴时AB =(I)求椭圆E 的方程;
(II)当k 变化时,在x 轴上是否存在点0M m (,),使得AMB 是以AB 为底的等腰三角形,若存在求出m 的取值范围,若不存在说明理由.
21.(本小题满分14分)
在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)
()123,,,,n A n A A A A ⋅⋅⋅:与()123,,,,n B n B B B B ⋅⋅⋅:,其中3n ≥,若同时满足:
①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =⋅⋅⋅-,则称()A n 与()B n 互为正交点列.
(Ⅰ)试判断()()()()12330,2,3,0,5,2A A A A :与()()()()12330,2,2,5,5,2B B B B :是否互为正交点列,并说明理由;
(Ⅱ)求证:()()()()()123440,0,3,1,6,0,9,1A A A A A :不存在正交点列()4B ;(Ⅲ)是否存在无正交点列()5B 的有序整数点列()5A ?并证明你的结论.
点我,直接下载纯word 版试卷。

相关文档
最新文档